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Abstract 15 
Sampling reservoir hosts over time and space is critical to detect epizootics, predict spillover, 16 
and design interventions. Yet spatiotemporal sampling is rarely performed for many reservoir 17 
hosts given high logistical costs and potential tradeoffs between sampling over space and time. 18 
Bats in particular are reservoir hosts of many virulent zoonotic pathogens such as filoviruses and 19 
henipaviruses, yet the highly mobile nature of these animals has limited optimal sampling of bat 20 
populations across both space and time. To quantify the frequency of temporal sampling and to 21 
characterize the geographic scope of bat virus research, we here collated data on filovirus and 22 
henipavirus prevalence and seroprevalence in wild bats. We used a phylogenetically controlled 23 
meta-analysis to next assess temporal and spatial variation in bat virus detection estimates. Our 24 
analysis demonstrates that only one in five studies sample bats longitudinally, that bat sampling 25 
efforts cluster geographically (e.g., filovirus data are available across much of Africa and Asia 26 
but are absent from Latin America and Oceania), and that reporting trends may affect some viral 27 
detection estimates (e.g., filovirus seroprevalence). Within the limited number of longitudinal bat 28 
virus studies, we observed high spatiotemporal variation. This suggests spatiotemporal sampling 29 
designs are essential to understand how zoonotic viruses are maintained and spread within and 30 
across wild bat populations, which in turn could help predict and preempt risks of viral spillover.  31 
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Introduction 32 
Risks of pathogen spillover vary across time and space [1,2], in part because pathogen shedding 33 
from reservoir hosts is a dynamic spatiotemporal processes [3,4]. Metapopulation dynamics 34 
characterize many reservoir hosts [5], where connectivity among populations can determine the 35 
spatiotemporal distribution of a pathogen [6,7] and the degree of spatial synchrony (i.e., 36 
correlated fluctuations in time) structuring infection dynamics [8]. For example, panmixia of 37 
straw-colored fruit bats (Eidolon helvum) across Africa likely facilitates the widespread 38 
circulation of Lagos bat virus and henipaviruses [9]. Temporal pulses in infection prevalence 39 
driven by seasonality in birth, movement, and climate are also common across reservoir hosts 40 
[10,11]. Understanding how infection prevalence or intensity in reservoir hosts varies over space 41 
and time is thus a critical need for predicting and managing emerging infectious disease risks.   42 
 However, surveillance strategies for reservoir hosts often do not sample this underlying 43 
spatiotemporal process, as spatially and temporally explicit sampling designs present logistical 44 
challenges when studying mobile and gregarious species [3,12,13]. For many such hosts (e.g., 45 
wild birds and bats), surveillance is often opportunistic (e.g., outbreak responses) or relies on 46 
convenience sampling [14]. These non-probabilistic samples and often singular sampling events 47 
cannot characterize spatial and temporal fluctuations in infection; times or locations of high 48 
infection prevalence can be over- or under-represented, and lack of probabilistic sampling can 49 
result in non-randomly missing data [3,15]. These challenges to inference cannot be simply fixed 50 
with statistical modeling and can accordingly limit and bias estimates of population prevalence 51 
and important epidemiological parameters such as the basic reproductive number [14,16]. 52 
 Given a fixed cost, difficult decisions must be made about how to allocate sampling 53 
efforts. Sampling over space facilitates detecting geographic clusters of disease and predictive 54 
risk mapping [17,18], while sampling over time can identify periods of intensive pathogen 55 
shedding and enable epidemiological inference about the dominant transmission routes within a 56 
reservoir host population [19,20]. Researchers often treat this as a tradeoff between sampling 57 
intensively over either time or space, rather than allocating effort to both [21]. The trend to 58 
sample populations at either one point in space and time or for trading off between spatial or 59 
temporal resolution likely reflects broader sampling limitations within ecology [22,23]. Yet 60 
implicit here is that the temporal component is constant over space or that the spatial component 61 
is constant over time, and such sampling designs result in no data to assess this assumption. 62 
 We here quantified the temporal and spatial data limitations for two taxa of high-profile 63 
zoonotic viruses of bats: the family Filoviridae and genus Henipavirus. Bats have been widely 64 
studied as reservoirs for zoonotic pathogens and host more zoonotic viruses than other mammals 65 
[24,25]. Bat species such as Pteropus alecto and Rousettus aegyptacius have been confirmed as 66 
reservoirs for several henipaviruses (i.e., Hendra virus and Nipah virus) and Marburg virus, 67 
respectively [26,27], with bats implicated as reservoir hosts for other viruses within these taxa 68 
[28–32]. Many filoviruses and henipaviruses are shed from bats into the environment [33,34], 69 
and some can cause fatal disease in humans by environmental exposure (e.g., Marburg and  70 
Nipah viruses) or from contact with intermediate hosts such as horses or pigs (e.g., Hendra and 71 
Nipah viruses) [35–38]. Current evidence suggests that many filoviruses and henipaviruses show 72 
variable dynamics in space and time, including pulses of excretion from bats [6,30,35,39,40], 73 
which implies that spatiotemporal sampling is critical to capture viral dynamics in bat reservoirs. 74 
Yet while past efforts have focused on bat virus discovery [41], determinants of reservoir host 75 
status [42], and experimental mechanisms of viral transmission [33], spatiotemporal studies of 76 
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bat–virus dynamics are rare [43]. This limits understanding how zoonotic viruses are maintained 77 
and spread within and across bat populations and impairs improving future sampling designs. We 78 
here collated data on prevalence and seroprevalence in wild bats to (i) quantify the frequency of 79 
temporal reporting and (ii) assess the geographic scope of sampling. We next used phylogenetic 80 
meta-analysis to (iii) characterize temporal and spatial variation in virus detection estimates. 81 
 82 
Methods 83 
To systematically identify studies quantifying the proportion of wild bats positive for filoviruses 84 
and henipaviruses using PCR (RNA-based detection) or serology (antibody-based detection), we 85 
searched Web of Science, CAB Abstracts, and PubMed with the following string: (bat* OR 86 
Chiroptera*) AND (filovirus OR henipavirus OR 271 "Hendra virus" OR "Nipah virus" OR 87 
"Ebola virus" OR "Marburg virus" OR ebolavirus OR marburgvirus); we supplemented these 88 
searches by extracting data from references cited in identified studies (see Figure S1). Our 89 
dataset included 824 records from 56 studies (see Appendix). Viruses included not only Hendra 90 
virus, Nipah virus, Ebola virus, and Marburg virus but also Lloviu virus and Reston virus. We 91 
grouped viruses by taxa given our sample sizes and issues of serological cross-reactivity [44,45].  92 

