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Abstract 15 
Sampling reservoir hosts over time and space is critical to detect epizootics, predict spillover, 16 
and design interventions. However, because sampling is logistically difficult and expensive, 17 
researchers rarely perform spatiotemporal sampling of many reservoir hosts. Bats are reservoirs 18 
of many virulent zoonotic pathogens such as filoviruses and henipaviruses, yet the highly mobile 19 
nature of these animals has limited optimal sampling of bat populations. To quantify the 20 
frequency of temporal sampling and to characterize the geographic scope of bat virus research, 21 
we here collated data on filovirus and henipavirus prevalence and seroprevalence in wild bats. 22 
We used a phylogenetically controlled meta-analysis to next assess temporal and spatial variation 23 
in bat virus detection estimates. Our analysis shows that only one in four bat virus studies report 24 
data longitudinally, that sampling efforts cluster geographically (e.g., filovirus data are available 25 
across much of Africa and Asia but are absent from Latin America and Oceania), and that 26 
sampling designs and reporting practices may affect some viral detection estimates (e.g., 27 
filovirus seroprevalence). Within the limited number of longitudinal bat virus studies, we 28 
observed high heterogeneity in viral detection estimates that in turn reflected both spatial and 29 
temporal variation. This suggests that spatiotemporal sampling designs are essential to 30 
understand how zoonotic viruses are maintained and spread within and across wild bat 31 
populations, which in turn could help predict and preempt risks of zoonotic viral spillover.  32 
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Introduction 33 
Risks of pathogen spillover vary across time and space [1,2], in part because pathogen shedding 34 
from reservoir hosts is a dynamic spatiotemporal processes [3,4]. Metapopulation dynamics and 35 
other spatial processes characterize many reservoir hosts [5], where populations connectivity can 36 
determine the spatiotemporal distribution of a pathogen [6,7] and degree of spatial synchrony 37 
structuring infection dynamics [8]. Temporal pulses of shedding driven by seasonality in birth 38 
and climate are also common [9,10]. Understanding how infection in reservoir hosts varies over 39 
space and time is thus a critical need for predicting and managing zoonotic disease risks.   40 
 However, surveillance strategies often do not sample this underlying spatiotemporal 41 
process, as spatially and temporally explicit designs present logistical challenges when studying 42 
mobile and gregarious species [3,11,12]. For hosts such as birds and bats, surveillance is often 43 
opportunistic or relies on convenience sampling [13]. These non-probabilistic and often single 44 
sampling events cannot characterize spatial and temporal fluctuations in infection, can over- or 45 
under-represent times or locations of high prevalence, and can result in non-randomly missing 46 
data [3,14]. These challenges cannot be fixed with statistical modeling and can bias estimates of 47 
prevalence and epidemiological parameters such as the basic reproductive number [13,15]. 48 
 Given a fixed cost, difficult decisions must be made about how to allocate sampling 49 
efforts. Sampling over space facilitates detecting geographic clusters of disease and predictive 50 
mapping [16,17], while sampling over time can identify periods of intensive pathogen shedding 51 
and enable inference about dominant transmission routes [18,19]. Researchers often treat this as 52 
a tradeoff between sampling over either time or space, rather than allocating effort to both [20]. 53 
Implicit here is that the temporal component is constant over space or that the spatial component 54 
is constant over time, and such sampling designs result in no data to assess this assumption. 55 
 We here quantify the temporal and spatial data limitations for two taxa of high-profile 56 
zoonotic viruses of bats: the family Filoviridae and genus Henipavirus. Bats have been widely 57 
studied as reservoirs for zoonotic pathogens and host more viruses with zoonotic potential than 58 
other mammals [21,22]. Henipaviruses and some filoviruses (e.g., Marburg virus) can be shed 59 
from bats into the environment [23,24] and can cause fatal disease in humans by environmental 60 
exposure or from contact with intermediate hosts such as horses, wild primates, or pigs [25–30]. 61 
Current evidence suggests many filo- and henipaviruses show variable dynamics in space and 62 
time, including shedding pulses from bats [6,25,31–33], which implies that spatiotemporal 63 
sampling is critical to capture viral dynamics in bat reservoirs. Yet while past efforts have 64 
focused on bat virus discovery [34], the determinants of reservoir status [35], and experimental 65 
mechanisms of viral transmission [36], spatiotemporal studies of bat–virus dynamics are rare 66 
[37]. This limits understanding how zoonotic viruses are maintained and spread within and 67 
across bat populations and impairs improving future sampling designs and ecological 68 
interventions [20,38]. We here systematically collated data on the prevalence and seroprevalence 69 
of filo- and henipaviruses in wild bats to (i) quantify the frequency of temporal studies and (ii) 70 
assess the geographic scope of current research. We used phylogenetic meta-analysis to (iii) 71 
quantify how sampling designs and reporting practices may influence viral detection estimates. 72 
Single snapshots could miss pulses of viral shedding from bats, whereas pooling data over time 73 
could under- or overestimate viral presence [18,20]. Lastly, we (iv) characterized the degree of 74 
temporal and spatial variation in bat virus detection estimates. 75 
 76 
Methods 77 
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To systematically identify studies quantifying the proportion of wild bats positive for filoviruses 78 
and henipaviruses using PCR or serology, we searched Web of Science, CAB Abstracts, and 79 
PubMed (see Fig. S1). Our dataset included 1176 records from 68 studies. Viruses included not 80 
only Hendra, Nipah, Ebola, and Marburg virus but also Lloviu and Reston virus. We grouped 81 
viruses by taxa given our sample sizes and known issues of serological cross-reactivity [39,40].  82 

