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ABSTRACT 

Recent years have witnessed an influx of therapies aimed at targeting the biological aging 
process. While many hold promise for potentially delaying the simultaneous onset of 
multiple chronic conditions, a major hurdle in developing interventions to slow human 
aging is the lack of reliable and valid endpoints from which to evaluate potential 
candidates. The aim of this study was to develop a biomarker that could serve as a 
potential endophenotype in evaluation of one of the most promising and exciting aging 
therapeutics being developed—senolytics. Senolytics are compounds which selectively 
clear senescent cells by targeting anti-apoptotic pathways. Using DNAm data from 
fibroblasts and mesenchymal stromal cells (MSC) in culture, we developed a predictor of 
cellular senescence that related to three distinct senescence inducers (replicative, 
oncogene induced (OIS), and ionizing radiation (IR)). Our measure, termed DNAmSen, 
showed expected classification of validation data from embryonic stem cells (ESC), 
induced pluripotent stem cells (iPSC), and near senescent cells in culture. Further, using 
bulk data from whole blood, peripheral tissue samples, and postmortem tissue, we 
observed robust correlations between age and DNAmSen. We also observed age 
adjusted associations between DNAmSen and idiopathic pulmonary fibrosis (IPS), 
COPD, lung cancer, and Werner syndrome compared to controls. When characterizing 
the 88 CpGs in the DNAmSen measure, we observed a enrichment for those located in 
enhancer regions and regulatory regions marked by DNase I hypersensitive sites (DHSs). 
Interestingly most of the CpGs were observed to be moderately hypomethyled in early 
passage cells, yet exhibited further hypomethylation upon induction of cellular 
senescence, suggesting senescence is accompanied by programmatic alterations to the 
epigenome, rather than entropic drift. 
 

INTRODUCTION 

At a population level, incidence rates for the majority of chronic diseases, disability, 

and mortality increase exponentially as a function of age1. Nevertheless, significant 

between-person variance is observed in age-adjusted risks for most of these conditions. 
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This stems from the simple fact that while chronological aging increases at a fixed rate 

for everyone, biological aging—the rate at which the body moves from young/vibrant to 

old/sick—is variable and is hypothesized to play a causal role in accelerating or 

decelerating disease pathogenesis2-4. As such, identifying the underlying mechanisms 

that control the rate of biological aging, and developing novel therapeutics to target them 

will produce enormous personal, societal, and economic impact, by reducing diseases 

burden and extending not just lifespan, but also healthspan. 

Coincidentally, studies in model organisms have demonstrated that biological 

aging is malleable, either through genetic and/or environmental manipulation5. However, 

translational applications to slow and/or reverse biological aging in humans has thus far 

remained elusive.  Despite this, there is growing consensus in the field when it comes to 

defining the most prominent cellular and molecular hallmarks of aging from which to 

develop potential therapeutic targets6. One such hallmark is cellular senescence. Cellular 

senescence is a cellular state defined by proliferative arrest7,8. It is often a characteristic 

of genomic instability or cellular stress, and can be induced via telomere attrition, DNA 

damage, mutations in oncogenes, inflammation, elevated glucose, irradiation, and/or 

mitochondrial dysfunction. Senescent cell accumulation in aging tissues is hypothesized 

to play a role in the etiology of various age-related conditions, as a result of its 

corresponding transcriptional activation, termed the senescence-associated secretory 

phenotype (SASP)9. Although they remain non-proliferative, senescent cells have been 

shown to actively secrete cytokines, chemokines, proteases, and other damaging agents, 

thus contributing to a chronic proinflammatory environment10,11.  
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In recent years, there has been a growing movement to develop therapeutics to 

facilitate clearance of these toxic cells8. The first compounds to selectively clear 

senescent cells—termed senolytics—were discovered in 201512-14. These were based on 

targeting of the pro-survival/anti-apoptotic pathways that were found to be upregulated in 

senescence. To date, a number of senolytic drugs have been developed, or are in the 

development pipeline8. However, while morbidity/functioning traits have typically been 

used to demonstrate efficacy, a major hurdle for developing senolytics for human trials is 

the lack of valid and reliable biomarkers15,16. Up until now, a number of potential assays 

have been used to infer senescence, including tissue staining for β-galactosidase positive 

(SA-βgal+) cells, p16INK4A+ expression, SASP factor activation, and damage foci (e.g. 

