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Abstract

Turning red after consuming alcohol may seem like a mere social inconvenience. Yet,
this flushing response is caused by an accumulation of acetaldehyde, a carcinogenic
intermediate of alcohol metabolism. Aldehyde dehydrogenase 2 (ALDH2) deficiency,
the result of a point mutation, produces a less efficient ALDH2. The resulting
accumulation of acetaldehyde greatly increases the risk of developing esophageal
and head and neck cancers. In this study, we produced recombinant ALDH2 in the
probiotic E. coli Nissle 1917, which successfully reduces acetaldehyde levels in
simulated oral conditions. Packaged in a hard candy, the ALDH2-probiotic would
remain in the mouth to specifically target salivary acetaldehyde. Using mathematical
modeling, we also determined how much recombinant ALDH2 is needed to reduce
elevated acetaldehyde levels.
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Introduction

ALDH2 Deficiency

ALDH2 deficiency, more commonly known as Alcohol Flushing Syndrome or Asian
Glow, is a genetic condition that interferes with the metabolism of alcohol. Normally,
ethanol is first converted to acetaldehyde (a toxic intermediate) by the enzyme alcohol
dehydrogenase (ADH). Then, acetaldehyde is converted to acetate, which can be
safely metabolized in the body by aldehyde dehydrogenase 2 (ALDH2) (Figure 1).
People with ALDH2 deficiency, however, have a point mutation which leads to a less
efficient mutant (ALDH2*2), with lower binding affinity to the coenzyme NAD+ [1], [2].
Enzymatic activity in ALDH2-deficient individuals can be as low as 4% compared to
wild type ALDH2*1 activity [2], [3], [4], [5]. As a result, acetaldehyde accumulates and
induces an inflammatory response that causes the skin to flush or appear red after
drinking alcohol [6]. Facial flushing is the most obvious result of ALDH2 deficiency, but
symptoms also include headaches, dizziness, hypotension, and heart palpitations [3],

[7].
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Figure 1. Acetaldehyde accumulates in ALDH2-deficient individuals. Ethanol is
first converted to a toxic intermediate, acetaldehyde, by alcohol dehydrogenase
(ADH), then converted to acetate by wild type ALDH2*1. The mutant form,
ALDH2*2, cannot fully convert acetaldehyde into acetate, and acetaldehyde
accumulates as a result.

alcohol acetaldehyde

ALDH?2 deficiency affects 540 million people—8% of the world population. In East Asia
(which includes Japan, China, and Korea), this is a much bigger problem, where the
number rises to 36% [8]. In our home, Taiwan, approximately 47% of the population
carries this genetic mutation—the highest ALDH2-deficient percentage in the world
9]

Health Concerns & Risks

Turning red after consuming alcohol may seem like a mere social inconvenience. Yet,
behind this red complexion lies a far more serious problem. The International Agency
for Research on Cancer classifies acetaldehyde associated with alcohol
consumption as a Group 1 carcinogen [10]. Alcohol and acetaldehyde have been
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shown to reduce thymidine incorporation into DNA, interfering with DNA synthesis [11],
[12]. In other studies with human lymphocyte cells, acetaldehyde increased
chromosome damage or the frequency of sister-chromatid exchanges [13], [14], [15].
When rats were exposed to acetaldehyde, inhalation led to abnormal changes in the
nasal mucous membrane, such as degeneration of the tissue, increased cell
proliferation, and the development of carcinomas [16].

