1	The SiaABC threonine phosphorylation pathway controls biofilm formation
2	in response to carbon availability in Pseudomonas aeruginosa
3	Wee-Han Poh ^{2‡} , Jianqing Lin ^{7,9‡} , Brendan Colley ^{3a} , Nicolai Müller ⁴ , Boon Chong Goh ^{7,8} , David
4	Schleheck ⁴ , Abbas El Sahili ^{5,7} , Andreas Marquardt ⁴ , Yang Liang ^{2,5b} , Staffan Kjelleberg ^{2,3,5} ,
5	Julien Lescar ^{5,7*} , Scott A. Rice ^{2,5,6*} and Janosch Klebensberger ^{1*}
6 7	<i>+ These authors contributed equally to the work</i>
8	* Correspondence: janosch.klebensberger@itb.uni-stuttgart.de, rscott@ntu.edu.sg,
9	julien@ntu.edu.sg
10 11	¹ University of Stuttgart, Institute of Biochemistry and Technical Biochemistry, Stuttgart, Germany
12 13	² Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
14 15 16	³ Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia (ªpresent address: Bio Molecular Systems, Sydney, Australia)
17 18	⁴ Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, D-78464 Konstanz, Germany
19 20 21	⁵ The School of Biological Sciences, Nanyang Technological University, Singapore (^b present address: School of Medicine, Southern University of Science and Technology (SUSTec), Shenzhen, Guangdong, China)
22	⁶ the ithree Institute, The University of Technology Sydney, Sydney Australia
23	⁷ NTU Institute of Structural Biology, Nanyang Technological University, Singapore
24 25	⁸ Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
26 27	⁹ Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
28	
29	Running title: The SiaABC partner switch system controls biofilm formation
30	Keywords: Cell aggregation, Biofilms, PP2C, c-di-GMP, Pseudomonas aeruginosa, threonine
31	phosphorylation pathway, partner-switching mechanism, signal interference

32 Abstract

33 The critical role of bacterial biofilms in chronic human infections calls for novel anti-biofilm strategies targeting the regulation of biofilm development. However, the regulation of biofilm 34 development is very complex and can include multiple, highly interconnected signal 35 transduction/response pathways, which are incompletely understood. We demonstrated 36 previously that in the opportunistic, human pathogen P. aeruginosa, the PP2C-like protein 37 phosphatase SiaA and the di-guanylate cyclase SiaD control the formation of macroscopic 38 39 cellular aggregates, a type of suspended biofilms, in response to surfactant stress. In this study, 40 we demonstrate that the SiaABC proteins represent a signal response pathway that functions 41 through a partner switch mechanism to control biofilm formation. We also demonstrate that 42 SiaABCD functionality is dependent on carbon substrate availability for a variety of substrates, 43 and that upon carbon starvation, SiaB mutants show impaired dispersal, in particular with the 44 primary fermentation product ethanol. This suggests that carbon availability is at least one of the key environmental cues integrated by the SiaABCD system. Further, our biochemical, 45 physiological and crystallographic data reveals that the phosphatase SiaA and its kinase 46 47 counterpart SiaB balance the phosphorylation status of their target protein SiaC at threonine 68 48 (T68). Crystallographic analysis of the SiaA-PP2C domain shows that SiaA is present as a dimer. 49 Dynamic modelling of SiaA with SiaC suggested that SiaA interacts strongly with phosphorylated 50 SiaC and dissociates rapidly upon dephosphorylation of SiaC. Further, we show that the known 51 phosphatase inhibitor fumonisin inhibits SiaA mediated phosphatase activity in vitro. In 52 conclusion, the present work improves our understanding of how *P. aeuruginosa* integrates 53 specific environmental conditions, such as carbon availability and surfactant stress, to regulate 54 cellular aggregation and biofilm formation. With the biochemical and structural characterization of 55 SiaA, initial data on the catalytic inhibition of SiaA, and the interaction between SiaA and SiaC, 56 our study identifies promising targets for the development of biofilm-interference drugs to combat 57 infections of this aggressive opportunistic pathogen.

58 Author Summary

59 Pseudomonas aeruginosa is a Gram-negative bacterium that is feared within clinical environments due to its potential to cause life-threatening acute and chronic infections. One 60 61 cornerstone of its success is the ability to form and disperse from biofilms, which are self-made, 62 multicellular structures that protect the individual cell from the human immune system and antibiotic treatment. As such, therapies that combine a biofilm-interference strategy and the use 63 of antimicrobial drugs represent one of the promising strategies to tackle infections of this 64 65 organism. With the current study, we gain a deeper understanding of the SiaABCD mediated biofilm formation in response to clinically relevant environmental conditions. Further, our structural 66 67 and biochemical characterization of the PP2C-type protein-phosphatase SiaA and the partner 68 switch protein SiaC suggest that both represent promising novel targets for the development of 69 future anti-biofilms drugs based on a signal interference strategy.

70 Introduction

Biofilms are multicellular structures embedded in a self-made matrix, which can occur attached 71 72 at a solid surface, at the gas-liquid interface as a pellicle, or freely floating as suspended 73 aggregates (flocs) in the liquid phase [1–3]. The ability to form and disperse from biofilms is a 74 ubiquitous feature of microorganisms, which includes the genetically controlled production of extracellular polymeric substances (EPS) such as polysaccharides, eDNA and proteinaceous 75 76 surface adhesins [4–6]. Biofilm formation can be triggered in response to oxidative and nitrosative stress [7,8] and toxic compounds such as antibiotics [9,10], surfactants [11,12] or primary 77 78 fermentation products [13,14]. Cells embedded in biofilms show increased resistance towards the 79 presence of such stressors compared to their single-cell, planktonic counterparts, which explains 80 the evolutionary success of the biofilm lifestyle [15-19]. As a consequence, biofilms are 81 problematic in health-care settings despite stringent hygiene regimes [20–22]. Biofilms are also 82 associated with the establishment of chronic infections that are recalcitrant to the effects of the host immune system and therapeutic interventions [23-27] and hence are almost impossible to 83 84 eradicate with conventional therapies [28-31].

85 The regulation of biofilm development and virulence traits is complex and can include multiple, highly interconnected signal transduction pathways [6,32–36]. In addition to guorum sensing (QS) 86 87 [37,38], nucleotide-based second messengers and changes in protein phosphorylation represent 88 key mechanisms for the regulation of these physiological changes [39-42]. Protein 89 phosphorylation is most often mediated by two-component systems (TCSs) or chemosensory 90 signalling pathways [43–45]. TCSs are typically composed of a sensor kinase and a cognate 91 response regulator that elicits a specific response upon its phosphorylation. Most sensor kinases 92 in bacteria belong to the family of histidine kinases, transferring a phosphoryl group from a 93 conserved histidine of its transmitter domain to a specific aspartate residue in the receiver domain 94 of the corresponding response regulator. This aspartate phosphorylation is labile and, thus, 95 specific phosphatases are usually not required to inactivate the response regulator over time. In

96 contrast, the phosphorylation of a serine or threonine residue by serine/threonine kinases (STK),
97 are more stable and thus require the additional presence of a protein phosphatase, e.g. protein98 phosphatase family-2C (PP2C)-like phosphatases, to facilitate a reversible regulation [46,47].

99 *Pseudomonas aeruginosa*, an opportunistic human pathogen of critical concern, is an ubiquitous 100 organism that can thrive in multiple environmental niches and genetic evidence indicates that 101 infections usually arise from environmental sources [48–51]. Various regulatory pathways affect 102 its biofilm formation and virulence traits, including, but not limited to, the GacS/GacA system, the 103 threonine phosphorylation pathway (TPP) and the Wsp, Yfie or HptB pathways [24,52–57]. While 104 P. aeruginosa does not generally infect healthy humans, it is a serious threat in hospital 105 environments, particularly for individuals with burn wounds or chronic diseases such as 106 obstructive pulmonary disease (COPD) and the genetic disorder cystic fibrosis (CF)[28,58–62]. 107 In addition to surface attached biofilms, P. aeruginosa also forms suspended biofilms (i.e. cellular 108 aggregates)[63,64], which are medically relevant as they are regularly observed in chronic infections [26,27,65–67]. Moreover, suspended biofilms have been shown to greatly influence the 109 110 development, structure and function of their surface-attached counterparts and have thus been 111 suggested to play an important role in niche colonisation and chronic infections [68,69].

112 We previously demonstrated that PP2C-like protein phosphatase SiaA and the di-guanylate 113 cyclase (DGC) SiaD regulate the formation of large, macroscopic, DNA-containing suspended biofilms in response to the surfactant sodium dodecyl sulfate (SDS) in a c-di-GMP-dependent 114 manner [11,70-72]. We now report that all genes encoded in the siaABCD operon are involved 115 116 in regulation of the cellular aggregation in response to carbon availability with a variety of growth substrates. Our study demonstrates that the phosphorylation status of the SiaC protein at 117 118 threonine 68 (T68) is crucial for this regulation, and that phosphorylated SiaC represents a 119 substrate for the phosphatase SiaA and its kinase counterpart SiaB, which is in line with results 120 of a recently reported study [73]. In addition, the crystal structures of the PP2C-domain of SiaA 121 and of the SiaC protein provided insights into their catalytic and regulatory mechanisms.

122 **Results**

123 SiaABCD is involved in biofilm formation during growth on SDS and glucose

124 Cells of *P. aeruginosa* preferentially grow as macroscopic suspended biofilms (cellular 125 aggregates in the mm range) in minimal medium with SDS [11]. To investigate whether all genes 126 of the *siaABCD* operon [70] are involved in biofilm formation under these conditions, we tested 127 individual mutant strains in microtiter plates for macroscopic aggregation and compared it to 128 cultures growing on glucose (**Fig 1**).

As shown previously [70], growth on SDS led to the formation of macroscopic aggregates in the 129 130 parental strain but not in the $\Delta siaA$ and $\Delta siaD$ mutants. Likewise, no macroscopic aggregates were observed in cultures of $\Delta siaC$, whereas $\Delta siaB$ showed increased aggregation. The 131 132 aggregative behaviour of cells was inversely correlated with the optical density (OD₆₀₀) of the 133 surrounding medium with higher OD₆₀₀ values for strains $\Delta siaA$, $\Delta siaC$ and $\Delta siaD$ (darker colour in normalized pictures) compared the parental strain or the $\Delta siaB$ mutant. In contrast, no 134 macroscopic aggregates were found during growth with glucose for all strains. However, the 135 OD₆₀₀ of the culture medium of alucose-grown cultures followed a similar pattern as those grown 136 on SDS. Growth on glucose has previously been found to occur mainly as attached or suspended 137 biofilms (aggregates of up to 400 nm in size), which guickly disperse upon carbon starvation in a 138 c-di-GMP-dependent manner [63]. To study, whether differences in the ability to form suspended 139 140 biofilms could explain the observed OD₆₀₀ pattern of the sia-mutants, we analysed glucose-141 growing cultures with scanning electron microscopy (SEM) and laser diffraction analysis (LDA).

142

143 SiaABCD regulates the ratio of freely suspended and aggregated cells

SEM imaging (**Fig 2**, 10,000×; left panels) showed the presence of three-dimensional structures composed of densely packed microbial cells that projected above the substratum. The multicellular aggregates appeared to be less structured in the $\Delta siaA$, $\Delta siaC$ and $\Delta siaD$ mutants compared to the parental strain. In contrast, the $\Delta siaB$ mutant formed much larger and more

148 densely packed aggregates than the parental strain. Similar differences in aggregate sizes were 149 also noted at lower magnification (1,300×), with the additional observation that aggregates were 150 generally less abundant for the $\Delta siaA$, $\Delta siaC$ and $\Delta siaD$ mutants.

Light diffraction analysis (LDA) can be used to determine the size distribution of PAO1 aggregates 151 in liquid cultures⁶⁴. LDA analysis in the current study confirmed these results for cultures of the 152 153 wildtype strain, which were dominated by particles > 10 μ m (\ge 95% \pm 2% of the total bio-volume 154 of all particles). Particles < 10 µm, which include the single cells, represented only a minor fraction $(\leq 5\% \pm 2\%)$. In line with SEM results, the distribution of particles in cultures of the $\Delta siaA$, $\Delta siaC$ 155 156 and $\Delta siaD$ mutants were strongly shifted towards smaller sizes. A substantial increase in the total bio-volume of all particles < 10 μ m for $\Delta siaA$ (\geq 6.6 fold), $\Delta siaC$ (\geq 11.8 fold) and $\Delta siaD$ (\geq 8 fold) 157 was consistently observed. In contrast, for cultures of $\Delta siaB$ the total bio-volume of all particles > 158 10 µm (\geq 99% ± 1%) was considerably higher than for the parental strain. Consequently, almost 159 no particles $< 10 \,\mu m$ were detected. 160

161

162 SiaABCD regulates biofilm formation as a response to carbon availability

Biofilm formation is a dynamic process that varies according to the time point used for 163 quantification. The temporal nature of biofilm formation and dispersal can be monitored with a 164 microtiter plate-based biofilm assay [63]. When the impact of the SiaABCD proteins on the biofilm 165 166 life cycle during growth on glucose was studied using this assay, we found the following temporal pattern of biofilm formation for the wildtype strain: *i*) a steady increase in biofilm formation while 167 glucose was present in excess; *ii*) a decrease in biofilm formation upon exhaustion of glucose; 168 169 and iii) an increase in optical density in the culture supernatant that lagged behind biofilm formation, but continued to increase even after glucose was completely consumed (Fig 3). The 170 171 latter observation is consistent with the dispersal of cells from the attached and/or suspended biofilm into the liquid phase in response to carbon starvation [63]. The $\Delta siaA$, $\Delta siaC$ and $\Delta siaD$ 172 173 mutants exhibited a similar growth pattern on glucose as described for the parental strain (Fig 3

and **Fig S1**). However, all strains showed a decrease in overall biofilm formation and as a result, the increase in OD₆₀₀ upon carbon starvation was also lower. In contrast, the $\Delta siaB$ mutant predominantly grew as a biofilm with much lower planktonic growth and with a reduced dispersal response upon carbon starvation (percentage in biofilm reduction during consecutive sampling points upon carbon limitation) compared to all other strains.

