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ABSTRACT

Graph models often give us a deeper understanding of real-world networks. In the case of biological
networks they help in predicting the evolution and history of biomolecule interactions, provided we
map properly real networks into the corresponding graph models. In this paper, we show that for
biological graph models many of the existing parameter estimation techniques overlook the critical
property of graph symmetry (also known formally as graph automorphisms), thus the estimated
parameters give statistically insignificant results concerning the observed network. To demonstrate
it and to develop accurate estimation procedures, we focus on the biologically inspired duplication-
divergence model, and the up-to-date data of protein-protein interactions of seven species including
human and yeast. Using exact recurrence relations of some prominent graph statistics, we devise a
parameter estimation technique that provides the right order of symmetries and uses phylogenetically
old proteins as the choice of seed graph nodes. We also find that our results are consistent with
the ones obtained from maximum likelihood estimation (MLE). However, the MLE approach is
significantly slower than our methods in practice.

Keywords biological networks · parameter estimation · duplication-divergence · random graphs

1 Introduction

Many biological processes are regulated at the level of interactions between protein molecules. In recent decades,
the development of experimental and bioinformatic methods allow researchers to obtain and make publicly available
growing amount of data of various biological mechanisms involving different proteins. The whole network of these
events that can be found and reconstructed using various techniques is customarily summarized as protein-protein in-
teraction (PPI) networks. The PPI networks are often described as undirected graphs with nodes representing proteins
and edges corresponding to protein-protein interactions.

The proliferation of biological data, in turn, encouraged a study of a series of theoretical models to develop a deeper
understanding of the evolution and structural properties of the network representation. However, proper fitting of the
biological data and development of statistical tests to check the validity of the models are critical to take advantage
of the theoretical developments in graph models. The parameter estimation remains as a challenging problem in
biological networks like PPIs, mainly because most of the classical estimation procedures were developed for static
networks, and not tailored to specific properties of biological data and its underlying dynamics. In this paper, we
propose a parameter estimation scheme for biological data with a new perspective of symmetries and recurrence
relations, and point out many fallacies in the previous estimation procedures.
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Since the inference techniques are closely coupled with the arrival process, we assume that networks evolve according
to the following duplication-divergence stochastic graph model.

Duplication-divergence model (DD-model). There is a wide agreement [1], originally stemming from Ohno’s hy-
pothesis on genome growth [2], that the main mechanism driving evolution of PPI networks is the duplication mecha-
nism, in which new proteins appear as copies of some already existing proteins in the network. This is supplemented
by a certain amount of divergence of random mutations that lead to some differences between patterns of interaction
for the source protein and the duplicated protein.

There are many variations of duplication-divergence models in the literature, although they have not yet been studied
or compared systematically. In this work, we use the model suggested by Pastor-Satorras et al. in [3], recommended
in several surveys [4, 5] as a good possible theoretical match for PPI networks.

The model of Pastor-Satorras et al. constructs the graph in the following way. Given an undirected, simple, seed graph
Gn0 on n0 nodes and target number of nodes n, the graph Gk+1 with k + 1 nodes2 evolves from the graph Gk as
follows. First, a new vertex v is added to Gk. Then the following steps are carried out:

• Duplication: Select an node u from Gk uniformly at random. The node v then makes connections to Nk(u),
the set of neighbors of u at time k.

• Divergence: Each of the newly made connections from v to Nk(u) are deleted with probability 1 − p. Fur-
thermore, for all the nodes in Gk except Nk(u), create an edge from each of them to v independently with
probability r

k .

The above process is repeated until the number of nodes in the graph reaches n. We denote the graph Gn generated
from the DD-model with parameters p and r, starting from seed graph Gn0 , by Gn ∼ DD-model(n, p, r,Gn0). Note
that the above model generalizes pure duplication model when p = 1, r = 0 [6, 7]. In some variations of the model
(e.g. [8]), the nodes v and u will make a connection independently with a probability q that is much larger than r/k.
However, the addition of q does not introduce significant changes in the properties of the graph, therefore we do not
consider such a variation in this work.

Motivation and contributions

In this work, we rigorously study the problem of parameter estimation in the duplication-divergence model using PPI
datasets of seven species. The following points motivate this work and we present our key results with them.

Symmetries of the graph. One important feature of the networks that was neglected in the previous studies is the
distribution of the number of symmetries (formally known as automorphisms, which is the set of adjacency preserving
permutations) generated by the fitted models with fine-tuned parameters. For the real-world PPI networks it turns out
that the number of symmetries is considerably high, which is in stark contradiction with properties of many random
graph models. For example, it is known that graphs generated from Erdős-Renyi model [9] and from preferential
attachment model [10] are asymmetric with high probability. Therefore they cannot be reasonably justified as under-
lying generation schemes for PPI networks. We shall also see that the same phenomena may occur for the DD-model
with some ranges of the parameters p and r.

Automorphisms are rarely studied in the context of biological networks and graph models. So far there are no theo-
retical results on automorphisms in the duplication-divergence model except the work in [11] for the limiting case of
r = 0, where it was discovered that when both p = 0 and p = 1 the model produces graphs with a significant amount
of symmetry.

Our main focus in this work is to take into account the number of automorphisms of the observed network to restrict
the parameter search to a more meaningful range. Moreover, we show that most parameters outputted by previous
estimation techniques fail to produce graphs having an order of automorphisms close to that of the PPI networks and
therefore they are, in this regard, do not fit the DD-model well. We also note that cross-checking with the number of
automorphisms of the real-world network forms a null hypothesis test for the model under consideration.

Graph parameter recurrences. It is widely recognized that the asymptotics of structural properties such as the degree
distribution and number of edges of the DD-model are crucial parameters, upon which judgment about the fitness of
the model could be made. From the theoretical point of view, the analysis for the DD-model was presented in [12, 13],
supporting the case that graphs derived from this model exhibit (under certain assumptions) power-law-like behavior.
Moreover, the frequency of appearance of certain graph structures called graphlets (small subgraphs such as triangles,

2The subscript k in Gk can also be interpreted as time instant k.
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open triangles, etc.) can be viewed as another criterion for model fitting (see [4, 14] and the references therein). The
triangles and wedges (paths of length 2 or star with two nodes) are particularly crucial as they are directly related to the
network clustering coefficient. The high value of this coefficient is recognized in general as a significant characteristic
of some biological networks including PPI networks [15], differentiating these networks from those which can be
obtained, for example, from Erdős-Renyi or preferential attachment models.