Acetaldehyde levels over 50 pM are considered toxic and cause mutations in DNA
[17], [18]. In human studies where roughly 2 to 3 servings of alcohol (0.5-0.6 g
alcohol’kg body weight) were ingested, salivary acetaldehyde levels in some
individuals reached over 100 pM, compared to normal levels of <20 uM without
drinking [19], [20], [21].
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100 100
—e— ALDH2*1/*2 —e—ALDH2*1/*1 —e— ALDH2*1/*2 —e—ALDH2*1/*1

S 80 s
= Z
c c
S 60 IS
B oo ©
@ 40 o
o |8}
c c
o o
O 20 O

0 et . . ot .d

Before 30 60 90 120 150 180 Before 30 60 90 120 150 180

drinking drinking

Time after the completion of drinking (min) Time after the completion of drinking (min)

Figure 2. Salivary acetaldehyde levels are much higher in heterozygous
(ALDH2*1/*2) individuals, compared to homozygous wild type (ALDH2*1/*1)
individuals. Salivary and blood acetaldehyde levels were recorded for individuals
before and after drinking 0.6 g ethanol/kg body weight. Salivary acetaldehyde
levels are also significantly higher than blood acetaldehyde after drinking (figure
adapted from Yokoyama et al.,, 2008) [20]. Acetaldehyde levels over 50 UM are
considered toxic (dashed line).

For people who carry normal, functional ALDH2*, acetaldehyde can quickly get
broken down (Figure 2). For those who are ALDH2-deficient and drink, however,
acetaldehyde can accumulate to toxic levels. The strongest effects are seen in the
mouth. Studies show that after alcohol consumption, salivary acetaldehyde levels are
significantly higher than blood acetaldehyde levels [20], [22]. Since there are other
aldehyde dehydrogenases, such as ALDH1A1, throughout the body to help metabolize
acetaldehyde, blood acetaldehyde concentrations remain relatively low [23]. ALDH2
levels are also much higher in the liver, which can break down most acetaldehyde
before it enters the bloodstream [24]. This may explain why ALDH2 deficiency does
not seem to be directly associated with the development of liver, breast, colorectal, or
other common alcohol-related cancers [25], [9]. Instead, the effects of ALDH2
deficiency are mainly localized in the upper digestive and head and neck region.
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Heightened salivary acetaldehyde levels increase the risks of developing
esophageal and head and neck cancers. /n vivo studies with rats have shown that
acetaldehyde administered orally has a tumor-promoting effect (abnormally fast cell
growth and division) on the upper respiratory-digestive tract [26]. Depending on how
much alcohol is consumed, people with ALDH2 deficiency are two to eight times
more likely to develop head and neck cancers (including oral cancer, pharyngeal
cancer, laryngeal cancer, etc.), and two to twelve times more likely to develop
esophageal cancer compared to people with normal ALDH2*1[27], [28], [29], [30], [31],
[32], [33], [34], [35].

Today, it is common to simply use cosmetics to conceal the flushing, or take
antihistamines to prevent the release of histamines and the resulting redness [36],
[37], [38], [39]. These solutions, however, do not actually address the buildup of
acetaldehyde, the main contributor to increased esophageal and head and neck
cancers risks [40], [41]. On the contrary, these options may actually increase health
risks as they conceal the visible symptoms without reducing acetaldehyde levels [8].
Other treatments include antioxidants that may directly interact with acetaldehyde, but
these mainly reduce acetaldehyde accumulation in the blood, instead of treating the
acetaldehyde accumulation in saliva [41], [42].

To directly address the increased esophageal and head and neck cancer risks, we
aim to reduce salivary acetaldehyde levels. Here, we describe testing and delivery of
recombinant ALDH2*1 as a candy to maintain normal acetaldehyde levels in the
mouths of ALDH2-deficient individuals.

Materials and Methods

Construct Design

ALDH2*1 and ALDH2*2

Human ALDH2*1 (iGEM Parts Registry: BBa_M36520; NM_001204889.1) and human
ALDH2*2 was modified to remove an internal Pstl site and lower the guanine and
cytosine content (BBa_K2539150), as recommended by Integrated DNA Technology
(IDT). Mutant ALDH2*2 consists of a single G to A point mutation (BBa_K2539250)
which leads to a E487K change in the protein. ALDH2 sequences were flanked by an
upstream strong promoter and strong ribosome binding site (RBS) combination
(BBa_K880005), and a downstream transcription terminator (BBa_B0015) to maximize
expression. DNA was synthesized by IDT (BBa_K2539100 and BBa_K2539200),
cloned into the standard pSB1C3 Biobrick backbone, and sequenced by Tri-l Biotech.