179 To study whether the regulatory impact of the SiaABCD proteins on biofilm formation can be 180 expanded to other carbon sources, we additionally tested succinate, ethanol, 2,3-butanediol (Fig 181 3 and Fig S1). For all carbon sources tested, a similar pattern as described for growth on glucose was observed, with the following two exceptions: i) no dispersal of the $\Delta siaB$ biofilm was observed 182 183 when grown on ethanol upon carbon depletion; and *ii*) no dispersal of the $\Delta siaB$ and wildtype biofilms was observed during growth on 2,3-butanediol. However, it is important to note that for 184 185 the later condition, 2.3-butanediol was not completely depleted (≤ 0.6 mM) in the cultures and 186 hence the cells would not have experienced carbon starvation.

187

188 SiaA and SiaB represent a phosphatase/kinase couple that balance the phosphorylation

189 status of SiaC

190 The SiaA protein is predicted to be a PP2C-like protein phosphatase (PPM-type) (http://www.pseudomonas.com/feature/show/?id=103077&view=functions). A distinctive feature 191 192 of these phosphatases is their dependency on Mn²⁺ or Mg²⁺ ions as cofactors and serine and/or threonine residues in their target protein (http://www.ebi.ac.uk/interpro/entry/IPR001932). 193 Structure-function predictions of SiaB using I-TASSER suggested that SiaB has protein kinase 194 activity (Fig 4A). Notably, SiaC contains a putative phosphorylation site at threonine residue 68 195 (T68)[74] and as such could represent the target of the predicted protein phosphatase/kinase 196 197 activities of SiaA and SiaB. To test this hypothesis, we purified the C-terminal part of SiaA (amino 198 acids 386-663; SiaA-PP2C; Genbank: NP 248862) including the putative PP2C-like 199 phosphatase domain (amino acids 453-662; Fig 4B) and SiaB protein from *E. coli* by metal-affinity

200 chromatography (Fig S2). Similarly, the SiaC protein was purified from *E. coli* or *∆siaA* lysates and was subsequently analyzed by shotgun peptide-mass spectrometry (PMS; Table S1). For 201 202 the SiaC variant purified from *E. coli*, the T68-containing peptide (peptide [LLYLNTSSIK]) was 203 identified predominantly by fragment-masses derived of precursor ions of the parental, non-204 phosphorylated peptide. In addition, the non-phosphorylated peptide was quantified at > 1000 fold lower intensity $(1.4 \times 10^{11} \text{ vs. } 4.0 \times 10^{14} \text{ peak area})$ by precursor ions of its phosphorylated 205 206 analogue; hence, these preparations contained almost exclusively non-phosphorylated protein. 207 In contrast, the SiaC variant purified from $\Delta siaA$ cell lysates (SiaC^P), the corresponding phosphorylated peptide was found at a higher abundance than the non-phosphorylated peptide 208 209 $(7.8 \times 10^6 \text{ vs}, 3.2 \times 10^6 \text{ peak area})$. Hence, these preparations contained relevant amounts of phosphorylated SiaC^P at position T68 (71.27% of total peak area). Incubation of SiaB (0.5 µM) 210 211 alone or with SiaC^P (5 μ M) did not consume ATP, whereas incubation of SiaB with SiaC (5 μ M) 212 consumed 4.45 µM ATP, indicating kinase activity of the SiaB protein in the presence of SiaC 213 (Fig 4C).

214 Activity measurements using a malachite-green assay (Fig 4D) revealed phosphatase activity of SiaA-PP2C in the presence of SiaC^P (5 µM; prepared by incubating SiaB/SiaC protein mixture in 215 the presence of MgCl₂/ATP) and Mg²⁺ (4.74 µM) or Mn²⁺ (4.52 µM) ions. No activity was observed 216 217 when SiaA was incubated with SiaC. Notably, reactions in which SiaB and SiaC were incubated together with SiaA-PP2C (0.5 μ M), the consumption of ATP was increased (6.42 μ M and 6.57 μ M 218 in the presence of 10 μ M ATP and to 12.01 μ M and 12.39 μ M in the presence of 25 μ M of ATP, 219 220 respectively) compared to SiaB with SiaC in the absence of SiaA-PP2C (Fig 4C). Similarly, incubation with SiaA-PP2C, SiaB, and SiaC or SiaC^P in the presence of Mg²⁺ ions and 25 µM ATP 221 222 also indicated much higher phosphatase activities compared to SiaA-PP2C with SiaC^P in the 223 absence of SiaB (13.44 µM and 16.76 µM, respectively) (**Fig 4D**). As neither activity correlates with the amount of SiaC/SiaC^P added (5 µM), these experiments indicate that SiaA-PP2C and 224

225 SiaB are both enzymatically active on their respective substrates, catalysing a cycle of SiaC 226 phosphorylation and de-phosphorylation in dependency of ATP availability.

To determine the exact site of phosphorylation, we performed kinase (SiaB + SiaC) and 227 phosphatase (SiaA-PP2C + SiaC^P) assays and analysed the SiaC/SiaC^P protein by PMS after 228 gel purification (Fig 4E and Table S1). For SiaB with SiaC in the presence of ATP, we observed 229 230 a 1000-fold increase of the phosphorylated T68-containing peptide (peptide [LLYLNTSSIK]) compared conditions in which ATP was omitted from the assay $(1.5 \times 10^9 \text{ vs}, 1.3 \times 10^6 \text{ peak area})$. 231 232 Incubation of SiaA-PP2C with SiaC^P resulted in > 10-fold decrease in the phosphorylated peptide (LLYLNTSSIK) compared to the control incubation without SiaA-PP2C added. Hence, the PMS 233 234 data obtained from these enzyme assays provide direct evidence that T68 of SiaC is a target for phosphatase and kinase activity of SiaA and SiaB, respectively. 235

236

237 The SiaA activity can be inhibited by fumonisin B1

Given that loss of SiaA function results in poor aggregate and biofilm formation via control of the 238 239 phosphorylation status of SiaC, SiaA function may represent a novel target for biofilm control through antagonists. Fumonisin B1 is a well-established inhibitor of PP2C type phosphatases 240 [75]. To determine if fumonisin B1 can interfere with SiaA activity, we incubated purified SiaA-241 242 PP2C (50 µg/mL) in the presence of different concentrations of the inhibitor as well as varied concentrations of the substrate, pNPP (Fig 4F). At increasing concentrations, fumonisin B1 was 243 244 indeed inhibitory of SiaA phosphatase activity dependent on the concentration of substrate used. In the presence of 0.025 mM fumonisin B1, SiaA-PP2C retained 60.31-79.25% of its activity as 245 246 compared to the untreated control. At higher fumonisin B1 concentration of 0.1 mM SiaA-PP2C 247 activity was inhibited in a pNPP dependent manner, with 35.48% activity remaining with 0.5 mM pNPP, 39.37% activity with 1 mM pNPP, 52.97% activity with 2 mM pNPP and 64.30% activity 248 retained with 5 mM pNPP used. At 0.5 mM fumonisin, there was complete inhibition of SiaA-PP2C 249 250 activity across all pNPP concentrations.

251

252 Crystal structure of the PP2C domain of SiaA reveals a homodimer

To further characterise the PP2C domain of SiaA (SiaA-PP2C), the structure of the protein with 253 Mg²⁺ ions at the active site was determined (PDB ID: 6K4E). Native crystals of SiaA-PP2C were 254 255 obtained in conditions A11 (0.03 M MgCl₂, 0.03 M CaCl₂, 0.1 M tris, 0.1 M BICINE, 20 % v/v 256 alycerol, 10 % w/v PEG 40000, pH 8.5) from Morpheus (Molecular Dimensions) with space group of P2₁2₁2₁ and diffracted to a resolution of 2.1 Å. Phases were obtained using single-wavelength 257 258 anomalous dispersion (SAD) with a single SeMet derivative crystal. Statistics of the data collection, structure determination and refinement are displayed in Table S2. The SiaA-PP2C 259 domain is arranged as a tight dimer in the crystal asymmetric unit. The electron density map of 260 261 SiaA-PP2C allowed unambiguous tracing of residues 407 to 663 for monomer A and 409 to 663 for monomer B. However, no clear electron density was present for residues 521-528 and 578-262 581 of chain A and residues 522-527 and 577-579 of chain B, indicating a high degree of flexibility 263 in these solvent-exposed loops regions. The SiaA-PP2C monomer adopts the canonical α - β - β - α 264 fold first described for the human PPM1A [76] and subsequently found in several other 265 266 phosphatases [77,78] (Fig 5A). The core structure of the SiaA-PP2C monomer is a β -sandwich composed of two antiparallel β -sheets each comprising five β -strands. The active site is at the 267 apex of the β -sheet structure (**Fig 5A**, **B** and **D**). This core structure is flanked on the N-terminal 268 269 side by helices $\alpha 1 - \alpha 4$ and on the C-terminal end by helices $\alpha 5 - \alpha 7$, forming a four-layered $\alpha \beta \beta \alpha$ 270 structure. The two monomers interact extensively with each other through residues projecting 271 from helices $\alpha 1$, $\alpha 2$ and $\alpha 3$, forming a compact homodimer that buries a total solvent accessible area of 1392 Å² (Fig 5B). Consistently, in size-exclusion chromatography, instead of monomer 272 (~33 kDa), SiaA-PP2C eluted as a 66 kDa dimer, suggesting SiaA exists mainly as dimer in 273 274 solution (Fig 5C). The homodimer presents two concave surfaces that are likely to accommodate the incoming substrates (Fig 5D). 275

276 An automated search of 3D structures similar to SiaA-PP2C, using the Dali server (ekhidna2.biocenter.helsinki.fi/dali), returned PP2C-type phosphatases as the top matches, the 277 278 best of which was Rv1364C (PDB code: 3KE6, chain A) from Mycobacterium tuberculosis with a 279 Z score of 23.6 and a RMSD of 2.2 Å for 210 superimposed α -carbon atoms. Despite a very low 280 overall amino-acid sequence identity (17%), these structures share a conserved fold and several 281 strictly conserved active site residues with SiaA-PP2C: D457, D474, G477, D600, G601 and 282 D653 (Fig 5E and Fig S2). A structural comparison of the active site of SiaA-PP2C with the active 283 site of the phosphatase domain of Rv1364C is shown in **Fig 5F**. The two Mg²⁺ ions labelled as 284 M1 and M2 directly involved in the catalytic mechanism are coordinated by oxygen atoms from 285 three evolutionary conserved aspartate residues and occupy equivalent positions in SiaA-PP2C compared to the two Mn²⁺ ions found in the Rv1364C active site. Mg²⁺ ion was placed here 286 287 because 0.03 M MgCl₂ was present in crystallization buffer, and hence it does not indicate SiaA-PP2C's preference for metal ions. Mn²⁺ and Mg²⁺ has both been reported as ligand of PP2C, and 288 it is possible that Mn²⁺ and Mg²⁺ both function as co-factor of SiaA-PP2C. Metal-coordinating 289 290 residues are all conserved except C475 of SiaA-PP2C, which interacts with metal ion M2 through its carbonyl oxygen (Fig 5E and F). 291

Compared to Rv1364C, which only has two bound metal ions, a third Mg²⁺ ion (M3) was found in 292 293 SiaA-PP2C coordinated by D600 and with an incomplete octahedral coordination shell. D604 and D534 assist in stabilization of M3 through formation of hydrogen bond with M3-coordinating water 294 molecules. Given the structural similarity with PP2C [76], an S_N2 mechanism is the most plausible 295 296 whereby the water molecule bridging M1 and M2 (Fig 5E) performs a nucleophilic attack of the 297 phosphorus atom from the phosphate bound to the threonine target residue. However, M3 could 298 also play a direct role in the catalytic activity, as was recently proposed for the human PPM1A 299 protein, a negative regulator of cellular stress response pathways [79,80]. Further study is needed to investigate whether a third metal ion is present in all PP2C. We note that near the entrance of 300 301 the active site, a hydrophobic pocket lined with residues 1554, V564, L603, F619 and A620

302 constitutes a potential site for the design of inhibitors (**Fig 5D** and **G**). Another distinct feature of 303 SiaA-PP2C is a flexible loop located between β 7 and β 8, whereas a Flap subdomain, which has 304 been reported to aid in substrate specificity, is present at the equivalent position in human PPM1A 305 and many other PP2C-type phosphatases [80] (**Fig 5H**). Therefore, this shorter yet flexible loop 306 might contribute to the substrate specificity of SiaA-PP2C.

307

308 Crystal structure of SiaC reveals similarity with anti-sigma factor antagonists

To gain insights about SiaC, its crystal structure was determined in this study. Native crystals of SiaC were grown in C6 condition of the JCSG+ kit from Molecular Dimensions (0.1 M Phosphate/citrate, pH 4.2, 40% (v/v) PEG 300), with space group I222 and diffracted to a maximum resolution of 1.7 Å. The structure (PDB ID: 6K4F) was determined by SAD using SeMet derivative crystals (**Table S2**).