Our approach is based on recreating graph evolution from a single snapshot of the observed network. We apply, for the
first time, rigorous analyses to estimate parameters with the recurrence relations of degree and the number of wedges
and triangles, recreating the dynamic process of DD-model construction. The advantages of this approach are twofold:
first, the use of accurate iterative formulas allow us to achieve more realism and precision for finite graphs, which is in
contrast to most of the previous studies that derive parameter estimates exclusively in terms of steady-state behavior.
Second, it is not proven whether the steady state for such models even exists and whether the whole random process
converges asymptotically (see Section 4 for more details).

Maximum likelihood method. To substantiate the accuracy of our estimation technique, we apply the maximum
likelihood method (MLE) with the importance sampling to the parameter inference problem, adapting the work of
Wiuf et al. [16] to the DD-model. It turns out that the results of the MLE method are very similar to those that derived
from our estimation method, and the estimated parameters in both the techniques generate data that is consistent with
the observed network in terms of the number of automorphisms.

However, the MLE algorithm has much larger computational complexity, Θ
(
n3 1

ε2

)
compared to Θ

(
n 1
ε log 1

ε

)
needed

by our approach based on the recurrences (n and ε being the number of nodes and required resolution). Therefore, the
analysis of graphs using MLE method is significantly slower for networks in practice and its application is impractical
for networks exceeding 1000 nodes, which includes most of the real-world PPI networks. Furthermore, in the case of
MLE, a large set of parameter values maximizes the likelihood function when the true p value is close to one, thus
making it less reliable (see Section 6.1).

Seed graph choice. It is well known that seed graphs play an important role in biological networks, and its improper
selection will affect the estimated parameters of the fitted model [17, 5]. In particular, the task of determining the
suitable range of parameters for the duplication-divergence model is always done under assumptions concerning the
seed graph. In this work, we improve on the existing solutions by choosing the seed graph on the basis of phylogenetic
ages of the proteins in the PPI data – the oldest proteins forms the seed graph. Although such a choice of seed graph
is completely absent in prior literature, it is a natural pick as the seed graph itself is defined as the network that is
comprised of the oldest entities in the given network. Our experiments in Section 6 show that seed graphs with oldest
proteins provide better parameter estimates for the DD-model.

We made publicly available all the code and data of this project at https://github.com/krzysztof-turowski/
duplication-divergence.

Outline of the paper

In Section 2 we describe the PPI datasets that are considered in this paper. The influence of parameters of the DD-
model on graph symmetries and the p-value calculation for comparing with the observed graph are given in Section 3.
In Section 4 we provide a critique of various deficiencies of previous approaches to PPI networks parameter estimation,
like lack of symmetries and overemphasis on power-law behavior. Section 5 describes our approach based on both au-
tomorphisms counting and exact iterative formulas for certain graph statistics. In this section we also present an MLE
algorithm for parameter inference and compare methods in terms of their complexity and practical usage. Section 6
contains numerical results for both synthetic data generated from the DD-model and real-world PPI networks. Section
7 concludes the paper with a discussion of obtained results and their significance.

Table 1 provides the list of main notations used in the paper.

2 Datasets

We use protein-protein interaction networks (PPI) to verify the estimation techniques proposed in this paper. The data
is collected from the BioGRID3, a popular curated biological database of protein-protein interactions. The networks
formed from protein-protein interaction data are further cleaned by removing self-interactions (self-loops), multiple
interactions (multiple edges), and interspecies (organisms) interactions of proteins. Thus the considered PPI networks

3https://thebiogrid.org
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Notation Meaning

Gobs Observed real-world network
Gn0 Seed graph (initial graph) with n0 nodes
Gn Realization of the DD-model with fixed

parameters and n number of nodes
p, r Parameters of the DD-model
γ Power law exponent
Aut(G) Automorphism group of graph G
|Aut(G)| Number of automorphisms of graph G
Ns(t) Set of neighbors of node t at time s
degs(t) Degree of a node t at time s
D(Gn) n−1

∑n
i=1 degn(i)

D2(Gn) n−1
∑n
i=1 deg2

n(i)
S2(Gn) Number of wedges (stars with two nodes) in Gn
C3(Gn) Number of triangles in Gn

Table 1: List of main notations

Original graph Gobs Seed graph Gn0

Organism Scientific name # Nodes # Edges log |Aut(G)| # Nodes # Edges

Baker’s yeast Saccharomyces cerevisiae 6,152 531,400 267 548 5,194
Human Homo sapiens 17,295 296,637 3026 546 2,822
Fruitfly Drosophila melanogaster 9,205 60,355 1026 416 1,210
Fission yeast Schizosaccharomyces pombe 4,177 58,084 675 412 226
Mouse-ear cress Arabidopsis thaliana Columbia 9,388 34,885 6696 613 41
Mouse Mus musculus 6,849 18,380 7827 305 7
Worm Caenorhabditis elegans 3,869 7,815 3348 185 15

Table 2: Statistics of PPI networks used in this paper and the generated seed graph Gn0 with nodes of the largest
phylogenetic ages.

only have physical and intra-species interactions. Unlike some of the previous studies that consider only the largest
connected component, the DD-model we focus in this work incorporates disconnected subgraphs and isolated nodes.

Table 2 shows the different PPI datasets considered in this paper. We have also listed the logarithm of the number
of automorphisms in the original graph, obtained using a publicly available program nauty [18]. We note here that
the PPI dataset is growing as new interactions getting added on every new release of the dataset. Many previous
studies were using older and less complete versions of the data, and therefore it is important to repeat the estimation
procedures from those studies and compare them to our methods.

2.1 Selection of seed graph Gn0

Previous studies typically assume the seed graph Gn0
as the maximal clique (or the largest two cliques) in the graph

Gn [5, 4]. Here we consider a novel formulation for the seed graph. We select the seed graph as the graph induced in
the PPI networks by the oldest proteins. That is, the proteins in the observed PPI data that are known to have the largest
phylogenetic age (taxon age). It is reasonable to expect that the same protein which appeared over different species
also appears in their common ancestor. Hence proteins shared across many different, distant species are supposed to
be older than others.

More precisely, the age of a protein is based on a family’s appearance on a species tree, and it is estimated via pro-
tein family databases and ancestral history reconstruction algorithms. We use Princeton Protein Orthology Database
(PPOD) [19] along with OrthoMCL [20] and PANTHER [21] for the protein family database and asymmetric Wagner
parsimony as the ancestral history reconstruction algorithm. These algorithms can be accessed via ProteinHistorian
software [22].

Table 2 also lists the statistics of seed graphs Gn0 for different PPI networks. Even if the original PPI network is
connected, the DD-model under consideration allows a disconnected graph to be the seed graph. Thus, similar to

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2019. ; https://doi.org/10.1101/674739doi: bioRxiv preprint 

https://doi.org/10.1101/674739
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - JUNE 17, 2019

the formation of the PPI network, we consider the graph induced by oldest proteins including isolated nodes and
disconnected subgraphs, not restricting ourselves to a connected component that introduces biases in the results.