γH2.AX). However, none of these biomarkers is specific enough to be used alone for 

clinical evaluation of senolytic therapies8.  

Interestingly, it has been well established that senescence is also marked by 

another hallmark of aging—epigenetic alterations—which includes changes in DNA 

methylation (DNAm)17-19. Epigenetic alterations are believed to play an important role in 

establishment and maintenance of senescence by silencing proliferation-promoting 

genes. Recent work using Human BJ Fibroblasts17 has shown that replicative senescence 

(RS) exhibits an almost programmatic change in DNAm, characterized by 

hypermethylation of promoter regions for genes involved in biosynthetic and metabolic 

processes. Interestingly, CpG Island promoter hypermethylation, and global 

hypomethylation are observed in senescence, normal aging, and cancer. Nevertheless, 

many studies examine only a single type of senescence—typically RS—making it difficult 

to differentiate DNAm signals that reflect the type of inducer, versus senescence itself. 
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Further, even among the studies investigating various types of senescence, most have 

pointed to the contrasting DNAm patterns, rather than identifying a universal signature. 

Previously, we and others have employed DNAm data to develop biomarkers that 

universally capture normal aging across diverse tissues and cell types20-24. These 

‘epigenetic ages’ can be contrasted against the chronological age of the sample donor to 

differentiate accelerated versus decelerated aging. Furthermore, we have shown that the 

difference in epigenetic and chronological age is a robust predictor of morbidity and 

mortality risk22. Nevertheless, the underlying biology of what these measures are 

capturing is unclear, decreasing their potential application for clinical trials25.  

As a result, the aim of this paper is to bridge these two approaches by utilize DNAm 

data from in vitro experiments to generate a novel epigenetic biomarker that specifically 

captures cellular senescence in human samples. In doing so we consider three types of 

senescence—replicative senescence (RS), oncogene induced senescence (OIS), and 

Ionizing Radiation-Induced (IRIS) senescence—in two cell types, BJ Fibroblasts and 

Mesenchymal Stromal Cells (MSC).  

RESULTS 

Development of a Senescence DNAm Biomarker  

The primary data used to train a DNAm biomarker of senescence came from two 

studies, one with senescence in Human BJ Fibroblasts and the other with senescence in 

Mesenchymal Stromal Cells (MSC) (Figure 1).  
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Figure 1: Framework for development of DNAmSen classifier.  
Data from mesenchymal stem cells, BJ fibroblasts, and embryonic stem cells was used 
to train and validate a DNAm based predictor of cellular senescence. For training DNAm 
from early passage cells (red) were compared to senescent cells (blue), considering three 
types of inducers.  
 
 

Prior to pooling MSC and Fibroblast samples, we used t-Distributed Stochastic 

Neighbor Embedding (t-SNE) to compare the signals between the two samples to 

determine if we needed to correct for batch effects before applying the supervised 

machine learning approach. As shown in Figure 2A, MSC and Fibroblasts clustered 

separately for component 2. However, upon further inspection this distinction appears to 

have a biological rather than a technical basis. For instance, it also fully distinguishes 

ESC and iPSC from MSC and Fibroblasts. Even within the Fibroblast samples, there is a 

clear clustering by condition, with EP cells having the highest (closest to EP) values for 

component 2. 
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Figure 2: Distinct DNAm profiles of senescent and non-senescent cells.  
t-Distributed Stochastic Neighbor Embedding (t-SNE) was applied in order to cluster cell 
types based on methylation patterns across more than 450,000 CpG cites (2A). Cells 
were differentiated based on both components suggesting that they exhibit unique DNAm 
patterns. After training a supervised classier of senescence, the resulting equation was 
applied and we compared the predictor values across cell types (2B). We observed much 
higher levels for all SA-bgal+ cells, while the lowest levels were observed for ESC and 
iPSC. 
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Based on this, data from cultured MSC and Fibroblasts were pooled, and a 

supervised machine learning approach (elastic net regression) was used to generate a 

classifier of senescence (Figure 1). To do so, we compared the three types of 

senescence—totaling 12 senescence samples to the MSC and fibroblast EP samples 

(n=10). This resulted in a predictor based on 88 CpGs.  Figure 2B shows the levels for 

the resulting DNAm senescence biomarker by condition. While the OIS, RS, IRIS, and 

EP were used as training data, we still find that ESC and iPSC are classified as completely 

non-senescent (DNAmSen=0). Conversely, the near senescent cells, which stain positive 

for SA-βgal reach almost the same level as the senescent cells (DNAmSen>0.8). 