314 Clear electron density maps allowed complete tracing except for residues 101-103, which are located in the flexible loop between the α 3 helix and β 5 strands. The SiaC protein comprises six 315 β -strands arranged in a mixed parallel/antiparallel fashion and three α -helices (Fig 6A). A 316 317 hydrophobic pocket next to T68 is formed by residues L61 and L63 projecting from β 4, W95 from β 5, 171 and M74 from α 2, L107 and F111 from α 3 while L66 belongs to the β 4- β 5 loop (**Fig 6B**) 318 and **C**). Dali server was used to search for protein structures that are most similar to SiaC crystal 319 320 structure, and an anti-sigma factor antagonist from Mycobacterium paratuberculosis (PDB ID: 4QTP; gene ID MAP 0380; Fig 6D) was identified as the closest homologue (Z score of 9.0, an 321 amino-acid sequence identity of 10% and a RSMD of 2.8 Å over the □-carbon atoms of 117 322 residues). Despite sharing very low sequence identity, a closer examination of both structures 323 reveals a conserved overall topology with several unique features, especially at β 3, β 4 strands 324 325 and α 3 helix that are longer in 4QTP compared to SiaC. These variations are probably related to differences in the ability to establish protein-protein interactions. Nonetheless, their target 326

327 phosphorylation sites, T68 for SiaC and S58 for 4QTP, are both located at the N-terminus of helix
 328 α2.

329 It is worth mentioning that our SiaC crystal structure not only agrees with the SiaC structure 330 published by Chen et al. [73], but also provides more details at 1.7Å resolution. A 2SiaB:2SiaC complex was suggested by size-exclusion chromatography when SiaB and SiaC were mixed in 331 332 equal molar ratio and incubated at room temperature for 1 h (Fig 6E). Instead of two individual 333 peaks (one consists of SiaB and one consists of SiaC), a single peak containing the complex was 334 observed. This 2SiaB:2SiaC complex model is consistent with the recently reported crystal structure of the SiaB/SiaC complex [73]. When the SiaB/SiaC mixture was supplemented with 10 335 336 mM ATP and 20 mM MqCl₂ prior to size-exclusion chromatography, the complex disappeared and SiaB and SiaC^p eluted as two individual peaks. The phosphorylation state of SiaC^p was 337 subsequently confirmed by LC-MS. As such, our data demonstrate that SiaB binds tightly to SiaC 338 but quickly dissociation from SiaC^P after phosphorylation. 339

340

341 Molecular Docking and MD simulation of SiaC^P with the phosphatase domain of SiaA

As shown above, the SiaB/SiaC complex quickly dissociates upon phosphorylation. Since SiaA-PP2C targets SiaC^P, we wanted to study the interaction between SiaA and SiaC during the dephosphorylation reaction. Therefore, we performed a MD simulation on SiaA binding to SiaC and to SiaC^P. The SiaA/SiaC^P complexes were predicted by molecular docking of SiaA-PP2C dimer to SiaC and to SiaC^P using ZDOCK, followed by 60 ns of MD simulation (**Fig 7A** and **B**).

These simulations suggest that the phosphorylated pT68 is required for productive binding to the catalytic site of SiaA-PP2C, where it remains efficiently bound via the catalytic Mg²⁺ ion M3 and the bridging water molecules surrounding it (**Fig 7C-E**). This result is consistent with the experimental observation that only pT68 in SiaC^P constitutes the substrate for SiaA-PP2C activity. In contrast, the non-phosphorylated T68 dissociated from the catalytic site in less than 15 ns of simulation, suggesting that the interaction of SiaC with SiaA is weak upon dephosphorylation.

353 Based on the simulated model, several key interactions that could contribute to substrate specificity of SiaA-PP2C were identified. First, R652 stabilizes the positively charged phosphate 354 group of pT68 through the formation of a salt bridge (**Fig 7F**). In addition, the flexible loop between 355 356 α 5 and α 6 of SiaA inserts into a shallow pocket located between α 2, α 3, β 4, β 5 and β 6 of SiaC^P and establishes hydrophobic contacts with L61, L66, I71, M74, M75, L78, W95, L107 and F111 357 358 through F612 (Fig 7G). Notably, the salt bridge identified between R618 and E609 of SiaA is likely 359 to restrain the orientation of the flexible loop between α 5 and α 6, which could favour interaction 360 with SiaC^P. Notably, F612 was recently found to be deleted in the SiaA protein from a nonaggregative mutant (*AsiaA*; G611F612; SiaA-PP2C*)[70]. 361

362 homology model of SiaA-PP2C*, (Supplementary zip-file) using SWISS-MODEL А (https://swissmodel.expasy.org/) with the SiaA-PP2C crystal structure as template (GMQE = 0.98, 363 QMEAN = -0.54) confirmed that the deleted amino acids G611F612 most likely impacts the 364 orientation of the flexible loop between $\alpha 5$ and $\alpha 6$, and confirmed that F612 seems to be important 365 for the interaction with the hydrophobic pocket of SiaC^P (Fig 7H1-I2). As such, a stable SiaC^P-366 367 SiaA-PP2C* complex seems unlikely to form, which would explain the non-aggregative phenotype of the $\Delta siaA$ mutant strain due to an impaired enzymatic activity towards SiaC^P. 368

369 **Discussion**

The SiaA and/or SiaD proteins are essential for the formation of macroscopic aggregates during 370 371 growth in the presence of the toxic surfactant SDS or the ROS-generating biocide tellurite in a c-372 di-GMP manner [7,70,72]. This active and energy requiring response may represent an adaptive survival strategy as the corresponding aggregates were found to protect cells of the same, as well 373 374 as other, species in mono- and mixed culture experiments [11,71,81]. Here, we show that the SiaABCD proteins play a key role in cellular aggregation and dispersal of *P. aeruginosa* in 375 response to carbon availability in the environment. This is intriguing in the context of lung 376 377 colonisation by *P. aeruginosa* given the dynamic changes in the sources and supply of carbon substrates available in the lung, including but not limited to, glucose [82], short-chain fatty acids 378 379 [83,84], ethanol and 2,3-butanediol [85–87]. Notably, ethanol and 2,3-butanediol have recently 380 been reported to influence microbial colonisation of epithelial cells or the persistence of microbes during infection [13,88,89]. It is thus possible that the SiaABCD signalling pathway is not only 381 involved in the regulation of cellular aggregation but also has an impact on the virulence of P. 382 383 aeruginosa. This hypothesis is supported by several observations:

i) A diverse set of regulatory systems involved in biofilm formation and/or virulence are
 interconnected with the SiaABCD pathway. These include the transcriptional regulators AmrZ
 and FleQ or the posttranscriptional regulatory systems RsmA/*rsmY*/*rsmZ*, RsmN and CRC
 [72,90–94].

388 *ii*) SiaD modulates the community structure and competitiveness of *P. aeruginosa* cells within
 389 dual-species biofilms with cells of *Staphylococcus aureus* and impacts pyoverdine and
 390 pyocyanin production [7,71,95].

391 *iii*) SiaD was identified as one of the DGCs capable of initiating the "Touch-Seed-and-Go"
 392 virulence program by activating the c-di-GMP receptor FimW [96]. This activation leads to the
 393 attachment of cells and the subsequent induction of virulence traits through asymmetric cell

division, finally promoting efficient tissue colonization, localised host damage and fastdissemination of the infection.

396 With our study, we demonstrated that the protein phosphatase SiaA and its kinase counterpart 397 SiaB target the protein SiaC at threonine 68 (T68) and provide evidence that the SiaABC proteins 398 make use of a partner switch mechanism to balance cellular aggregation in response to carbon 399 availability. A partner switch system (PSS) typically involves a PP2C phosphatase (SiaA), an anti-400 sigma factor with kinase activity (SiaB) and anti-sigma factor antagonist representing the target 401 for phosphorylation (SiaC). In line with such a mechanism, the phosphorylation status of the 402 proposed anti-sigma factor antagonist SiaC is crucial for the switch to occur. In addition to the 403 sequestration of an alternative sigma factor, partner switch systems have recently been found to regulate important physiological traits also by affecting enzymatic activities involved in cellular 404 signalling cascades through direct protein-protein interactions. 405

In P. aeruginosa, the HptB-HsbR-HsbA system was shown to promote DGC activity of HsbD 406 407 following its interaction with the phosphorylatable anti-sigma factor antagonist HsbA to regulate 408 biofilm formation and swimming motility [97]. More recently, a PSS was shown to be involved in mixed-linkage ß-glucan synthesis in S. meliloti through the induction of c-di-GMP levels [98]. In 409 system, the Ser/Thr-specific phosphatase/kinase couple BgrU/BgrW controls the 410 this 411 phosphorylation status of the BgrV protein and hence controls the activity of the DGC BgrR. Finally, in Moorella thermoacetica the RsbT-like switch kinase MtT was found to bind to and 412 413 attenuate the activity of the DGC MtG (PDB: 3ZT9) after phosphorylation of the RsbS-like 414 stressosome scaffold protein Mts (Mts-P [PDB: 3ZTB]). Notably, SiaD activity exhibits the same 415 phenotype as loss of SiaC function (this study), the *siaABCD* genes are co-regulated in an operon 416 [71] and SiaD overexpression was found to be incapable of complementing the non-aggregative phenotype of the *AsiaA* mutant strain whereas other DGCs could [70]. Based on these facts, one 417 418 can speculate that the SiaABC partner switch functions to regulate SiaD mediated c-di-GMP 419 biosynthesis through the phosphorylation status of SiaC. In one such scenario, the activation of

SiaA would shift the equilibrium of SiaC/SiaC^P towards the unphosphorylated form of SiaC, which subsequently interferes with SiaD activity, leading to increased c-di-GMP production and subsequently biofilm formation. Such a scenario would explain the strong aggregative phenotype of the SiaB mutant observed in this and previous studies [99]. As a negative feedback response, SiaC^P has an increased binding affinity towards SiaA, which would lead to a negative impact on SiaD activity through the dephosphorylating of T68 and increased binding to SiaB.

During the publication of our preprint [100] and the per-review process for this manuscript, Chen et al. [73] published a similar data-set that showed direct interaction of SiaC with SiaB and SiaD based on two-hybrid data and co-crystallization of the SiaB-SiaC complex as well as activation of SiaD through SiaC binding. As such, that study is complementary to our data and strongly supports a model that the SiaABC partner switch integrates environmental information, such as carbon availability and surfactant stress, to control biofilm formation through the modulation the activity of SiaD through the phosphorylation status of SiaC.

433 Given their importance in regulating aggregation and biofilm formation, the PP2C domain of SiaA 434 and the putative anti-sigma factor antagonist SiaC may represent novel targets for the development of biofilm interference drugs. The PP2C-type phosphatase SiaA, while conserved 435 in prokaryotes and eukaryotes, is structurally unique. A Flap sub-domain, suggested of being 436 437 involved in substrate interaction and specificity, has been reported in human PPM1A and many other PP2C-type phosphatases [80]. SiaA-PP2C lacks the Flap sub-domain and instead has a 438 long loop between $\beta7$ and $\beta8$ that does not seem to interact with SiaC^P according to MD 439 440 simulations. However, the flexible loop between $\alpha 5$ and $\alpha 6$ might aid in substrate specificity of 441 SiaA by interacting with the hydrophobic pocket of SiaC near the phosphorylation site. Although 442 further studies are needed to confirm this finding, the fact that the phosphatase domain of the mutant allele SiaA-PP2C* has a deletion in G611F612, of which the latter residue seems to be 443 crucial for the interaction with SiaC, is supportive of this hypothesis. Thus, this flexible loop in 444 SiaA could be exploited for drug design to interfere with SiaA/SiaC^P interaction and hence, block 445

downstream induction of biofilm formation through the inhibition of SiaC^P dephosphorylation. In 446 addition, we demonstrated that the phosphatase inhibitor fumonisin B1 [75] was capable of 447 448 completely inhibiting the activity of SiaA in vitro. Fumonisin B1 is also known to inhibit ceramide 449 synthase [101], and it was proposed to work by establishing electrostatic interaction between 450 negatively charged tricarboxylic groups and positively charged active site. Here we speculate that 451 fumonisin B1 might inhibit SiaA through a similar mechanism, namely by electrostatic interactions 452 between the negatively charged tricarboxylic groups of fumonisin B1 and the positively charged 453 metal ions of SiaA, thus blocking the active site. In addition to SiaA inhibition, SiaC also represents 454 an exciting target for interference, as it is structurally most similar to bacterial anti-sigma factor 455 antagonists with little homology with human proteins. The hydrophobic pocket next to the 456 phosphorylation site of SiaC is of particular interest, as it seems to be involved in the stability of the SiaA/SiaC^P interaction. In addition, a large patch of negatively charged surface is present at 457 α^2 and α^3 near the hydrophobic pocket (Fig 6C), and could thus be useful for drug design as 458 459 potential anchor points.

In summary, the presented work provides a deeper understanding of the SiaABCD mediated regulation by expanding the fundamental genetic and biochemical mechanisms that control cellular aggregation in response to carbon availability. Together with the insights into the catalytic and regulatory mechanisms of the protein-phosphatase family-2C (PP2C) domain of SiaA and of the SiaC protein gained by our structural analysis, the present study might facilitate the development of future anti-biofilms drugs based on a signal interference strategy, which are desperately needed to combat the rising crisis due to antibiotic resistance.