3 Influence of parameters on symmetries of the model
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(c) n = 2000

Figure 1: Logarithm of the expected number of automorphisms of graphs generated from the DD-model. The seed
graph Gn0

= K20.

For certain range of values of the parameters p and r of the DD-model, given n and Gn0
, we show in this section that

the model generates virtually only asymmetric graphs. However, we can put forward a question: are there any values
of parameters that will yield graphs with the number of automorphisms is close to the real-world PPIs?

In Figure 1, we present the average number of symmetries in the logarithmic scale for graphs with different sizes.
generated from the DD-model with a fixed set of parameters. As p, r → 0 or when p becomes very close to 1 we
observe significantly larger values for the average number of automorphisms (since the generated graphs tend to have
numerous isolated nodes or they become closer to a complete graph). For instance in Figure 1a, p = 1, r = 0.4 has
E[log Aut(Gn)] = 1114, and p = 0, r = 0.4 has E[log Aut(Gn)] = 1253. But for large ranges of p and r, it is
practically impossible to generate a graph exhibiting any noticeable symmetries. For example, p = 0.2, r = 2.4 has
E[log Aut(Gn)] = 3.2; p = 0.6, r = 0 has E[log Aut(Gn)] = 1.3; and p = 0.4, r = 2.4 has E[log Aut(Gn)] = 0.12.
These observations are consistent for different n and Gn0

too, though the specific range of values of parameters will
obviously change.

The number of automorphisms in the DD-model behaves differently as compared to many other graph models includ-
ing preferential attachment and Er̋dos-Rényi models. The preferential-attachment graphs are asymmetric (no nontrivial
symmetries) with high probability when the number of edges a new node brings into the graph exceeds 2 [10], and
almost every graph from the Er̋dos-Rényi model is asymmetric [9]. On the other hand, the DD-model exhibits a large
number of symmetries and it grows with the number of nodes, as shown in Figure 1.

These findings allow us to argue that only certain subsets of (p, r) pairs correspond to the expected number of au-
tomorphisms in the order of the required value. This means that it can be reasonably used as a falsification tool to
discard certain parameter ranges and to verify parameter estimation methods. We provide a simple statistical test for
checking the possibility of generating the required number of symmetries with the estimated parameters.

Statistical test for significance of the number of symmetries with the estimated parameters. Given the real-world
network Gobs, seed graph Gn0 , and the estimated parameters (p̂, r̂) of the DD-model, we can estimate the statistical
significance of the estimates with respect to the number of symmetries in Gobs as follows. Let G(1)

n , . . . , G
(m)
n be m

graphs generated from DD-model(n, p̂, r̂, Gn0
). Then the p-value is now calculated as follows:

pu =
1

m

m∑
i=1

1{log |Aut(G(i)
n )| ≥ log |Aut(Gobs)|}

pl =
1

m

m∑
i=1

1{log |Aut(G(i)
n )| ≤ log |Aut(Gobs)|},

with 1{A} as the indicator function of the event A. Then p-value = 2 min{pu, pl}. As an example, for a fixed
parameter set, the empirical distribution of log |Aut(G)| is shown in Figure 2. The distribution is symmetrical and this
justifies use of the symmetrical definition of p-value. A lower p-value indicates that the estimated parameters do not
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fit the observed network, and a higher value gives an argument for the estimated parameters being in agreement with
the number of symmetries in Gobs.

200 300 400 500

log Aut(G)

0.000
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0.002

0.003
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0.005
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0.007

Figure 2: Normalized histogram of logarithm of number of automorphisms when Gn ∼
DD-model(500, 0.3, 0.4,K20).

4 Parameter Estimation and Why Existing Methods Fail in Practice?

Previous methods for the parameter estimation problem in the DD-model was first sketched in [3] and then considered
more rigorously in [12]. Later, [5, 4] provided some extensions to the estimation procedures using the mean-field
approximation of the average degree D(Gobs) together with the steady-state expression of the power-law exponent γ
of the degree distribution. Then, the values of p and r are computed, respectively, from the formulas:

γ = 1 +
1

p
− pγ−2 and r =

(
1

2
− p
)
D(Gobs), for p <

1

2
.

Table 3 presents the estimates of parameters p and r using the above method. Additionally, we present the average
logarithm of the number of automorphisms computed from 10,000 graphs generated from the DD-model with the
estimated parameters.

Organism p̂ r̂ E[log |Aut(Gn)|] p-value

Baker’s yeast 0.28 38.25 0 0
Human 0.43 2.39 10.81 0
Fruitfly 0.44 0.75 3771.99 0
Fission yeast 0.46 1.02 897.48 0
Mouse-ear cress 0.44 0.43 18596.72 0
Mouse 0.48 0.12 34961.69 0
Worm 0.47 0.14 15700.26 0

Table 3: Estimated parameters of the DD-model and average number of symmetries using mean-field approach.

Mismatch in the number of symmetries and graph statistics. Comparing Tables 2 and 3, we observe that the
number of symmetries of the graphs which are generated by the DD-model with parameters estimated via the mean-
field approach differs significantly with that of the real-world PPI networks. Moreover, the estimated p-values are
consistently zero for all the species because the observed values of the parameters under investigation fall far outside
the range of the empirical distribution of the parameters for synthetic graphs generated with estimated p and r. This
shows that the previously established estimation methods of the DD-model fail to capture the critical graph property
of automorphisms, and thus do not fit the PPI networks accurately.

As shown in Table 2, the PPI networks exhibit some significant amount of symmetry, but far less than the maximum
possible value (equal to n log n), which is attained when every node can be interchanged with every other node. This
observation, along with the p-value test in Section 3, allow us to discard not only many models which produce only
asymmetric graphs with high probability (such as Erdős-Renyi or preferential attachment model), but also effectively
stands as a hypothesis test to verify that the fitting obtained by an estimation procedure can be safely assumed to match
the model underlying real-world structures.

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2019. ; https://doi.org/10.1101/674739doi: bioRxiv preprint 

https://doi.org/10.1101/674739
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - JUNE 17, 2019

Similarly, for certain graph statistics D(Gn), S2(Gn) and C3(Gn) (see Table 1 for notation), which are considered
later in Section 5.1 for deriving our methods, we observe from Table 4 that the estimated parameters do not yield
graphs that have the considered statistics close to the observed graph. Here the p-values are calculated in an equivalent
way of number symmetries, just that now it is computed with respect to the graph statistics.

We would like to point out several other deficiencies in the known estimation procedures, which could be the reasons
behind such a divergence between the number of symmetries of the PPI networks and its proposed theoretical model.