Immortalized and immortalized/transformed cells have a slight increase (DNAmSen of 

about 0.3-0.5), but are still significantly distinct from the senescent cells.  

In Vivo Age Validation 

The utility of a biomarker for senescence will be based on its performance in readily 

available samples, such as whole blood. As a result, we calculated DNAmSen using the 

DNAm data from whole blood for persons ages 19 to 101 years (GSE40279). We found 

that DNAmSen was correlated with age at r=0.52, p=2.6e-64 (Figure 3A). Moreover, when 

examining DNAmSen by age group, we observe a very clear separation in levels between 

persons <40, 50-65, 85+ years—compared to those less that 40 years old, those 50-65 

were just over one-half standard deviation higher; while those 85+ were about one and a 

half standard deviations higher (Figure 3B). 
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Figure 3: Age differences in DNAmSen estimated in whole blood.  
The equation developed from cell culture samples was applied to bulk samples from 
whole blood. When evaluating the age correlation, we find that DNAmSen was 
strongly/moderately correlated with chronological age in whole blood at r=0.52 (3A). 
When evaluating this in age-startified groups, we find that younger adults (20-39), middle-
aged adults (50-65), and older adults (85+) display distinctly different leves of DNAmSen 
in whole blood.  
 
 

Next, we also examined the age correlations in epidermal and dermal skin samples 

(GSE51954), in which we find robust age correlation in both (Figure 4A and 4B). 

 

 
Figure 4: Age correlations for DNAmSen in skin samples from dermis and 
epidermis.  
We estimated DNAmSen in skin samples from both dermis and epidermis and found 
significant age correlations in both: dermis (r=0.36), epidermis (r=0.44).  
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Finally, we also examine changes in DNAmSen in various tissues during fetal 

development (Figure 5). Overall, we find that amnion, kidney, skin, eye, muscle, and heart 

all show robust increases in DNAmSen with increasing gestational age. For instance, 

amnion—the membrane which encloses the fetus—exhibits a correlation of r=0.95 

(p=3.0e-4) between gestational age and DNAmSen. Heart and skin were also found to 

have robust correlations of r=0.99, and r=0.92, respectively; yet, further validation should 

be done given that only 4-5 samples were available for each. 

 

 
Figure 5: Gestational age correlations in fetal tissue from postmortem samples. 
We estimated age correlations for DNAmSen measured in a number of fetal tissue 
samples. Overall, we found extremely strong correlations between for all tissues, ranging 
from 0.66 in kidney (5B) to 0.99 in heart (5F).  
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In Vivo Validation of Aging-Related Outcomes 

 DNAm measured in various tissue cell samples for different age-related conditions 

was used to further validate DNAmSen. For instance, based on data from Heyn et al., 

2013 (GSE42865) we examined DNAmSen in two progeria conditions (Table 1)—Werner 

Syndrome (WS) and Hutchinson-Gilford Progeria (HGP). We compared Immortalized B 

cells from normal controls to those with lamin A (LMNA) mutation (WS), non-mutant WS 

and HGP patients, and Werner syndrome RecQ helicase like (WRN) mutation (WS). 

Despite very small sample sizes, we observed significantly higher DNAmSen among 

WRN mutant carriers, such that they had nearly a two standard deviation increase in the 

measure (b=1.84, p=4.19E-3). However, these results were not age-adjusted, because 

information on age was not available for these samples, Thus, to account for this, we 

applied the Horvath pan-tissue DNAmAge clock to estimate chronological age based on 

DNAm. We find that after includion of Horvath DNAmAge, the associations were 

maintained (b=1.82, p=6.11E-3).  