467 Materials and Methods

468 Strains and growth conditions

Bacterial strains (**Table S3**) were maintained on Lysogeny Broth (LB) (Bertani 1951) solid medium
(1.5% agar w/v) and routinely cultured in 10 mL LB medium in 50 mL Falcon tubes (Greiner Bioone) or M9 medium (47.6 mM Na₂HPO₄, 22 mM KH₂PO₄, 8.6 mM NaCl, 18.6 mM NH₄Cl, 2 mM
MgSO₄, 0.1 mM CaCl₂, 0.03 mM FeCl₂) with shaking at 200 rpm and incubation at 37°C or 30°C.

473 Strain construction

To create the *siaB* and *siaC* mutant strains, the Tet^r ISphoA/hah transposon insertion located in 474 475 the *siaB* and *siaC* genes was transferred into the wild type strain by E79tv2 phage transduction [24], using the PW1292 and PW1290 strains from the University of Washington Genome Centre 476 as the source of the transposon [102] (**Table S3**). Following transduction. Tet^r resistant strains 477 containing ISphoA/hah insertions were cured of the antibiotic resistance marker by Cre/loxP 478 479 recombination mediated excision of the tetracycline resistance cassette. For expression of the 480 Cre recombinase, the pCre1 plasmid was introduced into the P. aeruginosa mutant strain 481 harbouring the ISphoA/hah insertion by conjugation using biparental mating with S17-Apir. An overnight culture of the *P. aeruginosa* recipient strain was grown in 10 mL LB at 42°C with shaking 482 483 at 50 rpm, while the *E. coli* donor strain was grown in 10 mL LB at 37°C with shaking at 150 rpm. Optical density measurements were used to provide 2×10^9 cells of the recipient strain and 1×10^{10} 484 10^9 cells donor strain, where an OD₆₀₀ = 1 is approximately 1 × 10^9 cells/mL. Cells were washed 485 twice in 1 mL pre-warmed LB with centrifugation for 30 sec at 10,000 \times g at room temperature 486 487 (Heraeus instruments; biofuge pico). Finally, the cells were combined in 100 µL LB pre-warmed 488 to 37°C, spotted on to a hydrophilic mixed cellulose 0.45 µm sterile filter (Pall Corporation) on a 489 LB plate pre-warmed to 37°C and incubated at 37°C for 8 h for transfer. Following incubation, the 490 filter was transferred to a 50 mL Falcon tube and the bacteria were resuspended in 1 mL 0.9% 491 NaCl (w/v) by vortexing. Serial dilutions were performed in M9 medium and subsequently plated 492 on Pseudomonas Isolation Agar (PIA, Difco) plates to counter-select against E. coli cells and to determine the colony forming units (CFU/mL). Based on the CFU results, appropriate dilutions were selected to ensure that 50-100 colonies from the initial transduction were spread on to the PIA agar plates. After growth for 14-16 h at 37°C, single colonies of the exconjugants were patched on to both selective and non-selective agar plates to test for tetracycline sensitivity. The correct site of insertion and loss of the tetracycline resistant cassette was confirmed by PCR and sequencing.

499 Plasmid construction

Cloning of the C-terminal part of SiaA (SiaA-PP2C), SiaB, and SiaC were carried out using 500 ligation-independent cloning methods as described in Savitsky et al. [103]. The gene regions 501 encoding SiaA-PP2C (amino acids 386-663; Genbank ID: NP 248862), SiaB (Genbank-ID: 502 503 248862), SiaC (Genbank-ID: NP 248860) were amplified via PCR of genomic DNA of the 504 wildtype strain with appropriate primers (**Table S4**). Amplified sequences were treated with T4 DNA polymerase and dCTP. The vector pNIC28-Bsa4 was digested with BsaI whereas the vector 505 pNIC-CTHF was digested with *Bfu*AI. The vectors were then purified and subsequently treated 506 with T4 DNA polymerase and dGTP. Treated vectors and inserts were mixed and annealed for 507 508 10 min at room temperature before being used for transformation of Mach1 chemically competent E. coli cells leading to the expression vectors pNIC[SiaA], pNIC[SiaB] and pNIC[SiaC], 509 510 respectively. For protein expression, the construct was retransformed into *E. coli* BL21(DE3) 511 Rosetta T1R competent cells. Small scale analytical expression screens were then carried out to 512 verify expression of the protein and its likelihood for success in large scale purification. Transformed *E. coli* BL21(DE3) Rosetta T1R were grown at 37°C in 1 mL of Terrific Broth (TB) 513 (1.2% w/v tryptone, 2.4% w/v yeast extract, 0.5% v/v glycerol, 89 mM phosphate buffer) to an 514 OD_{600} of ~ 2 -3. The temperature was subsequently reduced to 18°C and protein production was 515 induced with 0.5 mM Isopropyl-β-D-thiogalactoside (IPTG, Sigma Aldrich) overnight. The cells 516 were then lysed and subjected to clarification and microscale immobilized metal-ion affinity 517

518 chromatography (IMAC) to assess the levels of soluble and purifiable target protein from each 519 clone.

520 For construction pJEM[SiaC], the His6-TEV-*siaC* construct from pNIC[SiaC] was amplified using 521 Q5 Hot-Start DNA polymerase (New England BioLabs) with the appropriate primer pair (**Table** 522 **S4**). The primers had 25 bp of homology to the insertion sites in plasmid pJeM1 on each site 523 (marked as bold text). The eGFP gene in plasmid pJeM1 was excised using *Nde*I and *Hind*III and 524 replaced with the purified PCR products *via* the one-step isothermal assembly. The constructs 525 were subsequently transformed into *E. coli* DH5α (Invitrogen) and the correctness of the cloned 526 genes was verified by sequencing (GATC Biotech).

527 **Phenotypic characterisation in 12 well plates**

528 For phenotypic characterisation of cultures during growth on 3.5 mM SDS and 22.2 mM glucose, 529 cell culture treated, 12 well microtiter plates with 2 mL M9 medium were prepared and inoculated 530 with washed cells from an overnight culture grown in LB medium to an $OD_{600} = 0.01$. Following incubation at 30°C with shaking at 200 rpm for 18 h the plates were imaged at 1200 dpi using an 531 532 Umax Powerlook 1000 flatbed scanner with V4.71 software in a dark room. Images were 533 normalised using Adobe Photoshop CS5 Software by using the 'match colour' image adjustment 534 function, with all images normalised to the first image scanned using this experimental format. Experiments were performed as at least 6 independent replicates and representative images are 535 536 shown.

537 Analytics of supernatants

For glucose quantification, the liquid cultures were filtered through a 0.22 μ M PES filter (PN 4612, Pall) and quantified using the GO assay kit (GAGO20, Sigma Aldrich). Briefly, one volume of sample or standard solution (20 μ L) was mixed with two volumes of assay reagent (40 μ L) in a 96 well plate and incubated statically at 37°C for 30 min. Subsequently, the reaction was stopped by the addition of 12 N H₂SO₄ (40 μ L) to the reaction mixture. Glucose concentrations were

quantified at 540 nm using a microplate reader (Infinite 200 pro, Tecan). Zero-80 μg/mL glucose
standard solutions were used for the calibration curve.

545 Concentrations of succinate, ethanol and 2,3-butanediol were guantified by a HPLC method using 546 an Aminex HPX-87H 300 x 7.8 mm ion-exchange column (BioRad, Munich, Germany) heated to 60° C. The eluent was 5 mM H₂SO₄, which was delivered to the column by a LC-10ATvp pump 547 548 (Shimadzu, Munich, Germany) at a flow rate of 0.6 mL/min. The eluent was continuously 549 degassed with a DGU-20A3R degassing unit (Shimadzu, Munich, Germany). Samples were injected using 10 µL with a 234 autosampler (Gilson, Limburg-Offheim, Germany). Resolved 550 compounds were analysed with a refractive index detector (RID-10A, Shimadzu, Munich, 551 552 Germany) and the data processed using the Shimadzu Lab solutions software version 5.81. Concentrations were finally calculated from calibration curves of the corresponding metabolite of 553 554 interest.

555 Biofilm quantification using crystal violet staining in 24 well plates

A microtitre based crystal violet (CV) staining assay was used to quantify biofilm formation during 556 growth with various media. Cell culture treated and non-treated 24 well microtiter plates with 800 557 558 µL M9 medium were prepared and inoculated with washed cells from an overnight culture grown in LB medium to an OD₆₀₀ = 0.01. M9 medium was supplemented with 22.2 mM glucose, 20 mM 559 succinate, 40 mM ethanol or 20 mM 2,3-butanediol and incubated at 30°C with shaking at 200 560 561 rpm. Following incubation, liquid cultures were removed, pooled and used for quantification of the 562 carbon source and optical density measurements. The wells of the microtitre plates were then stained with 900 µL CV solution (0.1% [w/v] stock in water) for 10 min without shaking. After 563 incubation, the liquid was discarded and the wells of the microtitre plates were washed with 1 mL 564 Tris-HCI (10 mM; pH 7) containing 0.9 % NaCI (w/v) for 10 min, once without and once with 565 566 shaking at 200 rpm. Subsequently, the plates were air dried and the remaining CV was solubilised by incubation with 1 mL of pure ethanol for 10 min with shaking at 200 rpm. Quantification of CV 567 was guantified at 595 nm in a microtiter plate reader. 568

569 Scanning electron microscopy (SEM)

For SEM, overnight cultures of *P. aeruginosa* strains were prepared in 10 mL LB in 50 mL Falcon 570 571 tubes and incubated for 16 h at 30°C with shaking at 200 rpm. Following incubation, cultures were 572 harvested by centrifugation for 2 min at 16,060 \times g at room temperature and washed twice in 1 573 mL of fresh M9 minimal medium. These cells were used to inoculate 50 mL of medium 574 supplemented with 22.2 mM glucose with an OD₆₀₀ = 0.05 in a 250 mL Erlenmeyer flask and 575 incubated for 5.5 h at 30°C with shaking at 200 rpm. Experiments were performed as three 576 independent replicates, which were subsequently pooled together. Pooled samples were pipetted 577 onto poly-L-lysine coated coverslips on the bottom of the wells of a 12 well plate, using enough 578 culture to create a convex droplet without flooding past the edges of the coverslip. After incubation 579 for 5 min at room temperature, the coverslips were gently flooded with 2 mL M9 minimal medium, which was then removed by a pipette. A fixative solution (glutaraldehyde 2.5%, paraformaldehyde 580 2%, in M9 buffer) was immediately added to the samples and left overnight at 4°C. The relatively 581 582 large size of particles formed by the $\Delta siaB$ mutant exceeded the binding capacity of the poly-L-583 lysine coverslips, so an alternative fixation process was employed for this strain. After pooling of 584 the three biological replicates, 3 mL of culture was added to a well of a 12 well plate and aggregates were allowed to settle to the bottom of the well by gravity. Once the aggregates had 585 586 sedimented, the growth medium was removed with a pipette, the cells were washed once in 2 mL M9 medium by this technique and the fixative solution (glutaraldehyde 2.5%, paraformaldehyde 587 588 2%, in M9 buffer) was added to the remaining aggregates. Following overnight incubation in 589 fixative solution, all samples were washed 3 times in 2 mL of M9 medium with 5 min incubations 590 at room temperature for each wash. Finally, fixed aggregates of the $\Delta siaB$ mutant were loaded 591 into a microporous chamber with a 120-200 µm pore size (ProSciTech). Samples of both 592 coverslips and the microporous chamber were then dehydrated by a series of washes with increasing concentrations of ethanol (30%, 50%, 70%, 80%, 90% and 95%), with 5 min 593 594 incubations at room temperature for each step. Samples were then washed 3 times in 100%

595 ethanol with 5 min incubations at room temperature for each step to complete dehydration. Following dehydration, samples were then dried at the critical point with CO₂ as the transitional 596 597 medium (Tousimis, Autosamdri-815). Coverslips were subsequently transferred on to 12.5 mm 598 SEM stubs using carbon impregnated double-sided adhesive tape and left overnight in a 25°C 599 oven for de-gassing of the tape. Microaggregates of the $\Delta siaB$ mutant were removed from the 600 chamber and placed directly on to the carbon impregnated double-sided adhesive tape on a 12.5 601 mm SEM stub and left overnight in a 25°C oven for de-gassing of the tape. Samples were then sputter coated with gold for 2 min 30 sec at 40 mA (Emitech, K550X). Conductive samples were 602 then analysed by scanning electron microscopy using a spot size of 3, voltage at 15 kV and a 603 604 working distance of 10 mm (FEI Quanta 200 ESEM). Multiple fields of view were imaged randomly for each sample and representative images are shown. 605

606 Particle size experiments using laser diffraction analysis (LDA)

607 Strains were inoculated in 20 mL LB medium (244620, BD Difco) in a 100 mL Erlenmeyer flask and incubated at 30°C with 200 rpm shaking. Overnight cultures were subsequently aliquoted to 608 50 mL falcon tubes and centrifuged at 9500 \times g for 5 min. The supernatant was discarded and 609 610 the pellet was resuspended in 10 mL of M9 medium containing 22 mM glucose. The washing step was repeated once with the pellet resuspended in 2-5 mL of M9 medium. Finally, the cell 611 suspensions were passed five times through a 25 gauge syringe needle to disrupt cell aggregates. 612 613 The optical density of the suspension was adjusted to OD₆₀₀ = 2 and 1 mL was added to 20 mL of M9 medium supplemented with glucose in an 100 mL Erlenmeyer flask at a final $OD_{600} = 0.1$. 614 The cultures were subsequently incubated at 30°C with shaking at 200 rpm. Samples were 615 collected at 3 and 6 h for OD₆₀₀ measurement and quantification of glucose concentration. After 616 617 6 h of incubation, when glucose was not yet exhausted from the medium, the cultures were 618 analysed with a particle size analyser (SALD 3101, Shimadzu) using a pump speed of 4.0, and the accompanying software was used for analysis of the data (WingSALDII version 3.0.0). Particle 619 sizes of between 0.5-3000 µM were selected for analysis. Calculations were based on water as 620

the dispersing agent with a refractive index of 1.70-020i. Data are presented as the cumulative percentage of the biovolume of the particles within a given size range (0.5-10 μ M, 10-200 μ M, 200-3000 μ M) compared to all particle in the sample. Two biological replicates were analysed and from each sample, the particle size distribution was quantified with three subsequent measurements. Data are presented as the mean value of technical triplicates from a single experiment with the error representing the technical variation.