Organism D(Gobs) E[D(Gn)] p-value S2(Gobs) E[S2(Gn)] p-value C3(Gobs) E[C3(Gn)] p-value

Baker’s yeast 172.76 115.10 0 220.35M 45.33M 0 9.77M 370.49K 0
Human 34.30 19.39 0 52.25M 7.02M 0 1.07M 105K 0
Fruitfly 13.11 7.87 0 2.94M 1.45M 0 195.96K 77.61K 0
Fission yeast 27.64 6.72 0 7.42M 215.84K 0 223.61K 1.14K 0
Mouse-ear cress 7.39 2.23 0 2.98M 44.46K 0 23.34K 23.27 0
Mouse 5.35 0.82 0 2.95M 9.33K 0 10.22K 0.79 0
Worm 4.04 0.90 0 346.13K 5.32K 0 2.41K 0.49 0

Table 4: Comparison of certain graph statistics of the observed graph and that of the synthetic data with parameters
estimated via the mean-field approach.

Power-law behavior. The parameter estimation of the DD-model introduced in prior works, such as the one that was
presented at the beginning of this section, assumes that the PPI networks are scale-free. This property, stating that
the degree distribution of the PPI networks is heavy-tailed or, more precisely, that the number of vertices of degree
k is proportional to k−γ for some constant γ > 0 [23, 24]. With this assumption, some (see [8] for example) argue
that the estimated value of the exponent for the PPI networks satisfies 2 < γ < 3. However, there are some serious
counterarguments to this claim, and it is challenged on statistical grounds that the PPI graphs do not fall into the
power-law degree distribution category [25, 26].

To each of the PPI networks in Table 2, we fit the coefficients of power-law distribution with the cut-off following the
methodology of Clauset et al. [27]. We note here that cutoff is required in all the cases since the power-law behavior
mostly happens in the tails of the degree distribution. However, we find that the cutoff neglects a huge percentage of
the data. For example, for a fitting of baker’s yeast PPI network, as shown in Figure 3, the cutoff is 582, which is at
94.98 percentile of the degree data, i.e., the power-law fitting does not take into account 94.98% of the data. With the
cutoff and the percentiles of all the species listed in Table 5, we remark that any method to estimate the parameters p
and r involving power-law exponent need not result in good approximations since it discards data from a majority of
the network.

100 101 102 103

x

10−3

10−2

10−1

100

CCDF(x)

with cutoff

original

Figure 3: Complementary cumulative distribution function (CCDF) of baker’s yeast and power law fitting.

Organism γ̂ Cutoff percentile

Baker’s yeast 4.55 94.98
Human 2.85 92.33
Fruitfly 2.71 88.00
Fission yeast 2.43 88.31
Mouse-ear cress 2.68 93.89
Mouse 2.29 78.58
Worm 2.41 88.23

Table 5: Estimated power law exponent and required cutoff percentile with the mean-field approach
7
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Steady state assumption. Previous research on the DD-model, both on the level of theoretical analysis of the model
properties and the level of parameter estimation of real-world PPI networks, focus heavily on the asymptotic and
steady-state behavior [3]. Most of the previous results on the functional form of certain graph statistics in the DD-
model are under the strong assumption of steady-state [28, 8]. But they do not provide any theoretical proof for
convergence to steady-state. Moreover, these steady-state asymptotic results, even when achievable, do not give any
bounds on the rate of convergence. This, in turn, raises questions about the straightforward applicability of such
theoretical results to parameter estimation.

The previously used methods of parameter estimation also suffer from another issue: for simplicity, they assume that
the average degree of the network does not change during the whole evolution from Gn0 to Gn. This is not only
highly implausible in practice, but also impose direct relation between p and r, and hides any dependency that might
be discovered from various properties of the networks.

Seed graph choice. As shown by previous studies (most notably in Hormozidari et al. [5]), choice of the seed graph
plays a significant role in graph evolution, directly contributing to the order of growth of many important graph
statistics.

The seed graph is typically assumed to be the largest clique (or a connected graph of the largest two cliques) of the
observed graph. Then random vertices and edges are gradually added to the network, preserving the average degree of
the final network, to make the size of the network to a fixed value of n0. This method is motivated by the infinitesimally
small probability with which there could appear a clique of a greater size during graph evolution. Such a procedure
has no formal theoretical guarantees and does not have any clear justification from a biological perspective [5].

Our natural approach to select the seed graph is based on the extra-network information about the estimated age of
proteins, described in Section 2.1.

5 Main results

Our main constructive results concern the relation between the parameters of the model and the number of symmetries
exhibited by graphs generated from it. Additionally, we present two parameter estimation algorithms, one based
on recurrences characteristic for certain graph statistics, the other based on the well-known maximum likelihood
approach.

5.1 Our method: parameter estimation using recurrence relations

Our basic tool to infer the parameters of DD-model for a given the PPI network is a set of the exact recurrence relations
for basic graph statistics, which relate their values at time k and k + 1 of graph evolution. Such recurrence relations
are sufficient to estimate model parameters, as the whole sequence of graphs from the initial graph Gn0

to the final
graph Gn can be split into steps consisting of the addition of a single vertex and the changes introduced by the added
vertex.

Typically, five statistics of the random graph Gn are studied in literature: number of edges E(Gn), mean degree of the
network D(Gn) = n−1

∑n
i=1 degn(i), mean squared degree D2(Gn) = n−1

∑n
i=1 deg2

n(i), number of triangles (3-
cliques) C3(Gn), and number of wedges S2(Gn) (wedges are also called 2-stars or paths of length 2 in prior literature,
and number of wedges includes counts of triangles and open triangles).

However, for every graphH on n vertices it is true thatE(H) = n
2D(H) and S2(n) = n

2 (D2(H)−D(H)). Therefore,
it is sufficient to analyze only the three of above-mentioned graph statistics: D(n), S2(n) and C3(n).

As a first step, we derive the following recurrence relations for the chosen statistics.
Theorem 1. If Gn+1 ∼ DD-model(n+ 1, p, r,Gn), then

E[D(Gn+1)|Gn] = D(Gn)

(
1 +

2p− 1

n+ 1
− 2r

n(n+ 1)

)
+

2r

n+ 1

E[D2(Gn+1)|Gn] = D2(Gn)

(
1 +

2p+ p2 − 1

n+ 1
− 2r(1 + p)

n(n+ 1)
+

r2

n2(n+ 1)

)
+D(Gn)

(
2p− p2 + 2pr + 2r

n+ 1
− 2r + 2r2

n(n+ 1)
+

r2

n2(n+ 1)

)
+

2r2 + 2r

n+ 1
− r2

n(n+ 1)

E[C3(Gn+1)|Gn] = C3(Gn)

(
1 +

3p2

n
− 6pr

n2
+

3r2

n3

)
+D2(Gn)

(
pr

n
− r2

n2

)
+D(Gn)

r2

2n
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E[S2(Gn+1)|Gn] = S2(Gn)

(
1 +

2p+ p2

n
− 2(p+ 1)r

n2
+
r2

n3

)
+D(Gn)

(
pr + p+ r − pr + r + r2

n
+
r2

n2

)
+
r2

2
− r2

2n
.