His-tagged ALDH2*1 and ALDH2*2

For protein purification, an additional N-terminal HIS-tag (6xHIS) was added to the
start codon of both ALDH2*1 and ALDH2*2 sequences. DNA was synthesized by IDT
(BBa_K2539101 and BBa_K2539201), cloned into the standard pSB1C3 Biobrick
backbone, and sequenced by Tri-l Biotech.

Protein Purification
To purify the HIS-tagged proteins, 150 mL of bacterial culture was centrifuged, lysed,
and filtered before the cell extract sample was run through a nickel column (GE
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Healthcare, 11-0033-99). A low-concentration imidazole buffer was run through the
column to wash out any non-specific proteins. Finally, we eluted and collected the
HIS-tagged ALDH2 proteins by running a high-concentration imidazole buffer through
the column (imidazole competes with the HIS tag to bind with nickel ions in the
column) [43]. SDS-PAGE was used to check protein content at different steps of the
purification process: lysed cell sample, flow-through after the wash buffer, and final
eluate containing the purified protein.

Artificial Saliva

To simulate oral conditions, enzymatic activity tests were run using artificial saliva. We
chose to prepare artificial saliva using Biotene Dry Mouth OralBalance Gel, a
concentrated gel used to treat xerostomia (more commonly known as dry mouth). The
gel contains many of the same ingredients as artificial saliva, such as cellulose,
glycerin, and xylitol [44] [45] [46]. The mean viscosity of saliva at room temperature is
2.1 centipoise (cP), and the mean viscosity of water at room temperature is 0.95 cP
[47], [48]. We diluted the gel so that the resulting solution would be about 2 times as
viscous as water, and then calculated the viscosity of our solutions by adapting the
ball drop procedure from Tang (2016) [48]. Diluting 6.5 grams of Biotene gel in 50 mL
of water produces a solution with a viscosity of 2.09 cP, which closely mimics saliva.

ALDH2 Enzyme Activity Assay

The reduction of NAD+ to NADH occurs when ALDH2 converts acetaldehyde into
acetate. This reaction takes place in a 1:1 ratio, so production of NADH can be used to
test ALDHZ2’s ability to metabolize acetaldehyde. We used reagents from a kit
(Megazyme, K-ACHYD) and quantified the amount of NADH produced by taking
absorbance readings at 340 nm. This wavelength is highly absorbed by the reduced
form, NADH, but not the oxidized form, NAD+ [49], [50].

We calculated acetaldehyde concentration using the following equation:

_ V. xMW
C= Txdxov X AA , where: (Eq. 1)

¢ = concentration of acetaldehyde (g/L)

V = final volume (mL)

MW = molecular weight of acetaldehyde = 44.05 g/mol

€ = extinction coefficient of NADH at 340 nm = 3000 L/mol/cm
d = light path=1cm

v = sample volume (mL)

AA = change in absorbance

Testing Cell Lysate

3 mL bacterial cultures were prepared, and the populations were standardized: the
absorbance at OD600 of each culture was measured and cultures were diluted
accordingly to achieve the same population in all samples. The cultures were spun
down, and the pellets were resuspended and lysed using xTractor Lysis Buffer
(Takara Bio, 635671). After lysis, 500 pL of supernatant was transferred into quartz
cuvettes containing a pH 9.0 buffer, distilled water, and excess NAD+ (solutions were
provided by the Megazyme kit). 50 uL of 0.4 M acetaldehyde was added to initiate the
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reaction, and absorbance values at 340 nm were recorded for 40 minutes. For all
functional tests, the acetaldehyde to water ratio was 1:59 (the total volume was 2.95
mL).