Table 1: Associations between DNAmSen and Progeria Mutations 
 Model 1 Model 2 
 Coefficient p-value Coefficient p-value 
LMNA mutation 0.8 1.76E-01 1.1 1.13E-01 
Non-mutant patient -0.37 3.27E-01 -0.18 6.51E-01 
WRN mutation 1.84 4.19E-03 1.82 6.11E-03 
Horvath Clock   0.02 3.08E-01 
R2 0.853 0.883 

 

Next, using data from GSE63704, DNAmSen in lungs from persons with COPD, 

Idiopathic Pulmonary Fibrosis (IPF), and lung tumors was compared to DNAmSen in 

lungs from health controls. We observed that all three disease conditions exhibited 
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elevated DNAmSen compared to controls (Table 2), such that lung tumors had an almost 

one standard deviation increase (b=0.91, p=1.22E-3), COPD lungs showed over half a 

standard deviation increase in DNAmSen (b=0.65, p=4.28E-3), and IPF lungs exhibited 

about a half standard deviation increase in DNAmSen (b=0.51, p=1.91E-2). As with the 

progeria data, age information was not available for these samples, thus we used the 

Horvath DNAmAge clock as a surrogate to adjust for chronological age. When adjusting 

for this measure, we find that the results for cancer and COPD are maintained 

(bcancer=1.10, pcancer=9.89E-5; and bCOPD=0.53, pCOPD=1.80E-2), yet the result for IPF 

becomes non-significant (b=-0.002, p=9.92E-1). 

Table 2: Associations between DNAmSen and Diseases of the Lung 
 Model 1 Model 2 
 Coefficient p-value Coefficient p-value 
Cancer 0.91 1.22E-03 1.1 9.89E-05 
COPD 0.65 4.28E-03 0.53 1.80E-02 
Fibrosis 0.51 1.91E-02 -0.002 9.92E-01 
Horvath Clock -- -- 0.02 3.95E-03 
R2 0.106 0.164 

 

DNAmSen CpG Characteristics 

 We examined the characteristics of the 88 CpGs in the DNAmSen score and 

compared them to all the CpGs shared between the 450k and the EPIC Illumina arrays. 

Overall, CpGs are distributed over the whole genome and don’t appear to cluster in 

specific chromosomes or genomic locations (Figure 6A). However, we do find a nearly 

two-fold enrichment for CpGs located in enhancer regions. For instance, nearly 41% of 

CpGs in our senescence measure were located in enhancer regions, as identified by 

ENCODE. Conversely, only 21% of the CpGs on the array are located in ENCODE 
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defined enhancer regions. Based on Fisher’s exact test, this suggests a significant 

enrichment among our 88 probes, versus what is expected by chance (p=0.0013).  

 
Figure 6: Characteristic of the 88 CpGs in DNAmSen.  
We found that the 88 CpGs that made up our senescence biomarker were more-or-less 
evenly distributed across the genome (6A). Interestingly, we observed that the changes 
likely did not represent epigenetic drift but rather a programmatic change, given that CpGs 
that were hypomethylated in early passage cells tended to have negative coefficients, 
suggesting that DNAm was decreased further in senescence. This was supported by the 
shift to the left in the mean DNAm for senescent cells (6C). For 6B and 6C, CpGs in 
enhancer regions are indicated in turquoise and show a shift towards more extreme 
hypomethyltion with senescence. 
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Similarly, we also observe a significant enrichment for CpGs located in regulatory 

regions of the DNA, marked by DNase I hypersensitive sites (DHSs). As with the 

enhancers, we observed nearly two-times the proportion of DHS CpGs for the 88 

senescence probes compared to what is observed among all probes on the array 

(enrichment=1.94, p=0.0089). Finally, there was a slight enrichment for CpGs located in 

CpG islands (CGI)—just over 30% for the 450k probes, versus 39% for the senescence 

probes. However, this does not represent a significant enrichment based on Fisher’s 

exact test (p=0.286). Finally, there was also suggestive enrichment for CpGs that were 

classified as being promoter associated (enrichment=1.44, p=0.094). 