Proof. See Appendix B

In Figure 4, we verify Theorem 1 by comparing E[Dn], for various n, computed using theory and experiments.
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Figure 4: Comparison of E[D(Gn)] vs n computed via Theorem 1 and via experiments.

The expressions given in Theorem 1 implicitly define a function E[D(Gn)|Gn0
] = FD(n, p, r,Gn0

), which is a
cornerstone of our algorithm. Similar functions exist for recurrences based on other statistics of Gn0 and Gn. Now
we claim that the result of Theorem 1 in terms of expectation can be used for the graph statistics with high probability
too. Figure 5 shows the concentration of empirical distribution of different graph statistics.
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Figure 5: Empirical distribution of graph statistics: Gn ∼ DD-model(100, 0.5, 1.5,K10). Coefficient of variation CV
is defined as the ratio of empirical standard deviation and empirical mean. The lower values of CV in the sub-figures
show the concentration of the considered graph statistics.

Although we don’t need an explicit formula for FD in our algorithm, we may derive one from the recurrences:

E[D(Gn)|Gn0
] = D(Gn0

)
n−1∏
k=n0

(
1 +

2p− 1

k + 1
− 2r

k(k + 1)

)
+

n−1∑
k=n0

2r

k + 1

n−1∏
l=k+1

(
1 +

2p− 1

l + 1
− 2r

l(l + 1)

)
.

Although this is outside of the scope of this article, we note that such an expression allows us to find, for example, the
asymptotic order of growth for D(Gn) and for other statistics.

Though closed form solution of recurrences with Gn and Gn0
could be difficult to obtain, Theorem 1 is sufficient to

formulate an efficient algorithm for finding the parameters of the model. The crucial feature is that all parameters are
monotonic, that is, the larger the parameters p and r, the larger the values of D(Gn) and other statistics.

Algorithm 1 presents our estimation technique for finding p̂ with the recurrence relation for D(Gn) (which will be
D(Gobs) when we consider real-world network), assuming r̂ is known beforehand. However, sufficient number of
samples of r̂ from the interval [0, n0] is adequate to get a feasible solution set of {(p̂, r̂)} with a desired resolution.
The algorithm also works for recurrence relations of S2(Gn) and C3(Gn) with evident modifications.
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Algorithm 1 Parameter estimation via recurrence relation of D(Gn).
1: function RECURRENCE-RELATION(n, r, Gn0 , D(Gn), ε)
2: Dmin ← FD(n, 0, r, Gn0), Dmax ← FD(n, 1, r,Gn0)
3: if Dmin > D(Gn) or Dmax < D(Gn) then
4: return “no suitable solution for p”
5: pmin ← 0, pmax ← 1
6: while pmax − pmin > ε do
7: p′ ← pmin+pmax

2 , D′ ← FD(n, p′, r,Gn0
)

8: if D′ < D(Gn) then pmin ← p′ else pmax ← p′

9: return pmin

We note here that for each graph property under consideration, D, S2 or C3, the estimation algorithm returns a curve
(more precisely, a set of feasible points). Now, if we find a concurrence in the solutions to the recurrence relations
of various graph statistics, we know that a necessary condition for the presence of duplication-divergence model has
been satisfied. On the other hand, if the curves were not having a common crossing point, it suggests that the DD-
model may not be the appropriate fit for the observed network. We denote the above estimation procedure using the
recurrence relations of all three graph statistics as the RECURRENCE-RELATION method.

5.2 Parameter estimation via maximum likelihood method

An alternative way of estimating parameters of the DD-model is the maximum likelihood estimation (MLE). With
MLE, the estimated parameters p̂ and r̂ are given by maxθ=(p,r) L(θ,Gn), where the likelihood function is L(θ,Gn)
is the probability of generating Gn from Gn0

for fixed parameters θ, i.e.

L(θ,Gn) := Pr(Gn|Gn0
; θ)

=
∑

Gn0+1,...,Gn−1,Gn∈G(Gn0
,Gn)

n∏
k=n0+1

Pr(Gk|Gk−1; θ),

where G(Gn0 , Gn) is the set of all sequences of graphs that starts with Gn0 and ends at Gn. Given a fixed sequence of
graph evolution history (Gn0 , . . . , Gn−1, Gn), it is straightforward to calculate the likelihood, but L(θ,Gn) requires
summation over all histories, which has exponential number of possibilities. In [16], the authors present an impor-
tance sampling strategy to approximate the likelihood and thereby estimate the parameters. It is based on the idea of
traversing backwards in history (Gn to Gn−1 and Gn−1 to Gn−2 likewise) on one sample path of graph evolution
sequence via Markov chain. We adapt their algorithm to our DD-model and the complete algorithm is presented in
Supplementary Material.

We now provide a brief description of the importance sampling procedure. The idea is to express likelihood in terms
of a known reference parameter θ0 instead of unknown θ. Now, the likelihood can be rewritten as an expectation with
respect to θ0 and can be estimated via Monte Carlo simulations (see [16] for more details):

L(θ,Gn) = Eθ0

[
n∏

k=n0

S(θ0, θ, Gk, v)

]
,

where

S(θ0, θ, Gk, v) =
1

k
ω(Gk, θ, v)

ω(Gk, θ0)

ω(Gk, θ0, v)
.

Here ω(Gk, θ, v) is the probability of creating the graph Gk from Gk−1 through the addition of a node v, with pa-
rameter as θ. v can be chosen as any node in Gk such that its removal would result in a positive probability Gk−1
under the DD-model. The variable ω(Gk, θ) is the transition probability ω(Gk, θ, v), summed over all possible v. In
fact, ω(Gk, θ, v) itself is the normalized sum of ω(Gk, θ, v, w), over all possible nodes w, which is the probability of
producing a graph Gk from Gk−1 by adding a node v that is duplicated from node w.

5.3 Computational complexity of parameter estimation methods

Let us now assume that the n0 is fixed and we are interested in results up to a resolution ε, that is, the values of p and
r are stored in such a way that two numbers within a distance less than ε are indistinguishable.

For our algorithm 1, RECURRENCE-RELATION, a single pass requires Θ
(
n log 1

ε

)
, as it uses a binary search for

p and for every intermediate value of p it executes exactly n − n0 steps of for loop, each requiring constant time.
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Now it is sufficient to sample n0

ε different values of r, therefore the total running time to find suitable (p̂, r̂) pairs is
Θ
(
n 1
ε log 1

ε

)
.