Testing Purified HIS-tagged ALDHZ2

The procedure described above was followed, except that instead of cell lysates, 5 ug
of purified ALDH2 was added into quartz cuvettes containing a pH 9.0 buffer, distilled
water or artificial saliva, and excess NAD+.

E. coli Nissle 1917 (EcN) Transformation

We obtained a sample of EcN (Mutaflor) from Pharma-Zentrale GmbH. Bacterial
cultures were prepared using LB broth, and the cells were made competent by
treatment with calcium chloride. GFP- and ALDH2-expressing plasmids were then
chemically transformed into competent EcN following standard E. coli protocol.

ALDH2 Probiotic Candy Prototype

10 mL of probiotic EcN culture was pelleted and resuspended in 10 mL distilled water.
To determine the heat threshold of EcN, the probiotic mixture was heated from 25°C
to 80°C, and 3 pL of bacteria was plated at 5°C intervals. To make our own
engineered EcN candy, 30 g of rock sugar and 30 g of gelatin were added to 120 mL
of water (Figure 3). The mixture was heated to about 70°C, or until all of the
ingredients fully dissolved. GFP-, ALDH2*1-, and ALDH2*2-EcN were grown, pelleted,
resuspended in 50 uL of water, and added to the gelatin/candy mixture after it cooled
down to 55°C. 3 mL portions were pipetted into ice cube trays and left to solidify and
dry over a period of three days.

Figure 3. Making EcN probiotic candy. (A) 30 g of rock sugar and 30 g of gelatin
were dissolved in 120 mL of water. (B) After heating, 3 mL of the probiotic candy
mixture was pipetted into each ice cube tray and let cool.

Testing EcN Candy

We compared the dissolution rate of our ECN candy with commercial lozenges (Ricola
and Nin Jiom herbal candies) by gently stirring them in artificial saliva at 37°C. We also
determined that commercial lozenges dissolve in the mouth after an average of 13
minutes. To test the candy’s ability to metabolize acetaldehyde, it was dissolved in
artificial saliva at 37°C, centrifuged to isolate ALDH2-EcN, and then lysed. Cell lysates
were tested using artificial saliva at 37°C.
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Results & Discussion

Purified ALDH2*1 Metabolizes Acetaldehyde Faster than ALDH2*2

Construct Design, Expression, and Protein Purification

HIS-tagged ALDH2*1 and ALDH2*2 expression constructs were assembled
(BBa_2539101 and BBa_2539201, respectively, and confirmed by PCR check as well
as sequencing (Figure 4). SDS-PAGE was used to check protein content at different
steps of the purification process: lysed cell sample, flow-through after the wash buffer,
and final eluate containing the purified protein (Figure 4). HIS-tagged ALDH2*1 should
be around 56 kDa. In the initial cell lysate lane, there was a band around 56 kDa
(Figure 4). This band disappeared in the wash buffer flow-through lane, and
reappeared in the eluate. A similar band around 50 kDa was also seen in the eluate
when we purified ALDH2*2 (Figure 4). For both HIS-tagged samples, there were other
proteins present in the eluate, but the gels showed that we now have purer samples of
both HIS-tagged ALDH2*1 and ALDH2*2.
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Figure 4. Design, expression, and purification of HIS-tagged ALDH2*1 and
ALDH2*2. (A) DNA constructs (BBa_K2539101 and BBa_K2539201) contain a
constitutive strong promoter, strong RBS, a start codon with a 6x HIS tag, human
ALDH2*1 or ALDH2*2 (respectively), and a transcription terminator. (B) PCR check
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for both constructs using VF2 and VR primers produced at the expected size of 2.1
kb (yellow box). (C) SDS-PAGE results show protein content at different steps of
protein purification. Left: A band around 56 kDa in the cell extract (green) and the
eluate (red), but not present in the wash buffer flow through lane (yellow), matches
our expected HIS-tagged ALDH2*1. Right: The same band can be seen in the
eluate lane for HIS-tagged ALDH2*2 (red).

