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Abstract. Echocardiography has become routinely used in the diagno-
sis of cardiomyopathy and abnormal cardiac blood flow. However, manu-
ally measuring myocardial motion and cardiac blood flow from echocar-
diogram is time-consuming and error-prone. Computer algorithms that
can automatically track and quantify myocardial motion and cardiac
blood flow are highly sought after, but have not been very successful due
to noise and high variability of echocardiography. In this work, we pro-
pose a neural multi-scale self-supervised registration (NMSR) method
for automated myocardial and cardiac blood flow dense tracking. NMSR
incorporates two novel components: 1) utilizing a deep neural net to
parameterize the velocity field between two image frames, and 2) opti-
mizing the parameters of the neural net in a sequential multi-scale fash-
ion to account for large variations within the velocity field. Experiments
demonstrate that NMSR yields significantly better registration accuracy
than the state-of-the-art methods, such as advanced normalization tools
(ANTs) and VoxelMorph, for both myocardial and cardiac blood flow
dense tracking. Our approach promises to provide a fully automated
method for fast and accurate analyses of echocardiograms.

Keywords: Neural multi-scale self-supervised registration · Echocardio-
gram registration · Myocardial tracking · Cardiac blood flow tracking.

1 Introduction

Cardiovascular diseases are the leading cause of mortality and morbidity globally.
Echocardiogram is a non-invasive ultrasonic imaging test that exams the heart
in motion. Because of the relatively low cost and ease of access, it has become a
routinely used diagnostic tool in cardiology. Echocardiogram provides a wealth
of information. Besides the assessment of the geometry and pumping capacity
of the heart, echocardiogram has been used for the evaluation of the global and
regional myocardial contractibility using speckle tracking techniques [8].

The use of contrast agents in echocardiogram has been proposed to further
improve the imaging quality of echocardiogram. The advantages of using con-
trast include 1) a sharper demarcation between the left ventricular cavity and
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the myocardium, and 2) easier detection of sludges and thrombi in the heart.
In addition, a high-power ultrasound beam produces a swirling pattern in the
contrast-enhanced blood pool, which facilitates the visualization of the ventricu-
lar flow vortex. Unlike the conventional color Doppler technique, which estimates
the flow velocity along a specific angle, the vortex imaging in contrast echocardio-
gram enables flow visualization and quantification in 2D, which is an important
hemodynamic indicator of the heart’s pumping performance and efficiency [1]. In
this work, we aim to achieve dense tracking of the myocardium in non-contrast
echocardiogram and the blood flow in contrast echocardiogram, in an effort to
make echocardiogram a one-stop shop for both myocardial contractibility assess-
ment and ventricular flow pattern analysis.

There are many previous methods on deformable registration that can be
utilized for dense tracking in echocardiograms [9]. Traditional registration meth-
ods are based on the optimization in registration field space such as elastic-type
models [5, 18], FFD [17], Demons [20] and statistical parametric mapping [2].
Diffeomorphic transformations preserve topology and many methods are de-
rived from them such as LDDMM [7] and SyN [4]. The optimization of these
traditional methods typically require substantial time. Deep learning based reg-
istration methods usually rely on ground truth of registration field [15, 19]. Re-
cent unsupervised deep learning based registrations, such as VoxelMorph [6], are
facilitated by the spatial transformer network [21, 12], and the VoxelMorph is
further extended to diffeomorphic transformation and Bayesian framework [10].
Adversarial similarity network adds an extra discriminator and uses adversar-
ial training to improve the unsupervised registration [11]. These purely learning
based methods cannot be directly applied to ultrasound images for velocity es-
timation especially for vortex detection in cardiac blood flow because of great
noise in echocardiogram, large velocity variations of cardiac blood flow and large
amounts of missing and new blood within the ultrasound plane.

Inspired by the improvement of multi-scale registration and neural network
parameterized optimization [9], we propose a neural self-supervised optimization
based multi-scale framework for dense tracking in echocardiograms as illustrated
in Fig. 1. The neural self-supervised optimization yields accurate velocity field
estimation by eliminating the gap between the estimation on the training set
and that on the test set and alleviating the optimization difficulties such as local
minima. Multi-scale strategy provides a sequential optimization pathway to the
flow tracking that naturally emulates the formation of the fractal patterns of
turbulent flow.