On the other hand, the MLE algorithm needs to compute at every step values of the ω function for all possible pairs of
v and w for each graph Gk. This is the case because in DD-model every vertex v could be a duplicate of every other
vertex w always with some non-zero probability at every stage of the algorithm. This means that we require Θ(k2)
steps at each iteration of the algorithm; therefore Θ

(∑n
k=n0

k2
)

= Θ(n3) steps in total. Unfortunately, even clever
bookkeeping and amortization is not much of a help here.

Additionally, we need to estimate the likelihood for each pair (p, r) independently, as maximum likelihood function
does not have the monotonicity property, so it requires in total Θ

(
n3 1

ε2

)
steps to find all feasible pairs up to a desired

resolution of ε.

Moreover, as it was suggested by Wiuf et al. in [16], importance sampling provides good quality results only for
at least 1000 independent trials. This adds up a constant factor not visible in the big-Θ notation, but significant in
practice, effectively making the algorithm infeasible for the real-world data without using supercomputer power.

6 Numerical results

In this section, we evaluate our methods on synthetic graphs and real-world PPI networks.

Estimation of tolerance interval. We find the tolerance interval of the estimated p and r values for the fitted DD-
model as follows. For a given network Gobs and a seed graph Gn0

, first the RECURRENCE-RELATION algorithm
outputs a set of solutions {(p̂, r̂)}. For each of the feasible pairs, we then estimate the confidence interval of the
graph property with which recurrence was calculated. For instance, if the property used was the empirical mean
D, graph samples generated from DD-model(n, p̂, r̂, Gn0

) are used to estimate expectation E[D(Gn)] and variance
Var[D(Gn))] of D(n). A 95% confidence interval of D(Gn) is then given by(

E[D(Gn)]− 1.96 Var[D(Gn))], E[D(Gn)] + 1.96 Var[D(Gn))]
)
.

The Gaussian distribution assumption used in the above expression is indeed a good approximation for the distribution
of D for large n. Now by fixing p̂, we can calculate a tolerance interval (r̂min, r̂max) for the estimated parameter
r̂. In the following experiments, for demonstrating the above approach, we focus on two graph statistics D and C3

(parameter estimation will include S2 too).

Our estimation procedure can be summarized follows:

• We employ the RECURRENCE-RELATION algorithm for solving graph recurrences of the three graph statistics D,
S2 and C3, and we identify a set of solutions for p and r.
• With Gn ∼ DD-model(n, p̂, r̂, Gn0), we find the tolerance interval of r̂ using the confidence interval of D(Gn) and
C3(Gn).
• We look for crossing points of the plots in the figure, and the range of values of p and r where the confidence

intervals meet around the crossing point. We call such a range of values as feasible-box.
• Though any point in the feasible-box is a good estimate of p and r, to improve the accuracy, we uniformly sample a

fixed number of points from the box and choose the pair that gives maximum p-value with respect to the number of
automorphisms of the given graph Gobs.

6.1 Synthetic graphs

In this section, we derive insights by studying our method and MLE empirically on synthetic data. We generate two
random graph samples G(1)

n and G(2)
n from the DD-model with the following parameters:

G(1)
n ∼ DD-model(n = 100, p = 0.1, r = 0.3, Gn0

= K20),

G(2)
n ∼ DD-model(n = 100, p = 0.99, r = 3.0, Gn0 = K20).

The choice of parameters in G(1)
n and G(2)

n show different regimes in the following studies. Moreover the parameters
are chosen in such a way that the generated graphs have non-trivial symmetries.

Figures 6a and 6b plot the sets of feasible points identified by the recurrence relations using RECURRENCE-RELATION
method. The light shaded bands show the tolerance intervals of r. We observe that the crossing points and the tolerance
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intervals are fairly close to the original parameters. Figures 6c and 6d display the heat-plot of log-likelihood function
of the MLE for different values of the parameters. The log-likelihood function maximizes at (p, r) pairs close to the
original parameters, but not up to the resolution of RECURRENCE-RELATION method.
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Figure 6: Results on synthetic networks: RECURRENCE-RELATION and maximum likelihood estimation (MLE) meth-
ods

RECURRENCE-RELATION MLE

Model parameters log |Aut(Gobs)| p̂ r̂ E[log |Aut(Gn)|] p-value p̂ r̂ E[log |Aut(Gn)|] p-value

p = 0.1, r = 0.3 81.963 0.09 0.3 81.974 0.980 0.1 0.3 78.794 0.820
p = 0.99, r = 3.0 16.178 0.99 2.5 16.588 0.980 0.95 0.3 0.368 0

Table 6: Results on synthetic networks: average number of automorphisms and p-value

In Table 6 we produce the statistical significance of the best estimated parameter pairs via both the RECURRENCE-
RELATION and the MLE. The best pair is found in the RECURRENCE-RELATION method from 1000 uniform samples
in the feasible-box centered at the point where the three curves are in agreement, and for the MLE, it is found from
1000 uniform samples in the maximum log-likelihood area if no unique maximizer exists. The estimates from both
the techniques demonstrate the presence of the DD-model in the given graphs G(1)

n and G(2)
n (p-value > 0.1), the best

pair of RECURRENCE-RELATION estimator has much higher p-value and certainly outperforms MLE.

We note that for the first graph G
(1)
n the results obtained by both methods are almost identical, in terms of

E[log |Aut(Gn)|] and p-values. For the second graph G
(2)
n , the log-likelihood function of MLE is nearly flat for

large values of p, and thus MLE returns less reliable estimates. This in turn results in a larger deviation of the number
of automorphisms from the observed graph. Our algorithm on the other hand provides a better estimate even when p
is close to 1. To sum up, we find that our algorithm does not perform worse than MLE in terms of quality and achieves
better performance than MLE when p is high. It also has much lower computational complexity.
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6.2 Real-world PPIs

We apply recurrence-based estimator to PPI networks of seven species listed in Table 2. As mentioned in Section 2.1,
the seed graph Gn0

is assumed as the graph induced by the nodes having the largest phylogenetic age.

Figure 7 presents plots of RECURRENCE-RELATION estimator for seven species. In all the figures, the plots meet
or come very close at a specific point. This illustrates the presence of the DD-model in all the considered species.
Furthermore, Table 7 calculates the statistical significance of the fitted DD-model with respect to the number of
automorphisms in the observed PPI networks. The estimated p-values are remarkably high and most often much
larger than 0.4 (except in one case), demonstrating that the fitted DD-models exhibit symmetries closer to the real-
world PPIs.