Measuring ALDHZ2 Enzyme Activity

To test the enzymatic activity of our recombinant ALDH2, we measured the amount of
NADH produced when acetaldehyde is converted to acetate (Figure 5). NADH was
quantified by taking absorbance readings at 340 nm. This wavelength is highly
absorbed by the reduced form, NADH, but not the oxidized form, NAD+ [49], [50].
Both wild type ALDH2*1 and mutant ALDH2*2 should metabolize acetaldehyde and
produce NADH as a result, but ALDH2*1 should be more efficient compared to
ALDH2*2. To simulate oral conditions, all tests were run with artificial saliva and at
body temperature. Our results show that while both forms of the enzyme can
metabolize acetaldehyde, ALDH2*1 produced significantly higher NADH levels (by
about 3.5 times) compared to ALDH2*2 (Figure 5).
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Figure 5. Wild type ALDH2*1 metabolizes acetaldehyde significantly faster
compared to mutant ALDH2*2 under simulated oral conditions. (A) The
conversion of acetaldehyde to acetate by ALDH2 uses NAD+ and produces
NADH. (B) Experimental setup. Purified enzyme samples were mixed with
acetaldehyde and NAD+ to initiate the reaction. NADH concentration was
measured by taking absorbance readings at 340 nm. (C) Enzymatic activity of
purified ALDH2*1 and ALDH2*2 was tested in artificial saliva at 37°C. A negative
control containing only elution buffer (from the protein purification process) was
also included (gray). Under these conditions, ALDH2*1 metabolized significantly
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more acetaldehyde compared to both ALDH2*2 and the negative control. Error
bars represent standard error.

ALDH2 Delivery Using the Probiotic E. coli Nissle 1917 (EcN)

In a survey (n = 697) we conducted to gather public opinion, 83% of the people
indicated that they prefer treatment in the form of probiotics or oral medication. We
tested EcN, a probiotic strain categorized under “generally recognized as safe”
(GRAS) by the FDA [51]. It is one of the most frequently used gram-negative oral
probiotic strains in research and has been studied for over a century [52]. To test if
EcN can be a chassis for ALDH2*1 delivery, we obtained a sample of EcN (Mutaflor)
from Pharma-Zentrale GmbH and attempted chemical transformation with a GFP
expression plasmid (Figure 6). Although transformation efficiency was much lower
compared to the common lab strain E. coli K12, we still observed GFP-expressing
EcN colonies, indicating that transformation was successful.
A - B
. Transformation Transformation
Control with GFP

E. coli K-12

E. coli Missle 1917

Figure 6. GFP was successfully transformed into EcN. (A) EcN samples were

prepared for SEM by fixation with glutaraldehyde. (B) Both E. coli K-12 (top;
positive control) and EcN (bottom) were first treated with calcium chloride, and
then chemically transformed with a GFP expression plasmid. EcN colonies were
glowing after transformation, showing that transformation was successful.

Next, we transformed both ALDH2*"1 and ALDH2*2-expression constructs
(BBa_K2539100 and BBa_K2539200), as well as a GFP positive control into EcN. The
transformations were successful; we observed colonies on all plates and confirmed
the plasmids by PCR using the primers VF2 and VR (Figure 7). When we tested the
activity of ALDH2*-EcN and ALDH2*2-EcN, we observed a smaller difference in wild
type and mutant ALDH2 metabolism. Since these tests were run using cell lysates,
there must be other enzymes present in the cells which can also react with NAD+ or
NADH; this might explain the closer levels of NADH. However, NADH levels still
increased significantly faster for ALDH2*1-EcN compared to ALDH2*2-EcN, and did
not change for the negative control (inactive ALDH2*1) (Figure 7). These results
indicate that EcN overexpressing ALDH2*1 can successfully metabolize acetaldehyde.