From each study, we defined sampling subunits: a sampling event of one bat species in 93 
one location per viral outcome. We classified each subunit into one of three sampling designs: 94 
pooled events over time, one sampling event, or multiple events. Records of a single prevalence 95 
or seroprevalence estimate from a bat population sampled over a period longer than one month 96 
were classified as pooled events, while records of virus estimates from a period less than or equal 97 
to one month were classified as single sampling events. Records of a given bat population over 98 
multiple monthly timepoints were classified as representing multiple events (i.e., longitudinal). 99 
For example, every monthly prevalence estimate per population of Pteropus lylei in Thailand 100 
would represent a unique sampling subunit, with the sampling design being classified as multiple 101 
events [46]. A conceptual schematic of these three sampling and reporting designs is provided in 102 
Figure 1A. One month was selected given that this timeframe was the lowest common temporal 103 
unit across studies and because bat shedding of these viruses can occur within a month [27,33]. 104 
Sampling design data were reported for most records (792/824 subunits; six publications did not 105 
always report temporal dimensions of their viral detection estimates). For each sampling subunit, 106 
we also recorded bat species (or only genus if available), virus taxon, virus detection outcome 107 
(prevalence or seroprevalence), sample size, the proportion of positive bats, sampling location, 108 
and country (recoded to the United Nations geoscheme); where possible, we also included data 109 
or derived viral detection estimates from online supplemental materials from each publication. 110 