Organism p̂ r̂ E[log |Aut(Gn)|] p-value

Baker’s yeast 0.98 0.35 293.27 0.71
Human 0.64 0.49 2998.81 0.51
Fruitfly 0.53 0.92 1073.83 0.64
Fission yeast 0.983 0.85 705.278 0.74
Mouse-ear cress 0.98 0.49 6210.36 0.13
Mouse 0.96 0.32 8067.56 0.67
Worm 0.85 0.35 3352.91 0.48

Table 7: Parameters of the real-world PPI networks estimated using RECURRENCE-RELATION method
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Figure 7: Results on PPI networks: RECURRENCE-RELATION method
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7 Discussion and implications

We focus in this work on fitting dynamic biological networks to a probabilistic graph model, from a single snapshot
of the networks. Our attention here is on a key characteristic of the networks – the number of automorphisms – that
is often neglected in modeling. Using the number of automorphisms as a measure to sample parameters from the
parameter space may raise serious questions about its practicality (like some slower maximum likelihood estimation
methods for graph fitting). To address this, our approach in this paper to combine the number of symmetries with a
faster method of recurrence relations, which allows us to narrow down the parameter search, finds high relevance in
practice.

We argue that many existing parameter estimation techniques fail to take into account the number of symmetries
of real-world networks, leading to serious concerns in the fitting methodology. Previous studies made unrealistic
assumptions like the steady-state behavior of the model, and it could be the reason behind erroneous estimates. Our
proposed fitting method based on exact recurrence relations with minimal assumptions works well on synthetic data
and real-world protein-protein interaction (PPI) networks of seven species. We also formulate a simple statistical test
in terms of the number of symmetries. Since the PPI networks are expanding with new protein-protein interactions
getting discovered, we make sure to use up-to-date data so that the fitted parameters in this paper can serve as a
benchmark for future studies.

We note here that the method introduced in this work is applicable to a variety of dynamic network models, as for many
models there exist recurrence relations similar to the ones presented here. A systematic way of parameter estimation
can also be seen as an introductory work to other important problems in biological networks. One example of such a
problem is the temporal order problem [29]: given a network, the task is to recover the chronology of the node arrivals
in the network. Parameter estimation provides us with better knowledge about the specific characteristics of the model
that retains temporal information in its structure.
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Appendix
A Maximum likelihood algorithm

Function MAXIMUMLIKELIHOODVALUE, as shown below in Algorithm 2, presents a single pass of the MLE tech-
nique. Here θ0 = (p0, r0) is the initial parameter set which can be chosen with some extra knowledge of the given
network or even arbitrarily; but with a proper choice of θ0, a faster convergence to the true value of likelihood is
guaranteed.
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We note here that the MLE procedure has to be run multiple times, and the average of the L’s (see algorithm) from
the multiple runs gives an estimate of the likelihood at the inputted (p, r). The procedure needs to be repeated for all
the relevant (p, r) pairs. The estimated parameters are the points for which the likelihood function is maximized. See
Section 5.2 for details.

Algorithm 2 Single run for the likelihood value computation.
function MAXIMUMLIKELIHOODVALUE(G, n, n0, p, r, p0, r0)

L← 1
for k = n, n− 1, . . . , n0 + 1 do

Pick v from G at random proportionally to ω(G, θ0, v)

L← L · 1k
∑

u∈G ω(G,p0,r0,u)

ω(G,p0,r0,v)
ω(G, p, r, v)

Remove v from G
return L

function ω(G, p, r, v)
sum← 0, n← |V (G)|
for u ∈ V (G), u 6= v do

both← |Nn(u) ∩Nn(v)|, onlyv ← |Nn(v) \ Nn(u)|
onlyu ← |Nn(u) \ Nn(v)|, none← n− |Nn(u) ∪Nn(v)|
sum← sum+ pboth

(
r
n

)onlyv
(1− p)onlyu

(
1− r

n

)none
return sum

B Proof of Theorem 1

We recall Theorem 1.

Theorem. If Gn+1 ∼ DD-model(n+ 1, p, r,Gn), then

E[D(Gn+1)] = E[D(Gn)]

(
1 +

2p− 1

n+ 1
− 2r

n(n+ 1)

)
+

2r

n+ 1
,

E[D2(Gn+1)] = E[D2(Gn)]

(
1 +

2p+ p2 − 1

n+ 1
− 2r(1 + p)

n(n+ 1)
+

r2

n2(n+ 1)

)
+ E[D(Gn)]

(
2p− p2 + 2pr + 2r

n+ 1
− 2r + 2r2

n(n+ 1)
+

r2

n2(n+ 1)

)
,

E[S2(Gn+1)] = E[S2(Gn)]

(
1 +

2p+ p2

n
− 2(p+ 1)r

n2
+
r2

n3

)
+ E[D(Gn)]

(
pr + p+ r − pr + r + r2

n
+
r2

n2

)
+
r2

2
− r2

2n
+

2r2 + 2r

n+ 1
− r2

n(n+ 1)

E[C3(Gn+1)] = E[C3(Gn)]

(
1 +

3p2

n
− 6pr

n2
+

3r2

n3

)
+D2(Gn)

(
pr

n
− r2

n2

)
+D(Gn)

r2

2n
.

Proof. Let degt(s) be the degree at time t of a vertex added at time s, which is same as node label s, and parent(t) be
a vertex which was chosen from Gt−1 for the duplication step at time t.

It follows from the definition of the model that degree of the new vertex n+1 is the total number of edges from the ver-
tex n+1 toNn(parent(n+ 1)) (each of which is formed from choosing nodes independently fromNn(parent(n+ 1))
with probability p) and to all other vertices (each of which is formed from nodes chosen independently from a set
V (Gn)\Nn(parent(n+ 1)) with probability r

n ).

It can be then expressed as a sum of two independent binomial variables:

degn+1(n+ 1) ∼ Bin (degn(parent(n+ 1)), p) + Bin
(
n− degn(parent(n+ 1)),

r

n

)
.
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1. Recurrence for D(Gn).

E[degn+1(n+ 1)
∣∣ Gn] =

n−1∑
k=0

Pr(degn(parent(n+ 1)) = k
∣∣ Gn)

k∑
a=0

(
k

a

)
pa(1− p)k−a

×
n−k∑
b=0

(
n− k
b

)( r
n

)b (
1− r

n

)n−k−b
(a+ b)

=
n−1∑
k=0

Pr(degn(parent(n+ 1)) = k
∣∣ Gn)

(
pk +

r

n
(n− k)

)
=
(
p− r

n

) n−1∑
k=0

kPr(degn(parent(n+ 1)) = k
∣∣ Gn) + r.