https://doi.org/10.1101/674606

bioRxiv preprint doi: https://doi.org/10.1101/674606; this version posted June 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A Transformation Transformation Transformation Transformation
Control with GFP with ALDH2*1 with ALDH2*2
I~
-
o
—
@
4
=
8
uj
B BBa_K2539100 GFP Control BBa_K2539200
C
. —o—NISSLE ALDH2*1
= | =e=NISSLE ALDH2*2
Q NISSLE INACTIVE ALDH2*1
s
L 16
T
[=]
wv
£
<
@
2 12
A=
£
[]
o B 4 1
0.8

Time (minutes)

Figure 7. ALDH2*1-expressing EcN metabolizes acetaldehyde significantly
faster compared to ALDH2*2-expressing EcN under simulated oral conditions.
(A) EcN was transformed with ALDH2*1 and ALDH2*2-expression plasmids
(BBa_K2539100 and BBa_K2539200), and GFP as a positive control. We
observed glowing green colonies for the GFP sample, as well as colonies on the
ALDH2*1 and ALDH2*2 plates (red arrowhead points to the one bacterial colony of
ALDH2*2). (B) PCR check was run using VF2 and VR primers and confirmed the
transformations. We observed bands at the expected sizes: BBa_K2539100 and
BBa_K2539200 are both 2.1 kb, and the GFP is 1.1 kb. (C) Enzymatic activity was
tested using artificial saliva at 37°C. The graph shows relative activity of EcN
lysates containing either ALDH2*1, ALDH2*2, or inactive ALDH2*1 (boiled to
denature proteins; negative control). Error bars represent standard error.

Production and Testing of an ALDH2 Probiotics Candy

ALDH?2 deficiency mainly increases the risks of developing esophageal and head and
neck cancers. To directly target salivary acetaldehyde levels in the region, we
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envisioned using a candy (similar to a throat lozenge), which remains in the mouth, to
steadily deliver recombinant ALDH2*1. The candy will deliver ALDH2*1 either as a
purified enzyme or as ALDH2*1-EcN. Here, we document the production and testing
of a probiotic candy.

Production

The candy-making process consists of three stages: dissolving, cooling, and molding
[53]. In our temperature threshold tests of GFP-EcN and ALDH2*1-EcN, the probiotics
remained alive at temperatures lower than 60°C, so we added EcN to the candy
during the cooling stage (Figure 8). The final product carrying GFP-EcN fluoresced,
which shows that we could successfully incorporate living probiotics carrying
functional proteins into the candy.
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Figure 8. GFP was successfully expressed in an EcN probiotics candy. (A)
Testing EcN growth at different temperatures; EcN carrying ALDH2*1 or GFP were
heated in a beaker of water and plated at 5°C increments. (B) Both ALDH2*1-EcN
(red arrowhead) and GFP-EcN grow at or below 60°C. (C) GFP-EcN candy glows
under blue light, indicating that proteins are functional. The negative control does
not contain any EcN.

Testing ALDH2*1-EcN Probiotics Candy

Following the same procedure, we made ALDH2*1-EcN probiotics candies and tested
the candy under simulated oral conditions. As the candy dissolves, it should release
ALDH2*1-EcN. If this occurs too quickly, most of the ALDH2*1-EcN might be swallowed
right away and lose its effect in the mouth. We found that our EcN candies dissolve at
a rate comparable to commercial lozenges (Ricola and Nin Jiom herbal candies) in the
lab. Like the lozenges, then, our EcN candies should also completely dissolve after
about 13 minutes in the mouth.