627 **Protein production and purification from Escherichia coli cells**

The production of the C-terminal part of SiaA (SiaA-PP2C), SiaB and SiaC was performed in E. 628 coli BL21(DE3) Rosetta T1R cells harbouring the inducible protein production plasmids pNIC28-629 630 Bsa4 and pNIC-CTHF and was performed in a LEX system (Harbinger Biotech). Using glycerol stocks, inoculation cultures were started in 20-40 mL TB medium supplemented with appropriate 631 antibiotics. The cultures were incubated at 37°C with 200 rpm shaking overnight. The following 632 633 morning, bottles of 0.75-1.5 L TB supplemented with appropriate antibiotics and 100-200 µL of antifoam 204 (Sigma-Aldrich) were inoculated with the overnight cultures. The cultures were 634 635 incubated at 37°C in the LEX system with aeration and agitation through the bubbling of filtered air through the cultures. When the OD₆₀₀ reached \sim 2, the temperature was reduced to 18°C and 636 the cultures were induced after 30 to 60 min with 0.5 mM IPTG. Protein expression was allowed 637 to continue overnight. The following morning, cells were harvested by centrifugation at 15°C and 638 $4000 \times q$ for 10 min. The supernatants were discarded and the cells were suspended in protein 639 buffer A (20 mM HEPES pH 7.5, 300 mM NaCl, 5% v/v glycerol, 0.5 mM TCEP) supplemented 640 with 25 µL of protease inhibitors cocktail III (539134, Calbiochem, Merck). 641

For protein purification, the cell suspensions were sonicated (Sonics Vibra-cell) at 70% amplitude and a 3 sec on/off cycle for 3min, on ice. The lysate was clarified by centrifugation at 47000 × gat 4°C for 25 min. The supernatants were filtered through 0.4 µm syringe filters and loaded onto 10 mL spin columns with 2 mL HisPur cobalt resins (89964, Thermo Scientific). For purification, IMAC columns were first washed with 10 mL protein buffer A and 10 mL of protein buffer A

supplemented with 5 mM imidazole. The lysates were then loaded onto IMAC columns and were 647 648 allowed to bind to the resins for 30 min at 4°C with mixing with a tube rotator. Subsequently, the 649 flowthrough was collected and the bound proteins were eluted in a stepwise manner with 2 × 5 650 mL of protein buffer A containing increasing concentrations of imidazole (10, 25, 50, 100, 250 and 651 500 mM). After elution, SDS-PAGE was carried out and relevant fractions containing the protein 652 of interest were pooled and concentrated using Vivaspin 20 filter concentrators (VivaScience) to 653 a volume of <5 mL. The concentrated sample was injected into a pre-flushed sample loop. Size 654 exclusion chromatography was carried out using a Biorad FPLC system with a HiLoad 16/60 Superdex 75 pg column (GE healthcare) pre-equilibrated with protein buffer A. Elution peaks were 655 656 collected in 1 mL fractions and analysed on SDS-PAGE gels. Relevant peaks were pooled and 657 concentrated using a filter concentrator. The entire purification was performed at 4°C. The final protein concentration was assessed by measuring absorbance at 280 nm on a Nanodrop ND-658 1000 (Nano-Drop Technologies). The final protein purity was assessed on SDS-PAGE gel (Fig 659 S2) and the final protein batches were then aliquoted into smaller fractions, frozen in liquid 660 nitrogen and stored at -80°C. 661

662 SiaC^P Preparation by incubating SiaB with SiaC in presence of ATP and size-exclusion 663 chromatography of SiaB/SiaC mixtures

To generate phosphorylated SiaC^P, SiaB and SiaC proteins were mixed in equal molar ratio and supplemented with 10 mM ATP and 20 mM MgCl₂. The mixture was incubated at room temperature for 1 h and loaded onto Hiload 16/600 Superdex 200 size exclusion column. SiaC^p eluted at approximately 80 mL. Denaturing SDS-PAGE confirmed the size of SiaC^p, and LC-MS confirmed the phosphorylated state of SiaC^p. This SiaC^p was subsequently used in enzymatic assays using a malachite-green assay. For size-exclusion chromatography SiaB and SiaC mixtures were incubated in the absence and presence of ATP or MgCl₂ prior to analysis.

671 SiaC^P production and purification from Pseudomonas aeruginosa cells

For the production of the phosphorylated SiaC^P used the *AsiaA* mutant harbouring the inducible 672 673 protein production plasmids pJEM[SiaC]. Using glycerol stocks, overnight cultures were 674 inoculated in 20 mL LB medium supplemented with 10 mM phosphate buffer (pH 7.5) and 25 mM 675 glucose and 50 µl/mL kanamycin. The cultures were incubated in 100 mL Erlenmeyer flasks at 676 30°C with 250 rpm shaking overnight. The following morning, the cultures were used to inoculate 677 fresh 75 mL medium (500 mL Erlenmeyer flask) at an OD₆₀₀ of 0.1. The medium was additionally supplemented with 0.2% rhamnose (w/v) for induction of SiaC production and cultures were 678 679 incubated at 20°C with 250 rpm shaking. After 16 h of incubation, cells were harvested by 680 centrifugation (9500 \times g; 5 min; 4°C) and resuspended with 7 mL of ice cold HEPES buffer (20 681 mM HEPES; pH 7.5) containing 300 mM NaCl, 5 mM imidazole, 5% (v/v) glycerol, a phosphatase 682 inhibitor mix (1× concentrated; Pierce[™] Phosphatase Inhibitor Mini Tablets), 0.1 mM Phenylmethylsulfonylfluorid (PMSF); 0.05 mg/mL DNAse, and 0.1 mg mL⁻¹ lysozyme. The cell 683 suspension was lysed by sonication at 20% amplitude and a 5 s on/off cycle for 5 min, on ice 684 685 using a Branson Digital Sonifier 250. The lysate was clarified by centrifugation at 9500 \times g at 4°C for 10 min. The supernatants were filtered through 0.1 um syringe filters and the SiaC^P protein 686 was purified using two GraviTrap[™] TALON[®] columns (GE Healthcare). For purification, TALON[®] 687 688 columns were first washed with 4 mL of 20 mM HEPES (pH: 7.5) buffer containing 300 mM NaCl, 5% Glycerol and 500 mM imidazole. Subsequently, 4 mL of dialysis buffer (20 mM HEPES [pH: 689 7.5], 300 mM NaCl, 5 % glycerol) and 4 mL of equilibration buffer (20 mM HEPES [pH: 7.5], 300 690 691 mM NaCl, 5 % glycerol, 5 mM imidazole), 3.5 mL of lysate was loaded onto each of the columns. 692 After the columns were loaded, the bound proteins were washed with 4 mL of HEPES buffer (20 693 mM HEPES [pH 7.5], 300 mM NaCl, 5 % glycerol) with increasing concentrations of imidazole 694 (10 mM and 25 mM). Finally, the proteins were eluted with 4 mL of HEPES buffer (20 mM HEPES [pH 7.5], 300 mM NaCl, 5 % glycerol) containing 250 mM of imidazole. After elution, the imidazole 695 696 was diluted from the sample (~1:10000) and concentrated to ~ 600 µL using two Vivaspin 6 filter

concentrators (VivaScience). The protein concentration of the final sample was assessed by
measuring absorbance at 280 nm on a Nanodrop ND-1000 device (Nano-Drop Technologies).
The purification process was assessed with SDS-PAGE gel (**Fig S2**) and the final protein batch
was aliquoted into smaller fractions, frozen in liquid nitrogen and stored at -80°C.

701 Phosphatase assays with purified SiaA-PP2C and fumonisin B₁

The phosphatase activity of SiaA-PP2C was assessed using para-nitrophenyl phosphate (pNPP) 702 or as the target substrate. Phosphatase activity was determined via the production of a 703 704 colorimetric para-nitrophenolate product that absorbs strongly at 405 nm. Four times working 705 solutions of the protein (4×: 200 µg/mL; 1×: 50 µg/mL [~1.49 µM]) were made in water and mixed with equal volume of 4x pNPP phosphatase assay buffer (1×: 20 mM Tris-HCI [pH 7.5], 150 mM 706 NaCl, 20 mM MgCl₂, fumonisin B₁ 0-0.5 mM). Fifty µL of the mixture was then added to each well 707 in 96 well plates, following which pNPP was added to a final concentration of 0-5 mM to make up 708 709 a final volume of 100 µL per well. Phosphatase activity over time was detected via the measurement of the absorbance at 405 nm using a microtitre plate reader at 37°C (Tecan Infinite 710 M200 Pro). Initial reaction rates were determined using data from 0-10 min (µM/min). Activity of 711 SiaA-PP2C in the presence of fumonisin B1 was calculated as: % Activity = Rate [fumonisin] / 712 713 Rate [no fumonisin].

714 Malachite green phosphate assays and ADP-Glo[™] assays

Phosphatase and kinase activities of SiaA and/or SiaB on SiaC and/or SiaC^p were determined 715 using the Malachite green phosphate assay kit (Sigma Aldrich) and ADP-Glo[™] assay kit 716 (Promega) respectively. 0.5 μM of SiaA and/or SiaB was incubated with 0-5 μM of SiaC or SiaC^p 717 718 in the reaction buffer (20 mM Tris-HCL [pH 7.5], 150 mM NaCl with addition of 0-25 mM ATP and 719 0-20 mM MnCl₂ and/or 0-20 mM MgCl₂) for 1 h at 37°C. Subsequently, the reactions were stopped and the amount of phosphate released in phosphatase reactions or ATP consumed in kinase 720 721 reactions was determined in accordance to the commercial kit protocols. Briefly, for Malachite 722 green assays, 20 μ L of the kit working solution was added to 80 μ L of the sample to stop the

723 reaction. The mixture was then incubated at room temperature for 30 min for the generation of a green complex formed between Malachite Green, molybdate and free orthophosphate. 724 Measurements were taken at 620 nm using a microplate reader. Readings were then converted 725 to phosphate measurements using a standard curve. For ADP-Glo™ assays, 20 uL of the ADP-726 Glo[™] reagent was added to 20 uL of the sample to stop the reaction and deplete remaining ATP. 727 If enzyme reactions were carried out in the absence of Mg²⁺, MgCl₂ was supplemented to the 728 729 mixture to a final concentration of 20 mM. The mixture was incubated at room temperature for 40 730 min. A second kinase detection reagent was added to the mixture to convert ADP consumed to ATP and for conversion of the ATP signal to luminescence signals and further incubated for 45 731 732 min. Luminescence was measured using a microplate reader and converted to ATP consumed in kinase reaction using a standard curve generated. At least two independent biological replicates 733 734 with technical duplicates were carried out for each enzymatic reaction.

Shotgun peptide mass spectrometry of SiaC and evaluation of its phosphorylation state at position threonine 68 as posttranslational modification

737 Shotgun (fragmentation) peptide mass spectrometry (PMS) was used to evaluate the 738 phosphorylation state of SiaC at threonine residue 68 (T68)[74], for example after reactions with recombinant, purified SiaC as substrate for the phosphatase domain of SiaA (SiaA-PP2C) or 739 kinase SiaB and ATP. For such assays, 20 µg of purified SiaC^P or SiaC was incubated in the 740 741 absence or presence of 20 µg of purified SiaA or SiaB for 2 h at 30°C in suitable assay solution (see above). Twenty µL were used for the separation of the proteins within the sample using a 742 15% SDS-PAGE gel [104]. The gel was stained with Coomassie Blue [105] and the SiaC protein 743 band (17 kDa) was excised from the SDS-PAGE gel, subjected to tryptic digest and the peptides 744 745 were analyzed by PMS at the Proteomics Centre of University of Konstanz, as described 746 previously with minor modifications [106–108]. Here, each sample was analyzed twice on a Orbitrap Fusion with EASY-nLC 1200 (Thermo Fisher Scientific) and Tandem mass spectra were 747 748 searched against an appropriate protein database (retrieved from IMG) using Mascot (Matrix

Science) and Proteome Discoverer V1.3 (Thermo Fisher Scientific) with "Trypsin" enzyme cleavage, static cysteine alkylation by chloroacetamide, and variable methionine oxidation, serine and threonine phosphorylation.

For analysis, the relative abundance of precursor ions was determined for the peptide harboring the T68 in a non-phosphorylated state (parental peptide [LLYLNTSSIK]) and for the peptide with corresponding mass-shifts indicative of its phosphorylation (monoisotopic mass-change, +79.96633 Da; average mass-change +79.9799 Da).