 Lastly, we examined whether DNAm differences between senescence and early 

passage that are captured by our measure represent entropic drift (regression towards 

the mean). As shown in Figure 6B, generally we find that most CpGs have a coefficients 

at or near zero (e.g. contribute very little information) to the DNAmSen predictor. 

However, of those with larger contributions/coefficients, the majority have negative 

coefficients, suggesting a trend toward hypomethylation in senescence. Yet perhaps 

more interesting is the observation that the majority of CpGs with robust negative 

coefficients, are already hypomethylated in early passage cells, yet have DNAm levels 

that are further reduced in senescence. This suggests that the DNAm changes in 

senescence are not indicative of epigenetic drift and or entropic alterations (would trend 

towards 0.5), but rather appear to represent a more programmatic response to 

senescence inducing stimuli.  
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DISCUSSION 

Using DNAm data from fibroblasts and mesenchymal stromal cells in culture, we 

applied supervised machine learning to train a classifier of cellular senescence to serve 

as a useful biomarker for both clinical trials and basic research. Recently, there has been 

increasing momentum when it comes to developing therapeutics to target the biological 

aging process. However, our ability to effectively translate many of these interventions to 

humans, and in turn comprehensively assess their efficacy in clinical trials, will require 

valid and reliable endpoints that capture aging and its respective hallmarks25.  

Biomarkers based on genome-wide DNAm have proven to be reliable indicators 

of aging processes20,22-24. However, many of the existing methylation aging biomarkers—

often referred to as epigenetic clocks—are not well understood biologically and likely 

capture a variety of age-related alterations. Thus, it should be more beneficial to develop 

aging biomarkers that are meant to specifically capture certain hallmarks that existing 

therapies aim to target.  

One of the most promising aging therapies being developed are senolytics8. These 

interventions are aimed at targeting the anti-apoptotic pathways of senescent cells, 

facilitating their selective removal. However, one difficulty in evaluating these therapies in 

human clinical trials centers on the lack of agreed upon measures to quantify the 

proportions (or change in proportion) of senescent cells.  In response, we utilized DNAm 

data from two distinct cell types, and three distinct senescence inducers to identify an 

“epigenetic fingerprint” of cellular senescence. Using supervised machine learning, we 

constructed a classifier of senescence that incorporated information from 88 genome-

wide CpGs. Using validation samples, we observed that, as expected, embryonic stem 
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cells and induced pluripotent stem cells were classified as completely non-senescent and 

even exhibited lower senescent states than early passage foreskin fibroblasts and MSC. 

Further, fibroblasts that had been passaged until they were nearly senescent—as 

indicated by SA-βgal+ staining coupled with continued passaging capacity—displayed 

high levels of DNAmSen that were near, yet not quite at the levels of fully senescent cells.  

Yet, in order for these measure to be applicable to human clinical trials, they need 

to produce valid predictions in peripheral samples from living patients. To demonstrate 

efficacy, we tested the age correlations for DNAmSen using various tissues and cells from 

both adult and fetal samples. We observed robust age correlations, particularly for 

samples from adult whole blood and skin, as well as multiple fetal tissues. In addition to 

age correlations, we also tested whether DNAmSen was higher in various disease 

conditions, after adjusting for chronological age (or surrogate epigenetic age measures). 

We observed elevated DNAmSen for lung samples from patients with IPF, COPD, or 

cancer versus controls; as well as immortalized B cells carriers of WRN mutations versus 

controls.  

When considering the landscape of our DNAmSen measure we observed 

approximately two-fold enrichment for CpGs located in enhancer regions and regulatory 

regions, marked by DNase I hypersensitive sites (DHSs). Perhaps more interestingly, we 

find that there is a trend for DNAm that is captured in our measure to go from already 

hypomethylated in early passage cells to more extreme levels of hypomethylation with 

induction of cellular senescence. Assuming the changes in DNAm represented epigenetic 

drift (entropic processes) we would have expected DNAm of hypomethylated regions to 

increase, towards mean levels of around 0.50. However, the shift from already low levels 
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of DNAm to even more extreme absence of DNAm suggests that this is a highly regulated 

alteration, rather than random error.  