To test our EcN candy’s ability to metabolize acetaldehyde, it was dissolved in
artificial saliva, centrifuged to isolate ALDH2*1-EcN, and then lysed. Enzyme activity
assays were performed using cell lysates in artificial saliva at 37°C. We compared
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three different candies, containing either ALDH2*1-EcN, ALDH2*2-EcN, or no EcN. Our
results show that ALDH2*1-EcN released from the candy is functional and effective
at metabolizing acetaldehyde (Figure 9).
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Figure 9. Our candy carrying ALDH2*1-EcN converts acetaldehyde significantly
faster than ALDH2*2-EcN. To simulate realistic conditions, the candy was first
dissolved in artificial saliva at 37°C before EcN cell extracts were tested. A candy
that did not contain any bacteria served as the negative control. Error bars
represent standard error.

Mathematical Modeling: Supplementing ALDH2-deficient Individuals with
Recombinant ALDH2*1 to Match Wild Type Enzyme Activity

For ALDH2-deficient individuals, we used mathematical modeling to calculate the
amount of ALDH2*1 to consume in order to reduce salivary acetaldehyde to wild type
levels. To simulate acetaldehyde concentration in the mouth over time, we first
modeled the natural metabolism of alcohol as a two-step reaction (Figure 10).

Enzyme 1 Enzyme 2

Substrate 1] ——— | SUDStrate 2 ||  e— Product

Ethanol ] — [Acetaldehyde] —) Acetate
ADH ALDH2

Figure 10. Schematic of a two-step sequential enzymatic reaction. The
metabolic pathway converting ethanol to acetate occurs in two steps. To model
the concentration of acetaldehyde over time, we considered the following factors:
the initial concentrations of ethanol ([Substrate 1]) and acetaldehyde ([Substrate 2]),
and the reaction rates of ADH (Enzyme 1) and ALDH2 (Enzyme 2).
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We considered four factors to determine acetaldehyde concentrations in the mouth:
initial salivary ethanol and acetaldehyde concentrations, ADH activity, and ALDH2*1
activity. We obtained literature values for salivary ethanol and acetaldehyde
concentrations (Table 1) [21], as well as the reaction rate of ADH. ADH1B*2, a highly
prevalent allele among East Asians (found in over 80% of Chinese, Taiwanese,
Korean, and Japanese studied populations), converts ethanol to acetaldehyde at a
maximum rate of 0.82 pM/sec [54], [65]. Finally, from our own experiments, we
determined that at 37°C, 0.222 nM of purified ALDH2*1 enzyme converts
acetaldehyde to acetate at a rate of 4.50 nM/sec (data from Figure 5).

Table 1. Ethanol and acetaldehyde concentrations in different alcoholic
beverages and saliva. Salivary acetaldehyde concentrations were recorded after
consuming one mouthful of each type of alcohol. *Salivary ethanol concentrations
after 0.5 minutes were calculated as proportional to the reduction in acetaldehyde
concentration after 0.5 minutes (data from [21]).

Concentration in Concentration in Saliva
Alcoholic Beverage (after 0.5 min)
Ethanol | Ethanol | Acetaldehyde | Ethanol | Acetaldehyde
(% vol) | (mM) (1M) (mM)* (1M)
Beer 5 856 210 399 98
Wine 12 2053 1502 385 282
Spirits 40 6907 8824 349 446

With known enzyme rates and substrate concentrations, we modeled the change in
acetaldehyde concentration over time using Michaelis-Menten kinetics [56] [57]
according to the following equation:

d Acetaldehyde ___ dEthanol __ AER - [A]
dt dt Kot (4] €42

This equation relates the change in salivary acetaldehyde concentration over time to
the conversion rate of ethanol to acetaldehyde (dEthanol/dt) minus the enzymatic
activity of ALDH2*1. The Michaelis-Menten constant Km for ALDH2*1 is 0.2 pM [58],
and we assume the same value for each variant. The acetaldehyde elimination rate
(AER) varies for different ALDH2 genotypes [3], [5]. For our model, we calculated AER
for the genotypes ALDH2*1/*2 and ALDH2*2/*2 as a percentage of the wild type AER
(2.1 uM/sec) [58] (Table 2). The symbol [A] represents acetaldehyde concentration.