From each study, we defined sampling subunits: a temporally defined sampling event of 83 
one bat species in one location per viral detection estimate. Each subunit is the lowest spatial, 84 
temporal, and phylogenetic scale (of bats and their viruses) reported. We classified subunits into 85 
three sampling designs and reporting practices: one sampling event, multiple events, or pooled 86 
events over time. Records of a single prevalence or seroprevalence estimate from a population 87 
sampled from a period less than or equal to one month were classified as single sampling events, 88 
whereas records of a population over multiple monthly timepoints were classified as spanning 89 
multiple events (i.e., a longitudinal study). For example, every monthly prevalence estimate per 90 
population of Pteropus lylei in Thailand would represent a unique subunit and be classified as 91 
longitudinal [41]. Records of a period longer than one month were classified as pooled events, 92 
where researchers may have sampled a population across more than one timepoint but reported 93 
data as a single viral detection estimate. A schematic of these categorizations is provided in 94 
Figure 1A. One month was selected because this timeframe was the lowest common temporal 95 
unit and because bat shedding of these viruses can occur within a month [36,42]. These data 96 
were reported for most records (1121/1176 subunits; three publications did not report these data 97 
and three additional publications did not always report such data for all records). For each 98 
subunit, we also recorded the bat species, virus taxon, coarse detection method (i.e., PCR or 99 
serology), number of bats sampled, proportion of bats positive, sampling timepoints, sampling 100 
location, and country (recoded to the United Nations geoscheme for our descriptive analyses). 101 

We quantified the proportion of studies using each sampling and reporting design, both 102 
across all data and stratified by virus taxon. To assess how the frequency of longitudinal studies 103 
(i.e., those with repeated sampling) has changed over time, we fit a generalized additive model 104 
with the mgcv package in R and a smooth term for publication year [43]. We also calculated the 105 
duration of repeat sampling for these longitudinal studies. For studies that pooled data over time, 106 
we quantified days represented per subunit. To describe geographic biases in bat virus studies, 107 
we assessed sampling gaps according to region (United Nations geoscheme). We used a χ2 test to 108 
assess if sampling designs and reporting practices were differently distributed across regions.  109 

To assess the contribution of sampling designs and reporting practices to viral detection 110 
estimates and to quantify the degree of spatial and temporal variation in bat–virus interactions, 111 
we used the metafor package to calculate logit-transformed proportions and sampling variances 112 
and to fit hierarchical meta-analysis models [44,45]. To account for phylogenetic dependence, 113 
we included bat species as a random effect [46], for which the covariance structure used the 114 
phylogenetic correlation matrix; we obtained our phylogeny from the Open Tree of Life with the 115 
rotl and ape packages [47,48]. We excluded subunits that pooled data across or within bat genera 116 
(n=102). As few subunits (n=14) pooled data across specified species in a genus, we randomly 117 
selected one species to retain these records. Our final dataset included 1019 subunits from 60 118 
studies and 215 bat species (Fig. S2). Our models also included subunit nested within study as a 119 
random effect and weighting by sampling variances. To first assess heterogeneity among viral 120 
detection estimates, we fit a random-effects model (REM; intercept only) and stratified this 121 
analysis per viral taxon and detection method. We used restricted maximum likelihood to obtain 122 
unbiased estimates of the variance components, from which we derived I2 to quantify the 123 
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contribution of true heterogeneity to total variance in viral detection estimates [49]. We used 124 
these estimates to partition variance attributed to each random effect; in the case of bat species, 125 
we derived phylogenetic heritability (H2) as a measure of phylogenetic signal [46]. We used 126 
Cochran’s Q to test if such heterogeneity was greater than expected by sampling error alone [50]. 127 