Overall, we were able to identify a DNAm based measure of cellular senescence 

that is not unique to a single cell type nor a single inducer (e.g. replicative). At the same 

time, this measure was able to track age and disease in peripheral samples from living 

subjects. As such, this measure may be capturing a cellular program that is activated in 

senescence. In moving forward, it will be important to evaluate this measure using data 

from clinical trials, relate it to existing senescence biomarkers, and further evaluate 

reliability using diverse cell types and inducers. Finally, further instigating the epigenetic 

changes that accompany senescence may provide important insight into the 

characteristics of this aging phenotype, facilitating or ability to develop reliable 

therapeutics to target these cells.  

METHODS 

Two datasets were used for training DNAmSen. For both studies, DNAm levels 

were assessed using the Illumina HumanMethylation450 BeadChip. The first was a 

dataset from Xie et al., 2018, obtained from Gene Expression Omnibus (accession no. 

GSE91069). Briefly, early passage (EP) BJ fibroblast, were sequentially passaged to 

induced RS (28 population doublings). Near senescence cells were also considered, 

which cells passaged for 14 doublings, that while remaining proliferative, exhibit SA-βgal+ 

staining. OIS cells were produced by infecting EP cells with the H-Ras oncoprotein (H-

rasV12), which after 10 days activates a senescence phenotype. Additionally, data from 

immortalized and transformed cells were also available in comparison to empty vector 

(EV). For instance, EP cells were infected with either human telomerase catalytic subunit 
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(hTERT) alone, or hTERT and subsequently infected with simian virus 40 large T antigen 

(SV40) to promote immortalization. To fully transform them, cells infected with hTERT 

and SV40 were further infected with a H-rasV12 retrovirus, generating a fully 

immortalized/transformed lineage. Lastly, near senescence cells (mentioned above) were 

also immortalized via SV40 and/or hTERT, yet although they were infected with H-rasV12 

and exhibited increased expression, these cells appeared to resist immortalization. 

The second dataset (GSE37066) was from Kock et al., 2013 and Shao et al., 2013 

and included DNAm data from MSC characterized as EP, late passage/RS, irradiated, 

immortalized, or cells reprogrammed into induced pluripotent stem cells (iPSC). As with 

the data from Xie et al., cells were passaged in culture, and in this case, we considered 

3 samples as late passage (12-16 passages).  EP was defined as those with only two to 

three passages in culture. As with the data from Xie et al. immortalization was achieved 

via overexpression of TERT or TERT and SV40.  IRIS was achieved seven days after 

irradiating cells with 15 Gy. Finally, data was also available from embryonic stem cells 

(ESC) and iPSC based on reprogrammed MSC. 

Elastic net, fitting a binomial logistic regression was used to train a classifier of 

senescence versus non-senescence.  The senescence category included all three types 

of inducers—RS (n=3 samples from Fibroblasts and n=3 samples from MSC), OIS (n=3 

samples from Fibroblasts), and IRIS (n=3 samples from MSC)—totaling 12 senescence 

samples. These were contrasted against n=10 EP samples (5 from MSC and 5 from 

Fibroblasts). Briefly, 10-fold cross-validation was used to select a lambda penalty for the 

elastic net regression, resulting in a classifier based on DNAm levels from 88 CpGs. 
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Four datasets were used to validate the DNAmSen measure using in vivo 

samples—GSE40279, GSE51954, GSE42865, GSE63704, GSE56515. In each dataset, 

the equation resulting from the elastic net from cell cultures (88 CpGs) was applied to 

estimate DNAmSen. For the datasets from whole blood, epidermis/dermis, and fetal 

tissue, we tested the association between DNAmSen and chronological age using 

biweight midcorrelation. For the data from progeroid patients versus controls, and 

diseased versus healthy lung samples we used step-wise ordinary least squares (OLS) 

regression to test whether groups differed in their predicted levels of DNAmSen. In model 

1, no confounders were considered in the models. However, for model 2, we adjusted fro 

a surrogate age measure—Horvath epigenetic clock. The epigenetic clock was estimated 

in accordance with the equation proposed by Horvath20 that involves a weighted sum of 

353 CpGs. 
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