2 Neural Multi-Scale Self-Supervised Registration

We denote an ultrasound sequence by I = {I1, I2, · · · , It, · · · , In}, where It ∈
Rh×w×c is the tth frame of I, and h, w and c are image height, width and
the number of channels respectively. In this work, we focus on calculating the
registration field Ft as velocity field estimation which can be used by dense
tracking for the two neighbor frames It and It+1. We employ U-Net with skip
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Fig. 1. Framework of the proposed neural multi-scale self-supervised registration. We
employ U-Net to parameterize the registration function F̃ s

t for velocity estimation
between the reconstructed frame Ms

t+1 from last scale s/2 and t + 1th frame Is
t+1 in

the scale s. Neural self-supervised optimization with reconstruction loss and smoothness
loss is conducted to yield robust and accurate velocity field for each scale.

connections to obtain the velocity field Ft [16]. The framework of neural multi-
scale self-supervised registration (NMSR) is illustrated in Fig. 1.

Because the velocity of cardiac blood varies greatly, we extend the neural
self-supervised registration to a multi-scale framework. We construct multi-scale
U-Nets with scales {S, 2S, · · · , s, · · · , 1/2, 1} to parameterize the registration
fields of these scales where S is the coarsest scale. In the registration of each
scale s, we try to obtain the registration field F̃ s

t by which we transform the

reconstructed frame T (It,F
s/2
t ) from the last scale s/2 to the t + 1th frame

It+1, where t = 1, · · · , n − 1 and T is a spatial transformer network [12]. If

s is the coarsest scale S, T (It,F
s/2
t ) = It. Given an ultrasound sequence I,

we firstly resize the moving image T (It,F
s/2
t ) and the fixed image It+1 to the

current scale s for data preparation as

M s
t+1 = P1(T (It,F

s/2
t ), s), Ist+1 = P1(It+1, s), (1)

where M s
t+1 is the scaled reconstructed frame and P1 is the down-sampling.

In addition to the high variations of velocities for cardiac blood flow, the
signal-to-noise ratio of ultrasound image is typically low which easily leads to
inaccurate prediction of the registration field. This aggregates the difficulty of
learning and inference in the multi-scale registration model because the error
can be accumulated over scales and the noisy error along the high dimensional
output space makes the learning even harder than learning in the ultrasound
space which is empirically observed in our experiments. We propose neural self-
supervised optimization based on one ultrasound sequence, considering that the
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optimization based methods can eliminate the undesirable generalization abil-
ity of purely learning based model, and the settings and motions are consistent
within one ultrasound sequence. We use stochastic optimization for the neural
parameterized registration to alleviate the optimization difficulties such as lo-
cal minima in traditional registration methods [14]. The neural self-supervised
optimization for the current scale s and ultrasound sequence I can be formulated

F̃ s
t = N(M s

t+1, I
s
t+1;θs),

θs? = arg min
θs

n−1∑
t=1

LR(T (M s
t+1, F̃

s
t ), Ist+1;θs) + λLS(F̃ s

t ;θs),
(2)

where N is the neural network with parameters θs, LR is the reconstruction loss
to measure the similarity between the moving image and fixed image, LS is the
smoothness loss for the registration field, λ is the trade-off between reconstruc-
tion loss and smoothness loss.

We use negative local cross-correlation loss as reconstruction loss and L2

norm of registration field gradient as the smoothness loss. For clarity, we omit s
in the reconstruction loss LR and write the two losses as

LR(Mt, It;θ
s) = −

∑
p

(∑
pi

(Mt(pi)−M ′
t(p))(It(pi)− I ′t(p))

)2∑
pi

(Mt(pi)−M ′
t(p))2

∑
pi

(It(pi)− I ′t(p))2
,

LS(F̃ s
t ;θs) = ‖∇xF̃

s
t ‖L2

+ ‖∇yF̃
s
t ‖L2

,

(3)

where p is the pixel position in the frame and pi is the pixel position within a
square with the center as p, M ′

t(p) and I ′t(p) are local means of pixel position
pi in Mt and It respectively.

After the neural self-supervised optimization, we obtain the optimal param-
eters θs? of the neural network and can calculate the velocity field F̃ s

t for the

reconstructed frame T (It,F
s/2
t ) from the last scale s/2. We calculate the reg-

istration field F s
t for the ultrasound frame It by combining registration field

F
s/2
t of the last scale and intermediate field F̃ s

t . For each pixel position p in
the ultrasound frame It, we can obtain the final position p̂ and the combined
registration filed F s

t by

F s
t (p) = p̂− p = F

s/2
t (p) + P2(

1

s
F̃ s
t ,

1

s
)(p+ F

s/2
t (p)), (4)

where P2 is the linear interpolation and we use linear intepolation to calculate

the field for p+ F
s/2
t (p).

3 Experiments

We collected echocardiograms from 19 patients with 3,052 frames in total for
myocardial tracking, and contrast echocardiograms from 71 patients with 11,462
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Table 1. Comparisons on myocardial and cardiac blood dense tracking among ANTs,
VoxelMorph and NMSR. NMSR obtains the best performance.