756 Crystallization, data collection and structure solution

All crystals were cryo-protected with 20% glycerol and frozen in liquid nitrogen and X-ray 757 diffraction data were collected at beamline PROXIMA 2A of SOLEIL, France. Purified SiaA-PP2C 758 759 (386-663) and SeMet SiaA-PP2C (386-663) proteins were concentrated to 25 mg/mL and 24 mg/mL respectively in 20 mM Tris-HCI PH 8, 500 mM NaCl and 1 mM DTT for screening of 760 crystallization conditions. The best SiaA-PP2C native and SeMet derivative crystals were 761 obtained from Morpheus A11 and A6 of Molecular Dimension, respectively. SAD phasing and 762 763 initial model building was processed with AutoSol from the Phenix package [109] followed by 764 structure refinement with buster [110] and PDB deposition (6K4E). The SeMet derivative crystal 765 of SiaC was first obtained in condition Morpheus A9 of Molecular Dimensions at resolution 2.9 Å. To improve resolution, the His-tag of SiaA protein was removed by TEV cleavage, prior to the 766 767 native crystal screen. A native SiaC crystal was obtained in 0.1 M Phosphate/citrate, pH 4.2, 40% v/v PEG 300 at 1.7 Å. SAD phasing and initial model building was processed with AutoSol from 768 769 the Phenix package, followed by structure refinement with Phenix Refine and PDB deposition 770 (6K4F).

771 Homology modelling, molecular docking and molecular dynamics (MD) simulations

The homology model of SiaB was generated with the I-TASSER online Server by specifying the amino acid sequence of SiaB. The homology model of SiaA-PP2C* was generated with SWISS-MODEL by providing the amino acid sequence of SiaA-PP2C* and specifying the SiaA-PP2C

775 crystal structure as template.

SiaC^P model was generated by substituting T68 with pT68 using psfgen in VMD [111]. The model was then subjected to conjugate gradient energy minimization for 10000 steps using NAMD 2.11 [112]. SiaC^P was docked to the SiaA dimer by ZDOCK 3.0.2 [113] by specifying pT68 as interacting residues. Among the top 10 complexes, complex 2 was chosen as the best model because the pT68 was closest to the bridging water.

781 SiaC^P-SiaA and SiaC-SiaA dimers were subjected to all-atom, explicit solvent MD simulation 782 using NAMD 2.11. Each dimer model was simulated in a water box, where the minimal distance 783 between the solute and the box boundary was 15 Å along all three axes. The charges of the 784 solvated system were neutralized with counter-ions, and the ionic strength of the solvent was set 785 to 150 mM NaCl using VMD. The fully-solvated system was subjected to conjugate-gradient minimization for 10,000 steps, subsequently heated to 310 K, and a 10 ns equilibration with 786 protein backbone atoms constrained using a harmonic potential of the form $U(x) = k (x-x_{ref})^2$, 787 where k is 1 kcal/mol Å⁻² and x_{ref} is the initial atom coordinates. Finally, 60 ns production 788 789 simulations were performed without constraints. All simulations were performed under the NPT ensemble assuming the CHARMM36 force field for the protein and the TIP3P model for water 790 791 molecules. PDB files of the homology models and docking results used for the study are provided 792 as zipped Supplementary files.

793 Statistical analysis

When needed, experiments with n \ge 3 were analysed using a two-sided students *t*-tests ($\alpha = 0.05$) with *p*-values < 0.05 interpreted as being significantly different.

796 Acknowledgements

The authors further declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Janosch Klebensberger would like to thank Prof. Bernhard Hauer for his continuous support. We also acknowledge beam time allocation at the SOLEIL synchrotron. The MD simulations for this article were performed on ASPIRE 1 of the National Supercomputing Centre, Singapore (https://www.nscc.sg).

803

804 Funding

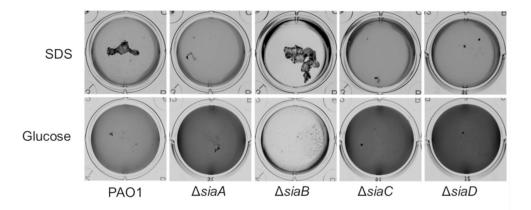
805 The work of Janosch Klebensberger, Wee Han Poh, Julien Lescar, Jianging Lin, Scott A. Rice were partially supported by a joint mobility grant funded by the Federal Ministry of Education and 806 Research in Germany (FKZ: 01DP17004) and the Ministry of Trade and Industry in Singapore 807 808 (SGP-PROG3-023. 2017). We acknowledge financial support from the Singapore Centre for Environmental Life Sciences Engineering, whose research is supported by the National Research 809 810 Foundation Singapore, Ministry of Education, Nanyang Technological University and National 811 University of Singapore, under its Research Centre of Excellence Programme as well as funding 812 from the Ministry of Education (tier 1, grant RG154/14).

813 **References**

- **1.** Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol [Internet]. 2002;56: 187–209.
- **2.** Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14: 563–575.
- **3.** Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49: 711–745.
- Flemming HC, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms.
 Nat Rev Microbiol. 2019;17: 247–260.
- 5. Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8: 623–633.
- McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol. 2012;10: 39–50.
- 826 7. Chua SL, Sivakumar K, Rybtke M, Yuan M, Andersen JB, Nielsen TE, et al. C-di-GMP
 827 regulates *Pseudomonas aeruginosa* stress response to tellurite during both planktonic and
 828 biofilm modes of growth. Sci Rep. 2015;5: 10052.
- 829 **8.** Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS. Involvement of nitric 830 oxide in biofilm dispersal of *Pseudomonas aeruginosa*. J Bacteriol. 2006;188: 7344–7353.
- 831 9. Hoffman LR, D'Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside
 832 antibiotics induce bacterial biofilm formation. Nature. 2005;436: 1171–1175.
- Botoh H, Zhang Y, Dallo SF, Hong S, Kasaraneni N, Weitao T. *Pseudomonas aeruginosa*,
 under DNA replication inhibition, tends to form biofilms via Arr. Res Microbiol. 2008;159:
 294–302.
- Klebensberger J, Rui O, Fritz E, Schink B, Philipp B. Cell aggregation of *Pseudomonas aeruginosa* strain PAO1 as an energy-dependent stress response during growth with
 sodium dodecyl sulfate. Arch Microbiol. 2006;185: 417–427.
- Schleheck D, Dong W, Denger K, Heinzle E, Cook AM. An α-proteobacterium converts linear
 alkylbenzenesulfonate surfactants into sulfophenylcarboxylates and linear
 alkyldiphenyletherdisulfonate surfactants into sulfodiphenylethercarboxylates. Appl Environ
 Microbiol. 2000;66: 1911–1916.
- 13 Chen Al, Okegbe C, Harty CE, Golub Y, Thao S, Ha D-G, et al. *Candida albicans* Ethanol
 844 Stimulates *Pseudomonas aeruginosa* WspR-Controlled Biofilm Formation as Part of a
 845 Cyclic Relationship Involving Phenazines. PLoS Pathog. 2014;10: e1004480.
- 14. Létoffé S, Audrain B, Bernier SP, Delepierre M, Ghigo J-M. Aerial Exposure to the Bacterial
 Volatile Compound Trimethylamine Modifies Antibiotic Resistance of Physically Separated
 Bacteria by Raising Culture Medium pH. MBio. 2014;5: e00944-13.
- 15. Ciofu O, Tolker-Nielsen T, Jensen PO, Wang H, Hoiby N. Antimicrobial resistance,
 respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients.
 Adv Drug Deliv Rev. 2015;85: 7–23.
- Bavey ME, O'Toole G A. Microbial biofilms: from ecology to molecular genetics. Microbiol
 Mol Biol Rev. 2000;64: 847–867.
- **17.** Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW. The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol. 2002;46: 203–256.

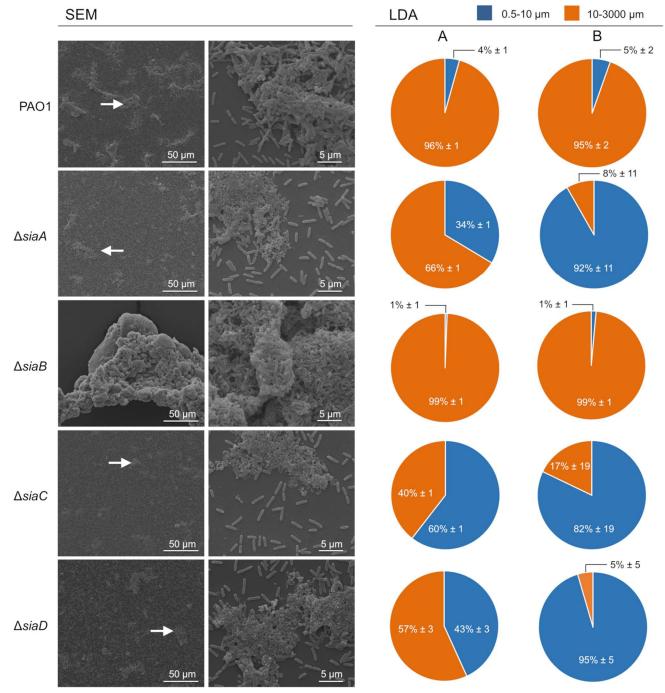
- Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms.
 Int J Antimicrob Agents. 2010;35: 322–332.
- **19.** Mah T-F, Pitts B, Pellock B, Walker GC, Stewart PS, O'Toole GA. A genetic basis for *Pseudomonas aeruginosa* biofilm antibiotic resistance. Nature. 2003;426: 306–310.
- Baghal Asghari F, Nikaeen M, Mirhendi H. Rapid monitoring of *Pseudomonas aeruginosa* in hospital water systems: a key priority in prevention of nosocomial infection. FEMS
 Microbiol Lett. 2013;343: 77–81.
- 863 21. Kerr KG, Snelling AM. *Pseudomonas aeruginosa*: a formidable and ever-present adversary.
 864 J Hosp Infect 2009;73: 338–344.
- 865 **22.** Williams MM, Armbruster CR, Arduino MJ. Plumbing of hospital premises is a reservoir for opportunistically pathogenic microorganisms: a review. Biofouling. 2013;29: 147–162.
- Pawar V, Komor U, Kasnitz N, Bielecki P, Pils MC, Gocht B, et al. In Vivo Efficacy of
 Antimicrobials against Biofilm-Producing *Pseudomonas aeruginosa*. Antimicrob Agents
 Chemother. 2015;59: 4974–4981.
- Malone JG, Jaeger T, Spangler C, Ritz D, Spang A, Arrieumerlou C, et al. YfiBNR mediates
 cyclic di-GMP dependent small colony variant formation and persistence in *Pseudomonas aeruginosa*. PLoS Pathog. 2010;6: e1000804.
- Pestrak MJ, Chaney SB, Eggleston HC, Dellos-Nolan S, Dixit S, Mathew-Steiner SS, et al.
 Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper inflammatory, and persist in multiple host environments. PLoS Pathog. 2018;14: e1006842.
- 876 26. Bjarnsholt T, Jensen PO, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, et al.
 877 Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr
 878 Pulmonol. 2009;44: 547–558.
- 879
 879 27. Staudinger BJ, Muller JF, Halldorsson S, Boles B, Angermeyer A, Nguyen D, et al.
 880 Conditions associated with the cystic fibrosis defect promote chronic *Pseudomonas* 881 *aeruginosa* infection. Am J Respir Crit Care Med. 2014;189: 812–824.
- Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2: 95–108.
- **29.** Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284: 1318–1322.
- 886
 887
 887 Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol. 2003;57: 677–701.
- 888 31. Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical 889 management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol 890 Rev. 2014;78: 510–543.
- 891 32. Coggan KA, Wolfgang MC. Global regulatory pathways and cross-talk control
 892 *Pseudomonas aeruginosa* environmental lifestyle and virulence phenotype. Curr Issues Mol
 893 Biol. 2012;14: 47–70.
- 33. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. The multiple signaling systems regulating virulence in *Pseudomonas aeruginosa*. Microbiol Mol Biol Rev. 2011;76: 46–65.
- **34.** Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009;73: 310–347.
- **35.** Moradali MF, Ghods S, Rehm BHA. *Pseudomonas aeruginosa* Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol. 2017;7: 39.