To next test how sampling designs and reporting practices may influence viral detection 128 
estimates, we fit a mixed-effects model (MEM) with the same random effects and an interaction 129 
between sampling design and reporting practices, detection method, and virus taxon. We tested 130 
significance of moderators and interactions using the Q test [44] and derived a pseudo-R2 as the 131 
proportional reduction in the summed variance components compared with those of a REM [51].  132 

To test if viral detection estimates showed spatiotemporal variation, we fit models with 133 
the same random effects to our data subset reporting multiple events (n=273). We fit a REM to 134 
quantify I2 for longitudinal studies. We then fit MEMs with location and month as univariate 135 
moderators to test if viral detection estimates varied across space and time. Because this subset 136 
of the data included many unique locations (n=28) and months (n=12), we did not use interaction 137 
terms and instead fit an additional set of MEMs to each viral taxon–detection method strata.    138 
 139 
Results 140 
Only 26% of bat virus studies reported data longitudinally (10 filo- and 9 henipavirus studies; 141 
Fig. 1). However, the frequency of such studies has weakly increased over time (Fig. S3, 142 
χ21=2.75, p=0.1). Eleven studies reported sampling populations 2–3 times while 12 reported 143 
sampling populations over four times. The duration of longitudinal studies ranged from 150 days 144 
to over 10 years, on average spanning 2.5 years of repeat sampling (Fig. S4). In contrast, half of 145 
our studies (n=34) instead reported estimates across multiple timepoints as pooled proportions, 146 
which on average represented 644 days of temporally aggregated data (SD=492; Fig. S5).  147 

Bat sampling also showed geographic biases (Fig. 1, Table 1). Filovirus studies were 148 
conducted across much of Africa and Asia but not in Latin America and Oceania. PCR and 149 
serology have been used in the same region in most areas, but only one or the other have been 150 
used in Southern Africa for filoviruses and in Europe, Eastern and Middle Africa, and Eastern 151 
Asia for henipaviruses (Table 1). Geography was also associated with sampling design and 152 
reporting practices (χ2=369.3, p=0.001). Longitudinal data were only reported from Central, 153 
Eastern, Middle, and Southern Africa for filoviruses and only reported from Southeastern Asia, 154 
Eastern Africa, and Oceania for henipaviruses (Table 1).  155 
 We observed significant heterogeneity across viral detection estimates (I2=0.91, 156 
Q1017=6929, p<0.001). Bat species and study accounted for most variation (I2species=0.41, 157 
I2study=0.34, H2=0.45; Table S2). We also found significant heterogeneity within each viral 158 
taxon–detection strata, although I2 and H2 values varied across these subsets (Table S1). Viral 159 
detection estimates for henipaviruses had much stronger phylogenetic signal than filoviruses. 160 
 Our MEM showed that viral detection estimates broadly varied with detection method 161 
(Q1=5.41, p=0.02; seroprevalence was generally higher than prevalence) and were associated 162 
with sampling design and reporting; however, the effect tended to depended on virus taxa and 163 
detection method (three-way interaction: Q2=5.36, p=0.07, R2=0.06; Table S2). A post-hoc 164 
analysis with MEMs fit to each strata showed sampling design and reporting were associated 165 
with filovirus seroprevalence (Q2=10.30, p=0.006; Fig. 2), with longitudinal studies generally 166 
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showing higher proportions of positive bats.  Sampling design and reporting had no effects on 167 
henipavirus seroprevalence nor prevalence estimates for either virus taxon (Table S3).  168 

We also detected high variation in viral detection estimates across longitudinal studies 169 
(Q271=2866, p<0.0001, I2=0.94; Fig. 2). Study contributed more to residual variance than 170 
phylogeny (I2species=0.28, I2study=0.52, I2subunit=0.13). Across these data, location did not predict 171 
viral detection estimates (Q28=17.67, p=0.91); however, MEMs fit to each strata showed high 172 
spatial variation for all subsets except filovirus prevalence (Table S4). Month also had little 173 
predictive power across all longitudinal data (Q11=6.93, p=0.80), but separate MEMs revealed 174 
high temporal variation for filovirus seroprevalence and henipavirus prevalence (Table S5).  175 
 176 
Discussion 177 
Our study provides a systematic synthesis of prevalence and seroprevalence for bat filoviruses 178 
and henipaviruses that can guide future sampling. Only one in four studies reported longitudinal 179 
data, although use of such approaches is increasing. Half of studies instead pooled data over time 180 
(and space). Geographic limitations were also evident, especially for where longitudinal studies 181 
have been conducted. This was especially evident for filoviruses; although the absence of studies 182 
in Latin America and Oceania may reflect the lack of reported human cases, bat reservoirs are 183 
predicted to occur in both regions [35]. Many studies also used either PCR or serology, although 184 
using both may improve statistical inference about how zoonotic pathogens persist in hosts [18]. 185 