To assess how sampling and reporting practices relate to virus detection estimates, we 111 
used a phylogenetic meta-analysis to account for bat phylogeny, variable sampling effort, and the 112 
hierarchical nature of our dataset (i.e., subunits nested within studies). We first used the metafor 113 
package in R to calculate logit-transformed proportions and sampling variances [47]. We next 114 
used the rma.mv() function to fit a mixed-effects model with an interaction between sampling 115 
design, virus detection outcome (prevalence or seroprevalence), and virus taxa [48]. We included 116 
bat phylogeny (derived from the Open Tree of Life using the rotl and ape packages [49–51]) and 117 
subunit nested within study as random effects, and we used the estimated variance components 118 
to derive R2 [52,53]. As our models account for bat phylogeny, we excluded subunits that pooled 119 
data across genera (n=52). Because some studies pooled data in a genus, we randomly selected 120 
one species from the genus to retain these samples. This dataset included 740 subunits from 48 121 
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studies and 196 species (Figure S2). To test if detection estimates varied over space and time, we 122 
fit a model with identical random effects to data from studies with multiple events (n=150). We 123 
fit an intercept-only model to quantify the contribution of true heterogeneity to total variance (I2) 124 
and then included location as a fixed effect to test if viral data varied in longitudinal studies [54].  125 
 126 
Results 127 
Only 21% of bat virus studies reported data longitudinally (5 for filoviruses, 7 for henipaviruses). 128 
Eight studies reported sampling wild bat populations 2–3 times while seven reported sampling 129 
bat populations over four times (Table 1). Half the studies (n=28) instead reported estimates 130 
across multiple timepoints as pooled proportions, where the number of days per pooled estimate 131 
ranged from 31–2191 (x̄=603, SD=456). Bat sampling also showed geographic biases. Whereas 132 
filovirus data were available across much of Africa and Asia, no studies were from Latin 133 
America and Oceania (Figure 1). Although PCR and serology have been conducted per country 134 
for most regions, both diagnostics have not been used together in Europe and Western Africa 135 
(Table 1). Henipavirus sampling was more broadly distributed but was limited in Eastern Asia, 136 
Eastern and Middle Africa, and Europe (Figure 1), where henipavirus studies have not used both 137 
PCR and serology (Table 1). Geography was also associated with bat sampling design (χ2=172.9, 138 
p=0.001). Longitudinal data were only reported from Central, Middle, and Eastern Africa for 139 
filoviruses and only reorted from Southeastern Asia and Oceania for henipaviruses (Table 1).  140 
 Our phylogenetic meta-analysis showed that viral detection estimates were associated 141 
with sampling design and reporting, although the effect depended on outcome and virus taxa 142 
(three-way interaction: Q7=21.12, p=0.004, R2=0.12). A post-hoc analysis with models fit to each 143 
virus–outcome dataset showed that sampling design was associated with filovirus seroprevalence 144 
(Q2=11.53, p=0.003; Figure 2), with pooled detection estimates having the lowest proportions, 145 
likely by increasing zeros in the numerator. Sampling design had weak effects on henipavirus 146 
seroprevalence and no effect on prevalence for either viral taxon (Table S1). We also found high 147 
variation between and within longitudinal studies (Q149=1606, p<0.0001, I2=92%; Figure 2). 148 
Study contributed most (53.8%) to residual variance, suggesting high between-region variation. 149 
Yet subunit location was also predictive (Q20=89, p<0.001), and a likelihood ratio test supported 150 
its inclusion over the intercept-only model (χ2=57.9, p<0.001). This verifies high spatiotemporal 151 
variation in viral detection estimates, highlighting the need for spatiotemporal sampling designs.  152 
 153 
Discussion 154 
Our study provides a systematic synthesis of prevalence and seroprevalence for bat filoviruses 155 
and henipaviruses. Viral detection estimates varied significantly within and between longitudinal 156 
studies, indicating that spatiotemporal sampling is essential to make inferences about bat virus 157 
spillover, especially if a natural reservoir host species has already been identified. Yet few 158 
studies used spatiotemporal designs; only one in every five studies reported longitundinal data. 159 
Sampling design and reporting were also associated with some viral detection estimates. We 160 
therefore implore researchers to publish bat viral data at the lowest spatial and temporal 161 
resolution associated with sampling and to provide raw data at such resolutions when possible. 162 
 Geographic limitations were also evident for overall sampling effort and where 163 
longitudinal studies have been performed. This was especially evident for filoviruses; although 164 
the lack of studies in Latin America and Oceania likely reflect the absence of reported human 165 
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cases, bat reservoir hosts are predicted to occur in both regions [42]. Most studies also used 166 
either PCR or serology, although using both data streams may improve statistical inference about 167 
how zoonotic pathogens persist in reservoir host populations [19]. Rigorous case studies using 168 
explicitly spatiotemporal sampling in such understudied regions will be critical to improve 169 
understanding viral shedding dynamics in bats and how spillover risk varies over time and space. 170 
 171 
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Tables 328 
 329 
Table 1. Summary of the temporal and spatial limitations for bat filovirus and henipavirus 330 
prevalence and seroprevalence data. Some studies had multiple diagnostic methods and reporting 331 
methods. Diagnostic mismatch refers to regions where either PCR or serology have been used. 332 
 Longitudinal 

virus studies 
Geographic 

sampling gaps 
Diagnostic 
mismatch  

Regions with 
longitudinal data 

Filoviruses 

PCR 2/15  
Latin America, 

Oceania, 
Western Africa Europe, 

Western Africa 

Central Africa, 
Eastern Africa 

Serology 4/18 
Latin America, 

Oceania, 
Europe 

Central Africa, 
Eastern Africa, 
Middle Africa 

Henipaviruses 
PCR 3/10 Eastern Africa, 

Eastern Asia 
Europe, 

Eastern Africa, 
Middle Africa, 
Eastern Asia 

Southeastern 
Asia, Oceania 

Serology 4/27 
Middle Africa,  

Europe 
 333 
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Figures and legends 335 
 336 
Figure 1. Characterizing studies of prevalence and seroprevalence for filoviruses and 337 
henipaviruses in wild bats. Top: Conceptual schematic of how different sampling designs and 338 
data reporting (colored points and lines) capture the underlying temporal patterns in viral 339 
infection (black line), followed by observed proportions for field studies of bat filoviruses and 340 
henipaviruses (grey shows the proportion of studies not reporting sampling designs). Bottom: 341 
Countries sampled for filoviruses and henipaviruses and where wild bats have been found 342 
positive (prevalence or seroprevalence greater than zero) by PCR or serology.  343 
 344 
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Figure 2. Top: Influence of sampling design and reporting on virus detection estimates. Circles 347 
show proportions of positive bats per subunit and are colored by sampling design; lines and 348 
diamonds display back-transformed predicted means and 95% confidence intervals from the 349 
phylogenetic meta-analysis (limited to data reported per bat species or genus). Bottom: 350 
Spatiotemporal variation in viral detection estimates for studies that reported sampling across 351 
multiple months. Points represent each detection estimate per subunit and are shaped by 352 
sampling locations per subunit.  353 
 354 
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