- 36. Vakulskas CA, Potts AH, Babitzke P, Ahmer BMM, Romeo T. Regulation of bacterial
 virulence by Csr (Rsm) systems. Microbiol Mol Biol Rev. 2015;79: 193–224.
- 37. Schuster M, Sexton DJ, Diggle SP, Greenberg EP. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol. 2013;67: 43–63.
- 905
 906
 906 Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol. 2016;14: 576–588.
- 907 **39.** Pesavento C, Hengge R. Bacterial nucleotide-based second messengers. Curr Opin
 908 Microbiol. 2009;12: 170–176.
- 40. Sajid A, Arora G, Singhal A, Kalia VC, Singh Y. Protein Phosphatases of Pathogenic
 Bacteria: Role in Physiology and Virulence. Annu Rev Microbiol. 2015;69: 527–547.
- 911 **41.** Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal
 912 bacterial second messenger. Microbiol Mol Biol Rev. 2013;77: 1–52.
- 42. Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, et al. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem.
 Soc. Rev. 2013;42: 305–341.
- 916
 917
 43. Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev
 917 Biochem. 2000;69: 183–215.
- 918 **44.** Porter SL, Wadhams GH, Armitage JP. Signal processing in complex chemotaxis pathways.
 919 Nat Rev Microbiol. 2011;9: 153–165.
- 45. Jung K, Fried L, Behr S, Heermann R. Histidine kinases and response regulators in networks. Curr Opin Microbiol. 2012;15: 118–124.
- 922 46. Pereira SFF, Goss L, Dworkin J. Eukaryote-like serine/threonine kinases and phosphatases
 923 in bacteria. Microbiol Mol Biol Rev. 2011;75: 192–212.
- 924 **47.** Dworkin J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr Opin
 925 Microbiol. 2015;24: 47–52.
- 926
 927
 48. Pirnay JP, De Vos D, Cochez C, Bilocq F, Vanderkelen A, Zizi M, et al. *Pseudomonas aeruginosa* displays an epidemic population structure. Environ Microbiol. 2002;4: 898–911.
- 928
 929 Pirnay JP, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, et al. *Pseudomonas aeruginosa* population structure revisited. PLoS One. 2009;4: e7740.
- 50. Fazzeli H, Akbar R, Moghim S, Narimani T, Arabestani MR, Ghoddousi AR. *Pseudomonas aeruginosa* infections in patients, hospital means, and personnel's specimens. J Res Med
 Sci. 2012;17: 332–337.
- 933 **51.** Römling U, Kader A, Sriramulu DD, Simm R, Kronvall G. Worldwide distribution of
 934 *Pseudomonas aeruginosa* clone C strains in the aquatic environment and cystic fibrosis
 935 patients. Environ Microbiol. 2005;7: 1029–1038.
- 936 52. He K, Bauer CE. Chemosensory signaling systems that control bacterial survival. Trends
 937 Microbiol. Elsevier Ltd; 2014;22: 389–398.
- 53. Lapouge K, Schubert M, Allain FH, Haas D. Gac/Rsm signal transduction pathway of
 gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol
 Microbiol. 2008;67: 241–253.
- 941 54. Mikkelsen H, Sivaneson M, Filloux A. Key two-component regulatory systems that control
 942 biofilm formation in *Pseudomonas aeruginosa*. Env Microbiol. 2011;13: 1666–81.
- Motley ST, Lory S. Functional characterization of a serine/threonine protein kinase of
 Pseudomonas aeruginosa. Infect Immun. 1999;67: 5386–94.


- Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, et al. A virulence locus of
 Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 2006;312:
 1526–1530.
- Mougous JD, Gifford CA, Ramsdell TL, Mekalanos JJ. Threonine phosphorylation posttranslationally regulates protein secretion in *Pseudomonas aeruginosa*. Nat Cell Biol. 2007;9: 797–803.
- 58. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol
 Rev. 2006;19: 403–434.
- 953 59. Almagro P, Salvado M, Garcia-Vidal C, Rodriguez-Carballeira M, Cuchi E, Torres J, et al.
 954 *Pseudomonas aeruginosa* and mortality after hospital admission for chronic obstructive
 955 pulmonary disease. Respiration. 2012;84: 36–43.
- 956 **60.** Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid *Pseudomonas* 957 *aeruginosa* and *Burkholderia cepacia*. Microbiol Rev. 1996;60: 539–574.
- 958 61. Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl [Internet].
 959 2013; 1–51.
- Hauser AR, Jain M, Bar-Meir M, McColley SA. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev. 2011;24: 29–70.
- Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D, Rice SA, et al.
 Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS One. 2009;4: e5513.
- 965
 966 Alhede M, Kragh KN, Qvortrup K, Allesen-Holm M, van Gennip M, Christensen LD, et al.
 966 Phenotypes of non-attached *Pseudomonas aeruginosa* aggregates resemble surface
 967 attached biofilm. PLoS One. 2011;6: e27943.
- 65. Kirketerp-Moller K, Jensen PO, Fazli M, Madsen KG, Pedersen J, Moser C, et al.
 Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol.
 2008;46: 2717–2722.
- 66. Schaber JA, Triffo WJ, Suh SJ, Oliver JW, Hastert MC, Griswold JA, et al. *Pseudomonas aeruginosa* forms biofilms in acute infection independent of cell-to-cell signaling. Infect
 Immun. 2007;75: 3715–3721.
- Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest. 2002;109: 317–325.
- 68. Kragh KN, Hutchison JB, Melaugh G, Rodesney C, Roberts AE, Irie Y, et al. Role of
 Multicellular Aggregates in Biofilm Formation. MBio. 2016;7: e00237.
- Melaugh G, Hutchison J, Kragh KN, Irie Y, Roberts A, Bjarnsholt T, et al. Shaping the Growth
 Behaviour of Biofilms Initiated from Bacterial Aggregates. PLoS One. 2015;11: e0149683.
- 70. Klebensberger J, Birkenmaier A, Geffers R, Kjelleberg S, Philipp B. SiaA and SiaD are
 essential for inducing autoaggregation as a specific response to detergent stress in
 Pseudomonas aeruginosa. Environ Microbiol. 2009;11: 3073–3086.
- 71. Klebensberger J, Lautenschlager K, Bressler D, Wingender J, Philipp B. Detergent-induced
 cell aggregation in subpopulations of *Pseudomonas aeruginosa* as a preadaptive survival
 strategy. Environ Microbiol. 2007;9: 2247–2259.

- 72. Colley B, Dederer V, Carnell M, Kjelleberg S, Rice SA, Klebensberger J. SiaA/D
 Interconnects c-di-GMP and RsmA Signaling to Coordinate Cellular Aggregation of
 Pseudomonas aeruginosa in Response to Environmental Conditions. Front Microbiol.
 2016;7: 179.
- 991 **73.** Chen G, Gan J, Yang C, Zuo Y, Peng J, Li M, et al. The SiaA/B/C/D signaling network 992 regulates biofilm formation in *Pseudomonas aeruginosa*. EMBO J. 2020;39: e103412.
- 74. Ravichandran A, Sugiyama N, Tomita M, Swarup S, Ishihama Y. Ser/Thr/Tyr
 phosphoproteome analysis of pathogenic and non-pathogenic Pseudomonas species.
 Proteomics. 2009;9: 2764–2775.
- Fukuda H, Shima H, Vesonder RF, Tokuda H, Nishino H, Katoh S, et al. Inhibition of Protein
 Serine/Threonine Phosphatases by Fumonisin B1, a Mycotoxin. Biochem Biophys Res
 Commun. 1996;220: 160–165.
- 999 **76.** Das AK, Helps NR, Cohen PT, Barford D. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J. 1996;15: 6798–6809.
- 1001
 1002
 1002
 1003
 77. Levdikov VM, Blagova E V., McFeat A, Fogg MJ, Wilson KS, Wilkinson AJ. Structure of components of an intercellular channel complex in sporulating *Bacillus subtilis*. Proc Natl Acad Sci. 2012;109: 5441–5445.
- 1004**78.**Bradshaw N, Levdikov VM, Zimanyi CM, Gaudet R, Wilkinson AJ, Losick R. A widespread1005family of serine/threonine protein phosphatases shares a common regulatory switch with1006proteasomal proteases. Elife. 2017;6: e26111.
- Tanoue K, Miller Jenkins LM, Durell SR, Debnath S, Sakai H, Tagad HD, et al. Binding of a
 third metal ion by the human phosphatases PP2Cα and Wip1 is required for phosphatase
 activity. Biochemistry. 2013;52: 5830–5843.
- 1010
 1010
 1011
 1011
 1012
 1012
 1013
 1014
 1014
 1015
 1016
 1017
 1017
 1018
 1018
 1019
 1019
 1019
 1010
 1010
 1010
 1011
 1011
 1011
 1012
 1012
 1012
 1012
 1012
 1012
 1012
 1012
 1013
 1014
 1014
 1015
 1014
 1014
 1015
 1014
 1014
 1015
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 1014
 <li
- 1013
 1013 Jagmann N, Henke SF, Philipp B. Cells of *Escherichia coli* are protected against severe chemical stress by co-habiting cell aggregates formed by *Pseudomonas aeruginosa*. Appl 1015 Microbiol Biotechnol. 2015;99: 8285–8294.
- 1016 **82.** Baker EH, Wood DM, Brennan AL, Clark N, Baines DL, Philips BJ. Hyperglycaemia and pulmonary infection. Proc Nutr Soc. 2006;65: 227–235.
- 101883.Flynn JM, Niccum D, Dunitz JM, Hunter RC. Evidence and Role for Bacterial Mucin1019Degradation in Cystic Fibrosis Airway Disease. PLoS Pathog. 2016;12: e1005846.
- 102084.LaBauve AE, Wargo MJ. Detection of Host-Derived Sphingosine by *Pseudomonas*1021*aeruginosa* Is Important for Survival in the Murine Lung. PLoS Pathog. 2014;10: e1003889.
- 102285.Barker M, Hengst M, Schmid J, Buers HJ, Mittermaier B, Klemp D, et al. Volatile organic1023compounds in the exhaled breath of young patients with cystic fibrosis. Eur Respir J.10242006;27: 929–936.
- 1025 **86.** Liu Q, Liu Y, Kang Z, Xiao D, Gao C, Xu P, et al. 2,3-Butanediol catabolism in *Pseudomonas* 1026 *aeruginosa* PAO1. Environ Microbiol. 2018;20: 3927–3940.
- 1027 87. Whiteson KL, Meinardi S, Lim YW, Schmieder R, Maughan H, Quinn R, et al. Breath gas 1028 metabolites and bacterial metagenomes from cystic fibrosis airways indicate active pH 1029 neutral 2,3-butanedione fermentation. ISME J. 2014;8: 1247–1258.

- 1030
 1031
 1031
 1031
 1032
 88. Nguyen M, Sharma A, Wu W, Gomi R, Sung B, Hospodsky D, et al. The fermentation product 2,3-butanediol alters *P. aeruginosa* clearance, cytokine response and the lung microbiome. ISME J. 2016;10: 2978–2983.
- 1033
 89. Venkataraman A, Rosenbaum MA, Werner JJ, Winans SC, Angenent LT. Metabolite
 1034 transfer with the fermentation product 2,3-butanediol enhances virulence by *Pseudomonas* 1035 aeruginosa. ISME J. 2014;8: 1210–1220.
- **90.** Jones CJ, Newsom D, Kelly B, Irie Y, Jennings LK, Xu B, et al. ChIP-Seq and RNA-Seq
 reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development
 by *Pseudomonas aeruginosa*. PLoS Pathog. 2014;10: e1003984.
- 1039
 1039 91. Baraquet C, Harwood CS. FleQ DNA Binding Consensus Sequence Revealed by Studies of FleQ-Dependent Regulation of Biofilm Gene Expression in Pseudomonas aeruginosa. J 1041 Bacteriol. 2015;198: 178–186.
- 1042
 1043
 1043
 1044
 1044
 1044
 1044
 1044
 1044
 1045
 1046
 1046
 1047
 1047
 1048
 1049
 1049
 1049
 1049
 1040
 1040
 1041
 1041
 1041
 1041
 1042
 1042
 1043
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 1044
 <li
- 1045
 93. Corona F, Reales-Calderón JA, Gil C, Martínez JL. The development of a new parameter
 1046
 1047
 1047
 1048
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049
 1049<
- **94.** Brencic A, Lory S. Determination of the regulon and identification of novel mRNA targets of *Pseudomonas aeruginosa* RsmA. Mol Microbiol. 2009;72: 612–632.
- 1050
 95. Chew SC, Yam JKH, Matysik A, Seng ZJ, Klebensberger J, Givskov M, et al. Matrix
 1051
 Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and
 1052
 Competitiveness of *Pseudomonas aeruginosa* during Dual-Species Biofilm Development
 with *Staphylococcus aureus*. MBio. 2018;9: e00585-18.
- 1054
 1055
 1055
 1056
 1056
 1057
 1058
 1059
 1059
 1050
 1050
 1050
 1051
 1051
 1051
 1052
 1052
 1053
 1054
 1054
 1054
 1055
 1055
 1055
 1056
 1056
 1057
 1058
 1058
 1059
 1059
 1059
 1059
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 1050
 <li
- 1057 97. Valentini M, Laventie BJ, Moscoso J, Jenal U, Filloux A. The Diguanylate Cyclase HsbD
 1058 Intersects with the HptB Regulatory Cascade to Control *Pseudomonas aeruginosa* Biofilm
 1059 and Motility. PLoS Genet. 2016;12: e1006354.
- 1060
 98. Baena I, Pérez-Mendoza D, Sauviac L, Francesch K, Martín M, Rivilla R, et al. A partner 1061 switching system controls activation of mixed-linkage β-glucan synthesis by c-di-GMP in
 1062 Sinorhizobium meliloti. Environ Microbiol. 2019;21: 3379-3391.
- **99.** D'Argenio DA, Calfee MW, Rainey PB, Pesci EC. Autolysis and autoaggregation in *Pseudomonas aeruginosa* colony morphology mutants. J Bacteriol. 2002;184: 6481–6489.
- 1065
 100. Poh W-H, Lin J, Colley B, Müller N, Goh BC, Schleheck D, et al. SiaABCD A threonine phosphorylation pathway that controls biofilm formation in Pseudomonas aeruginosa bioRxiv: 674879v1 [Preprint]. 2019 [cited 06.04.2020]. Available from https://www.biorxiv.org/content/10.1101/674879v1
- 1069
 101. Merrill AH, Sullards MC, Wang E, Voss KA, Riley RT. Sphingolipid metabolism: Roles in signal transduction and disruption by fumonisins. Environ Health Perspect. 2001;109: 283–
 1071 289.
- 1072 **102.** Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, et al. Comprehensive
 1073 transposon mutant library of *Pseudomonas aeruginosa*. Proc Natl Acad Sci U S A.
 1074 2003;100: 14339–14344.
- 1075 **103.** Savitsky P, Bray J, Cooper CD, Marsden BD, Mahajan P, Burgess-Brown NA, et al. High-