Methods
Myocardial tracking Cardiac blood tracking

MSE (10-3) Mean CC (10-1) MSE (10-3) Mean CC (10-1)

ANTs 15.5179±9.4637 3.1597±1.3913 3.9344±1.4660 4.2062±1.0576

VoxelMorph 1.2266±0.5457 4.7363±0.5457 5.8654±1.6943 3.3462±0.5891

NMSR 1.3438±0.6248 4.6270±0.5340 5.9511±1.6789 3.2228±0.5754

NMSR (1/8) 1.7938±0.5992 4.1428±0.5066 6.8603±1.4958 2.3314±0.5497

NMSR (1/4) 1.8185±0.5437 4.2746±0.4700 5.6694±1.3347 2.7566±0.6186

NMSR (1/2) 1.5405±0.4515 4.5508±0.4601 4.6870±1.0579 3.2854±0.7191

NMSR (1) 1.3204±0.4058 4.8954±0.4173 4.0337±0.9903 3.9781±0.6917

NMSRV 1.2158±0.5473 4.7809±0.4952 5.7780±1.6222 3.3942±0.5868

NMSRV (1/8) 1.6937±0.5616 4.2084±0.5086 6.8108±1.8189 2.3948±0.5495

NMSRV (1/4) 1.7022±0.4434 4.3377±0.4674 5.6577±1.3317 2.7109±0.5988

NMSRV (1/2) 1.4363±0.3625 4.6459±0.4451 4.6228±1.1381 3.3155±0.6691

NMSRV (1) 1.2420±0.3041 5.0280±0.3922 3.9287±1.0209 4.1209±0.6188

NMSRVI (1/4) 1.3504±0.4885 4.4140±0.5005 5.6106±1.2424 2.7331±0.6779

NMSRVI (1/2) 1.0929±0.3775 4.7155±0.4569 4.5089±1.0272 3.3879±0.7524

NMSRVI (1) 0.9206±0.3236 5.0881±0.4107 3.7944±0.9384 4.2519±0.7181

frames in total for cardiac blood tracking. For testing, we randomly choose three
patients’ echocardiograms with 291 frames for myocardial tracking, and three pa-
tients’ echocardiograms with 216 frames for cardiac blood tracking from the two
datasets. The rest of echocardiograms are used as training. All echocardiograms
have no registration field ground truth.

We only use the first channel of echocardiography images (e.g., treated as
gray-scale images) with the pixel values normalized to be in [0, 1]. For cardiac
blood tracking, we extract cardiac blood region by 1) creating masks of the left
ventricular blood pool at the end of the systole and the end of the diastole, 2)
using active contour model to fit 100 uniformly sampled spline points along a
circle into the boundary of cardiac blood mask [13], 3) using linear interpolation
to get 100 interpolated spline points for each frame, 4) using radial basis function
in interpolation to get the final smooth cardiac blood boundary from the 100
spline points. Removing myocardial region is crucial to cardiac blood tracking.

For unsupervised learning or self-supervised optimization, one of the main
challenges is the model evaluation. Manually labeling the corresponding points
for evaluation is time-consuming, laborious and inaccurate, because the total size
of one frame is 1024× 768 and the signal-to-noise ratio is low. Instead of using
pixel position based evaluation metric, we use reconstruction based metrics, i.e.,
the mean square error (MSE) and the mean local cross correlation (Mean CC)
with radius as 10. For the metrics in Table 1, we calculate the average MSE and
Mean CC over all frame pairs It and It+1 with the pixel value of range [0, 1].
For MSE and Mean CC of one frame pair, we take the average of square error
and local cross correlation over the masked region.
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We compare our approach to symmetric normalization (SyN) with cross-
correlation similarity as implemented in ANTs [4, 3], and VoxelMorph [6]. ANTs
(SyN) is a traditional optimization based method and VoxelMorph is a deep
learning based unsupervised registration with a similar network structure and
loss function as NMSR. For the purpose of ablation studies, we report the results
of 1) NMSR, using only one scale and neural self-supervised optimization, 2)
NMSR (1/8), the coarsest scale of neural multi-scale self-supervised registration,
3) NMSR (1/4), the second coarsest scale of NMSR, 4) NMSR (1/2), the third
coarsest scale of NMSR, 5) NMSR (1), the final scale of NMSR after sequen-
tial multi-scale optimization, 6) NMSRV, NMSRV (*), which use training-data
optimized NMSR as an initialization and conduct self-supervised neural opti-
mization afterwards, and 7) NMSRVI (*), which use the neural weights from
the last scale as an initialization.