Since in the definition of the model it is stated that the parent is selected uniformly at random, we know that
Pr(parent(n+ 1) = i

∣∣ Gn) = 1
n and therefore

D(Gn) =
n∑
i=1

Pr(parent(n+ 1) = i
∣∣ Gn) degn(i)

=
n−1∑
k=0

kPr(degn(parent(n+ 1)
∣∣ Gn) = k).

Combining the last two equations, we get

E[degn+1(n+ 1)
∣∣ Gn] =

(
p− r

n

)
D(Gn) + r.

Using the above, we find the following recurrence for the mean degree of Gn+1:

E[D(Gn+1)
∣∣ Gn] =

1

n+ 1
E

[
n+1∑
i=1

degn+1(i)
∣∣ Gn]

=
1

n+ 1
E

[
n∑
i=1

degn(i) + 2 degn+1(n+ 1)
∣∣ Gn]

=
1

n+ 1

(
n∑
i=1

degn(i) + 2E
[
degn+1(n+ 1)

∣∣ Gn])

=
1

n+ 1

(
nD(Gn) + 2E[degn+1(n+ 1)

∣∣ Gn]
)

= D(Gn)

(
1 +

2p− 1

n+ 1
− 2r

n(n+ 1)

)
+

2r

n+ 1
.

Now from the law of total expectation:

E[D(Gn+1)] = E[D(Gn)]

(
1 +

2p− 1

n+ 1
− 2r

n(n+ 1)

)
+

2r

n+ 1
. (1)

2. Recurrence for D2(Gn).

E[deg2
n+1(n+ 1)

∣∣ Gn] =
n−1∑
k=0

Pr(degn(parent(n+ 1)) = k
∣∣ Gn)

k∑
a=0

(
k

a

)
pa(1− p)k−a

×
n−k∑
b=0

(
n− k
b

)( r
n

)b (
1− r

n

)n−k−b
(a+ b)2

=
n−1∑
k=0

Pr(degn(parent(n+ 1)) = k
∣∣ Gn)
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×

(
k2
(
p2 − 2pr

n
+
r2

n2

)
+ k

(
p− p2 + 2pr − r + 2r2

n

)
+ r2 + r − r2

n

)

= D2(Gn)

(
p2 − 2pr

n
+
r2

n2

)
+D(Gn)

(
p− p2 + 2pr − r + 2r2

n
+
r2

n2

)
+ r2 + r − r2

n
,

since we have, as before,

D2(Gn) =
n∑
i=1

Pr(parent(n+ 1) = i
∣∣ Gn) deg2

t (i)

=
n−1∑
k=0

Pr(degn(parent(n+ 1)) = k
∣∣ Gn)k2.

Now we proceed with the second moment of degree distribution of Gn. Let In+1(i) be an indicator variable whether
there is an edge between n+ 1 and i. Then the following basic results follows:

n∑
i=1

I2n+1(i) =
n∑
i=1

In+1(i) = degn+1(n+ 1)

E

[
n∑
i=1

degn(i)In+1(i)
∣∣ Gn] =

n∑
i=1

degn(i)E[In+1(i)
∣∣ Gn]

=
n∑
i=1

degn(i)

(
degn(i)

n
p+

n− degn(i)

n

r

n

)

=
1

n

n∑
i=1

deg2
t (i)

(
p− r

n

)
+

1

n

n∑
i=1

degn(i)r

=
(
p− r

n

)
D2(Gn) + rD(Gn).

Now,

E[D2(Gn+1)
∣∣ Gn] =

1

n+ 1
E

[
n+1∑
i=1

deg2
n+1(i)

∣∣ Gn]

=
1

n+ 1
E

[
n∑
i=1

(degn(i) + In+1(i)))
2

+ deg2
n+1(n+ 1)

∣∣ Gn]

=
1

n+ 1
E

[
n∑
i=1

deg2
t (i) + 2

n∑
i=1

degn(i)In+1(i) + degn+1(n+ 1) + deg2
n+1(n+ 1)

∣∣ Gn]

= D2(Gn)

(
1 +

2p+ p2 − 1

n+ 1
− 2r(1 + p)

n(n+ 1)
+

r2

n2(n+ 1)

)
+D(Gn)

(
2p− p2 + 2pr + 2r

n+ 1
− 2r + 2r2

n(n+ 1)
+

r2

n2(n+ 1)

)
+

2r2 + 2r

n+ 1
− r2

n(n+ 1)
.

Then from the law of total expectation:

E[D2(Gn+1)] = E[D2(Gn)]

(
1 +

2p+ p2 − 1

n+ 1
− 2r(1 + p)

n(n+ 1)
+

r2

n2(n+ 1)

)
+ E[D(Gn)]

(
2p− p2 + 2pr + 2r

n+ 1
− 2r + 2r2

n(n+ 1)
+

r2

n2(n+ 1)

)
+

2r2 + 2r

n+ 1
− r2

n(n+ 1)
.

3. Recurrence for S2(Gn). The recurrence for S2(Gn) is straightforward from the following deterministic relation
for every graph:

S2(Gn) =
n

2
(D2(Gn)−D(Gn)) .
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Alternatively, it can be computed from the following relation using similar methods as before:

E[S2(Gn+1)
∣∣ Gn] = E

[
n+1∑
i=1

(
degn+1(i)

2

) ∣∣ Gn] .
4. Recurrence for C3(Gn). Finally, we find the expected number of triangles in the following way. Let us denote
by et(A,B) the number of edges with one endpoint in A and other in B, and by et(A) the number of edges with both
edges in A for some fixed A,B ⊆ V (Gt), at time t.

For brevity, let us also introduce the following notations.

• X1(Gn) := en(Nn(parent(n+ 1))) – the number of edges within (open) neighborhood of the parent of n+1
in Gn,

• X2(Gn) := en (Nn(parent(n+ 1)), V (Gn) \ Nn(parent(n+ 1))) – the number of edges between (open)
neighborhood of the parent of n+ 1 and other vertices in Gn,

• X3(Gn) := en (V (Gn) \ Nn(parent(n+ 1))) – the number of edges between vertices not connected to the
parent of n+ 1 in Gn.

It can be easily verified that

X1(Gn) =
3C(Gn)

n
,

X1(Gn) +X2(Gn) = D2(Gn),

X1(Gn) +X2(Gn) +X3(Gn) =
n

2
D(Gn).

Therefore,

E[C3(Gn+1)
∣∣ Gn] = C3(Gn) + p2E[X1(Gn)

∣∣ Gn] +
pr

n
E[X2(Gn)

∣∣ Gn] +
r2

n2
E[X3(Gn)

∣∣ Gn]

= C3(Gn)

(
1 +

3p2

n
− 6pr

n2
+

3r2

n3

)
+D2(Gn)

(
pr

n
− r2

n2

)
+D(Gn)

r2

2n
.

We can now apply the law of total expectation to get the final result.
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