Table 2. Model enzyme activities for different genotypes. The acetaldehyde
elimination rate varies for different genotypes. Based on the activity levels of
different genotypes compared to wild type ALDH2*1/*1 (with an AER of 2.1 uM/sec),
we calculated AER for the other genotypes [3], [5], [58].
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Genotype % Wild Type Efficiency AER (nM/sec)
ALDH2*1/*1 100 21
ALDH2*1/*2 20 0.42
ALDH2*2/*2 1 0.021

We created a Python program to numerically solve Equation 2 for the modeled
two-step sequential enzymatic reaction with the LSODA method [59]. The program
graphs salivary acetaldehyde concentrations over time after the consumption of
various alcoholic beverages for different ALDH2 genotypes (Figure 11).

Beer Wine
~ 1000 1000
> =
L2 s00 ® = 800
== fi
58 600 < O 600
o [B=
28 =P
+«— C 400 Q*E 400
a2 o)
00
< S 200 < C 200
© 8
B S 0 ‘ : : :
60 2 4 © 8 10 12 4 6 2 4 6 8 10 12 14
Time (min) Time (min)
Spirits

1000

R —— ALDH2*2/*2 (homozygous mutant)

—— ALDH2*1/*2 (heterozygous)
—— ALDH2*1/*1 (homozygous wildtype)

600

400

200

Acetaldehyde
concentration (UM)

o

2 4 6 8 10 12 14

Time (min)

o

Figure 11. Modeled salivary acetaldehyde concentration over time after
consumption of different types of alcohol (beer, wine, and spirits). The three
curves in each graph represent different ALDH2 genotypes.

To determine how much additional ALDH2*1 is needed for ALDH2-deficient
individuals to match normal salivary acetaldehyde levels, we modified our model to
account for additional ALDH2*1 (as shown in Equation 3). The values used for wild
type ALDH2*1 were determined experimentally (data from Figure 5). Manipulating the
concentrations of ALDH2*1 for each genotype, we determined that a supplement of
0.103 uM ALDH2*1 would allow people with homozygous mutant ALDH2*2 to match
wild type ALDH2*1 activity every minute after consuming spirits (Figure 12). The


https://doi.org/10.1101/674606

bioRxiv preprint doi: https://doi.org/10.1101/674606; this version posted June 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

additional ALDH2*1 should reduce salivary acetaldehyde levels for ALDH2-deficient
individuals, as well as the associated increased cancer risks.

d Acetaldehyde __

dt

500

400

300

200

100

Acetaldehyde
concentration (uM)

_ dEthanol _ AER -[A] _ 4.5uM/sec - [A]

dt

+0.09uM
ALDH2*1

0 2 4 6 8 10 12 14
Time (min)
< 500
o% +0.103uM
g o 400 ALDH2*1
£s
300
o
D $ 200!
QO O
<5
3 100 -
0+ -
0o 2 4 6 8 10 12 14
Time (min)

Ko+14]  02uM +[4] €+

500

+0.18uM
ALDH2*1

400 |
300 °
200

100

Acetaldehyde
concentration (UM)

o 2 4 6 8 10 12 14
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—— ALDH2*1/*1 (homozygous wildtype)
—— ALDHZ2*2/*2 (homozygous mutant)

------- ALDH2*2/*2 (homozygous mutant)
+ supplemented ALDH2*1

Figure 12. Modeled salivary acetaldehyde concentration over time after a
supplement of ALDH2*1 enzymes. Here, concentrations of salivary acetaldehyde
are shown after the consumption of spirits. A supplement of wild type ALDH2*1
changes the acetaldehyde levels in the mouth. To match homozygous wild type
ALDH2*1/*1 activity, an additional 0.103 uM ALDH2*1 should be given to
homozygous mutant ALDH2*2/*2 individuals. For other types of alcohol (not

shown above),

the same supplement of 0.103 pM ALDH2*1 also allows

acetaldehyde levels in homozygous mutants to match those found in wild type

individuals.
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