For all these multi-scale based methods, we use four different scales 1/8, 1/4,
1/2 and 1. We use radius of 6 pixels for the local cross-correlation loss in all
these methods. We set the number of optimization steps to 200 for each scale
in ANTs. We use learning rate of 1 × 10−3 and Adam optimizer to update the
weights in neural networks for both NMSR and VoxelMorph [14]. The λ is set to
be 10. We set the number of optimization steps to 3500 per ultrasound sequence
for the self-supervised neural optimization, and set the number of iterations to
3500× the number of training ultrasound sequences for VoxelMorph.

Quantitative comparison results of our model against the state-of-the-arts
on both myocardial and cardiac blood flow dense tracking are shown in Table
1. We highlight the following a few observations: 1) NMSRVI (1) achieves the
best performances, and outperforms ANTs in terms of both MSE and mean
CC on both tasks, likely due to the representation and optimization efficiency
of deep neural nets; 2) NMSRV yields consistently better results than Voxel-
Morph, demonstrating the efficacy of self-supervised optimization during the
test phase for improving velocity field estimation and reducing the estimation
gap between training and testing; 3) NMSR (1) achieves better performance than
NMSR on all experiments, demonstrating the benefit of sequential multi-scale
optimization in echocardiogram registration. The multi-scale scheme alleviates
the over-optimization of reconstruction loss, which can be visually noticed from
Fig. 2 and 3; and 4) NMSRV (1) obtains better performance than NMSR (1),
illustrating the benefit of using pretrained models as an initialization for NMSR,
further confirmed by the better performance of NMSRVI over NMSRV.

Visualizations We visualize the myocardial tracking results based on ANTs,
VoxelMorph and the intermediate registration fields from NMSRVI with four
different scales in Fig. 2. We randomly choose one frame from these ultrasound
images. From Fig. 2, we note that the registration field from ANTs is noisy, and
the velocity direction from VoxelMorph for the right myocardial is incorrect. By
contrast, NMSR (1/8) produces the smoothest registration field, and NMSR (1)
generates more detailed velocity estimation that preserves both large and low-
scale velocity variations. The coarse-to-fine results illustrate that the multi-scale
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Fig. 2. Visualization of myocardial tracking based on ANTs, VoxelMorph and NMSR.
The right side of velocity field by VoxelMorph is inaccurate. NMSR yields smooth,
coarse-to-fine and accurate velocity estimation.

optimization scheme coupled with deep neural nets can be very effective in deal-
ing with the highly challenging case of image registration in echocardiograms.

We visualize the cardiac blood tracking results in Fig. 3. From the registration
fields from ANTs and VoxelMorph, we cannot easily recognize the vortex in
cardiac blood flow. By contrast, the vortex flow pattern from NMSR is readily
recognizable. The general vortex pattern is apparent from the coarsest level
registration by NMSR (1/8), followed by finer-scale registrations to introduce
details of local velocity field variations. The final velocity field produced by
NMSR (1) includes both easily recognizable vortex flow, as well as details of
local field variations.

Computational Cost For ANTs, the average computational time is 214.10
±54.04 seconds for the registration of two consecutive frames on 12 processors
of Intel i7-6850K CPU @ 3.60GHz. For an ultrasound sequence of 50 frames,
the computational time is about three hours for ANTs. Because the inference
of VoxelMorph only relies on one feed forward pass of deep neural network,
the average computational time is 0.11±0.47 seconds for one pair frames on one
NVIDIA 1080 Ti GPU. The NMSR takes 279.97, 101.65, 68.79, 66.09 seconds for
neural self-supervised optimization with the scale 1, 1/2, 1/4, 1/8 respectively
on one ultrasound sequence of 49 frames by one NVIDIA 1080 Ti GPU. The
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Fig. 3. Visualization of cardiac blood tracking based on ANTs, VoxelMorph and
NMSR. ANTs and VoxelMorph produce noisy velocity fields. NMSR successfully de-
tects the vortex and yields coarse-to-fine and smooth velocity field.

NMSR takes less than nine minutes on the neural self-supervised optimization
in total for one ultrasound sequence, achieving 20 times speedup over ANTs.

4 Conclusion

In this work, we propose a novel framework, neural multi-scale self-supervised
registration (NMSR), for both myocardial and cardiac blood dense tracking. To
produce accurate velocity estimation from noisy ultrasound images and reduce
the estimation gap between training and testing, we incorporate self-supervised
optimization in the registration framework. To handle large variations of veloc-
ity fields in echocardiogram tracking, a multi-scale scheme is integrated into the
proposed framework to reduce the over-optimization of similarity functions. Our
proposed method consistently outperforms state-of-the-art methods on both my-
ocardial and cardiac blood flow dense tracking. With further improvements on
model and optimization, to consider for example other loss functions and extend
it to diffeomorphic registrations, it seems plausible to have a fully automated
method for echocardiogram analysis.
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