We found generally weak evidence that such variation in sampling design and reporting 186 
affected viral detection estimates, although filovirus seroprevalence tended to be greatest from 187 
longitudinal studies. Serological surveys of Marburg and Ebola virus have found strong temporal 188 
dynamics that may reflect seasonality in bat reproduction or resource availability [31,52,53]. 189 
Detection estimates could be higher with repeated sampling, given that such studies are more 190 
likely to detect shedding pulses and pooling of data could increase zeros in the numerator 191 
(underestimating seroprevalence). The lack of a similar pattern for filovirus PCR data could 192 
result from low prevalence and be biased by zero inflation. We also qualify that our low R2, 193 
alongside high contributions of bat phylogeny and study random effects, suggests other aspects 194 
of bat ecology (e.g., seasonal birth [31,54]) or study idiosyncrasies (e.g., serological cutoffs 195 
[39,40]) may play more critical roles in shaping viral detection estimates. High H2 for 196 
henipaviruses suggests cladistic or trait-based analyses of shedding could be insightful [35,55]. 197 
Yet given the potential for sampling design and reporting to affect viral detection estimates, we 198 
encourage researchers to publish data at the lowest spatial, temporal, and phylogenetic scale 199 
associated with sampling and to provide data at such scales to facilitate these future analyses.  200 
 Our analysis of longitudinal studies found significant spatial and temporal variation in 201 
some bat virus data. This implies spatiotemporal sampling is critical to make inferences about 202 
bat virus spillover. Although sampling over space and time is challenging, especially for highly 203 
mobile animals like bats, sampling can be informed by spatiotemporal variation in prevalence 204 
and seroprevalence and analyses of spatiotemporal autocorrelation [20,56]. Greater variation 205 
over space can require more fine-scale spatial sampling, and greater variation over time can 206 
require more fine-scale temporal sampling. Spatiotemporal designs, such as stratified random 207 
sampling or rotating panels, can help capture spatial and temporal variation in virus shedding 208 
while also addressing some logistical challenges [13,57,58]. The increased adoption of such 209 
approaches, especially in the understudied regions identified in our analysis, will be key to 210 
improve understanding bat virus dynamics and how spillover risk varies over time and space. 211 
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Tables 387 
 388 
Table 1. Summary of the temporal and spatial limitations for bat filovirus and henipavirus 389 
prevalence and seroprevalence data. Some studies had multiple diagnostic methods, sampling 390 
designs, and reporting methods. Diagnostic mismatch refers to geographic regions (United 391 
Nations geoscheme) where either PCR or serology have been used (but not together). 392 
 Longitudinal 

virus studies 
Geographic 

sampling gaps 
Diagnostic 
mismatch  

Regions with 
longitudinal data 

Filoviruses 

PCR 4/19  
Latin America, 

Oceania, 
Southern Africa 

Southern 
Africa 

Central Africa, 
Eastern Africa 

Serology 7/25 Latin America, 
Oceania 

Central Africa, 
Eastern Africa, 
Middle Africa, 
Southern Africa 

Henipaviruses 

PCR 4/13 
Eastern Africa, 
Southern Africa 

Eastern Asia 
Europe, 

Eastern Africa, 
Middle Africa, 
Eastern Asia 

Southeastern 
Asia, Oceania 

Serology 5/27 
Middle Africa, 

Southern 
Africa, Europe 

Southeastern 
Asia, Oceania, 
Eastern Africa 

 393 
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Figures and legends 395 
 396 
Figure 1. Top: Conceptual schematic of how different sampling designs and reporting practices 397 
(colored points and lines) capture the underlying temporal dynamics of infection (black line), 398 
followed by observed proportions for studies of bat filoviruses and henipaviruses (grey shows 399 
the proportion of studies not reporting these data). Bottom: Countries sampled for bat filoviruses 400 
and henipaviruses and where wild bats have been found positive through PCR or serology.  401 
 402 
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Figure 2. Top: Influence of sampling designs and reporting practices on virus detection 405 
estimates. Points show proportions of positive bats per subunit; lines and diamonds display back-406 
transformed predicted means and 95% confidence intervals from the MEM. Bottom: 407 
Spatiotemporal variation in viral detection estimates for longitudinal studies. Points represent 408 
each subunit virus detection estimate and are colored by locations and shaped by month.  409 
 410 
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