- throughput production of human proteins for crystallization: the SGC experience. J Struct
 Biol. 2010;172: 3–13.
- 1078 **104.** Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227: 680–685.
- 1080
 105. Meyer TS, Lamberts BL. Use of coomassie brilliant blue R250 for the electrophoresis of 1081 microgram quantities of parotid saliva proteins on acrylamide-gel strips. Biochim Biophys 1082 Acta - Gen Subj. 1965;107: 144–145.
- 1083
 106. Burrichter A, Denger K, Franchini P, Huhn T, Müller N, Spiteller D, et al. Anaerobic degradation of the plant sugar sulfoquinovose concomitant with H2S production:
 1085
 1086
 1086
 1087
 1086
 1086
- 1087 107. Denger K, Weiss M, Felux A-K, Schneider A, Mayer C, Spiteller D, et al. Sulphoglycolysis in
 Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle. Nature. 2014;507:
 1089 114–117.
- 1090 **108.** Schmidt A, Müller N, Schink B, Schleheck D. A Proteomic View at the Biochemistry of Syntrophic Butyrate Oxidation in Syntrophomonas wolfei. PLoS One. 2013;8: e56905.
- 1092 109. Adams PD, Afonine P V., Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: A
 1093 comprehensive Python-based system for macromolecular structure solution. Acta
 1094 Crystallogr Sect D Biol Crystallogr. 2010;66: 213–221.
- 1095
 110. Smart OS, Womack TO, Flensburg C, Keller P, Paciorek W, Sharff A, et al. Exploiting 1096 structure similarity in refinement: Automated NCS and target-structure restraints in 1097 BUSTER. Acta Crystallogr Sect D Biol Crystallogr. 2012;68: 368–380.
- 1098 **111.** Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14:33–38.
- 1100 **112.** Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular
 1101 dynamics with NAMD. J. Comput. Chem. 2005;26: 1781–1802.
- 1102
 113. Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z. ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics.
 1104
 2014;30: 1771–1773. Available from: https://doi.org/10.1093/bioinformatics/btu097
- 1105

1106 Figures

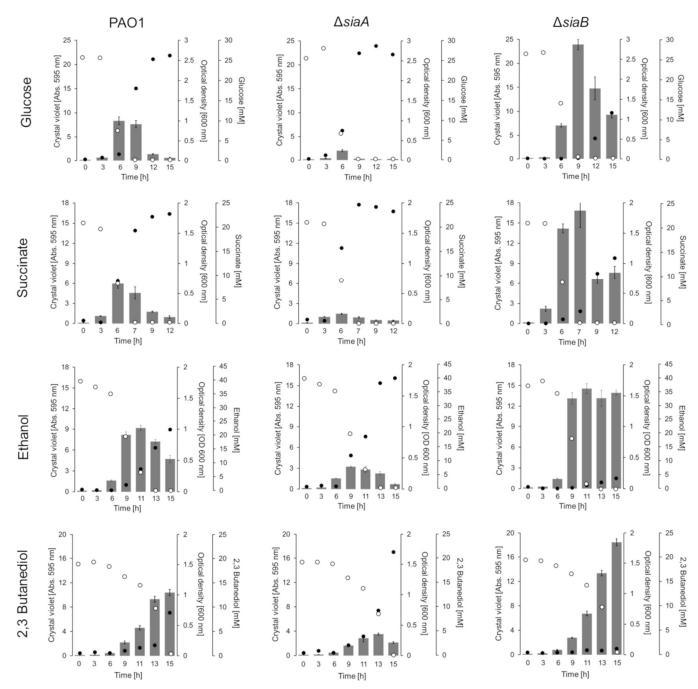
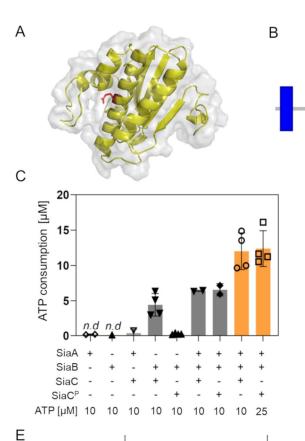

1107

Fig 1: Growth of the *P. aeruginosa* strains on 3.5 mM SDS or 22 mM glucose in 12 well microtiter plates after 18 h, at 30°C and 200 rpm. Images were acquired using a flat-bed scanner (Umax Powerlook), normalized by the "match colour" function of Photoshop (Adobe Photoshop CS5), and converted to greyscale.


1112

Scanning electron microscopy (SEM) and laser diffraction analysis (LDA) demonstrated the 1113 Fig 2: 1114 different aggregation phenotypes of *P. aeruginosa* wildtype and mutant strains during growth with glucose. 1115 Triplicate cultures of strains were grown with 22 mM glucose in 50 mL cultures shaking at 200 rpm at 30°C. After 5.5 h incubation, the replicate samples were pooled and used for SEM. The white arrows (left panel) 1116 highlight representative regions showing aggregated cells, which were then examined at higher 1117 magnification (right panel). Similar samples were also analyzed using a particle size analyzer (SALD 3101, 1118 Shimadzu; see Materials and Methods for details) in the range 0.5-3000 µm diameter. The data obtained 1119 1120 from two independent biological replicates (A and B; n = 2) are presented as the percentages of the total 1121 bio-volume of particles distributed over two different size ranges (0.5-10 µm and 10-3000 µm) relative to 1122 the total bio-volume of all particles detected. The data represent the mean value of triplicate measurement 1123 of the same sample (n = 3) with the corresponding technical error.

1124

1125 Fig 3: Quantification of biofilm formation and growth in suspension of strains PAO1, *AsiaA* and *AsiaB* with 1126 22 mM glucose, 20 mM succinate, 40 mM ethanol or 20 mM 2,3-butanediol in 24 well microtiter plates 1127 (growth of the $\Delta siaC$ and $\Delta siaD$ mutants are shown in **Fig S1**). Individual 24 well microtiter plates were 1128 used to quantify attached biofilms by crystal violet (CV) staining (grey bars) as well as the growth in the 1129 supernatant as OD₆₀₀ (black dots); substrate concentrations are shown (open circles). For crystal violet 1130 (CV) staining, the data are shown as the mean value of four biological replicates (n = 4). To reduce 1131 complexity, the standard deviation of replicates is shown as error bars. OD₆₀₀ and substrate concentrations 1132 represent the mean value from the same quadruplicates but quantified from pooled (1:1:1:1 [v/v/v/v]) 1133 samples using a photometer, the GO assay kit and specific HPLC methods, respectively (see Materials 1134 and Methods for details). All cultures were incubated at 30°C and 200 rpm shaking.

precursor ion matches for

peptide [LLYLNTSSIK]

non-phosphorylated

phosphorylated

non-phosphorylated

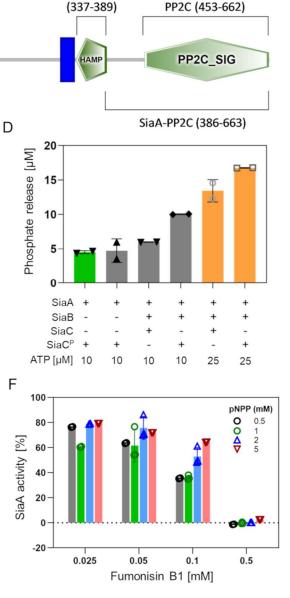
phosphorylated

non-phosphorylated

phosphorylated

non-phosphorylated

phosphorylated


Incubation

SiaC^P - SiaA-PP2C

SiaCP + SiaA-PP2C

SiaC + SiaB - ATP

SiaC + SiaB + ATP

HAMP

1135

Fig (PA0171) 1136 4: (A) Homology model of SiaB predicted using I-Tasser (https://zhanglab.ccmb.med.umich.edu/I-TASSER/) shown as cartoon with 80% transparent surface using 1137 the Pymol software (version 2.1.1). The predicted catalytic glutamic acid residue at position 61 is 1138 1139 highlighted (red sticks). (B) Representation of SiaA using the SMART online tool (http://smart.emblheidelberg.de/). The predicted PP2C SIG domain, the HAMP domain and the two membrane-spanning 1140 1141 regions (*blue bars*) are represented. (C) ATP consumption of SiaB measured by the ADP-Glo[™] assay kit. 1142 Assays were performed for 1 h at 37°C in 20 mM Tris-HCL [pH 7.5], 150 mM NaCl in the absence or the presence of 10 mM ATP. (D) Phosphate quantification using a malachite green assay after incubation. 1143 Reactions were performed for 1 h at 37°C with 0.5 µM SiaA or SiaB and 5 µM of SiaC or SiaC^P in 20 mM 1144 1145 Tris-HCL [pH 7.5], 150 mM NaCl buffer containing 20 mM MgCl₂ or MnCl₂ (green bar), and 10 or 25 µM 1146 ATP (orange bars) (E) Summary of shotgun peptide-mass spectrometry (PMS) results from analysis of SiaC purified from *E. coli* and the Δ *siaA* mutant after incubation with SiaB and SiaA-PP2C, respectively. 1147 Incubations were performed for 2 h at 30°C prior to separation by SDS-PAGE for PMS (see Material and 1148

PSMs

95

34

178

7

135

4

30

91

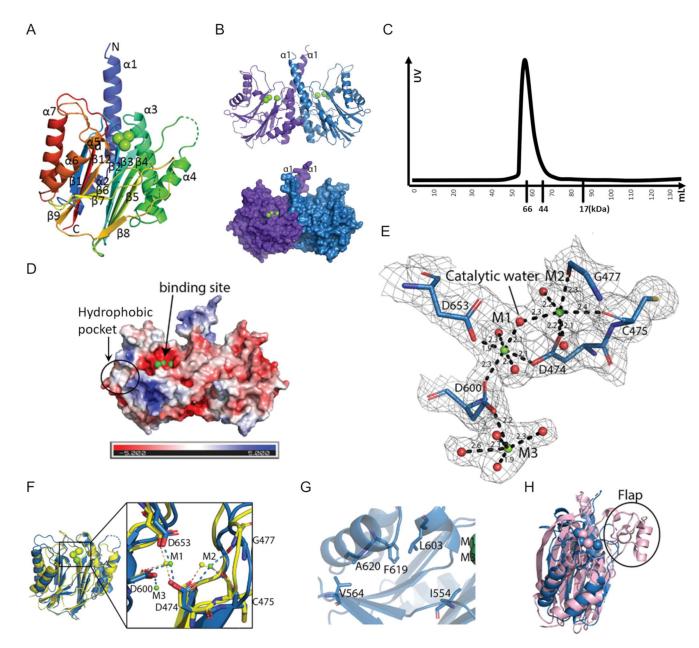
Peak area

1.9 x 10⁹

1.8 x 10⁸

3.7 x 10⁹

1.6 x 10⁷

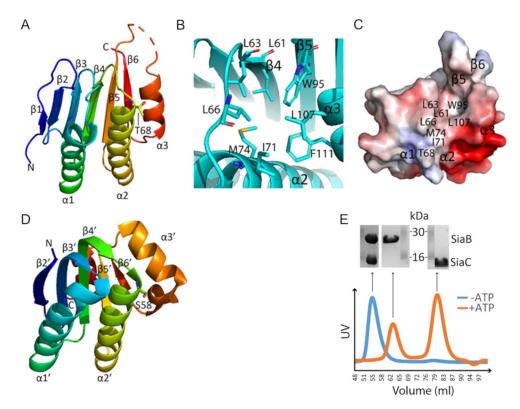

2.9 x 10⁹

1.3 x 10⁶

2.7 x 108

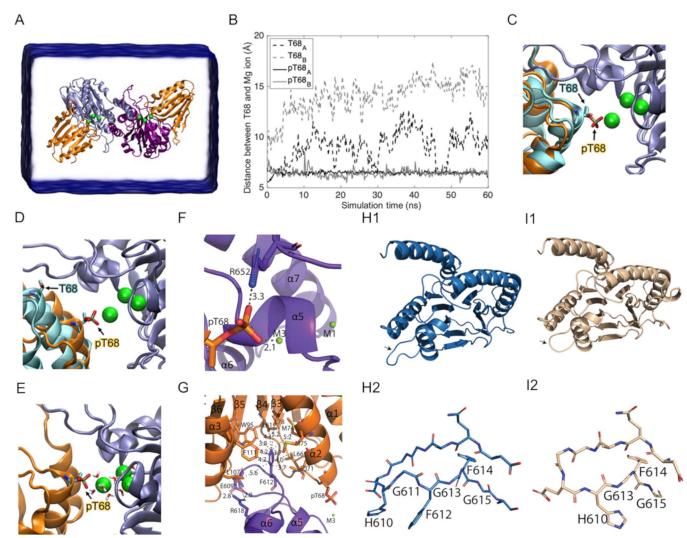
1.5 x 10⁹

1149 Methods) (**F**) Phosphatase activity of SiaA-PP2C in the presence of 0.5-5 mM of pNPP and 0-0.5 mM of 1150 fumonisin B1. Assays were performed in 150 mM NaCl, 20 mM Tris-HCl pH 7.5 at 37°C and measured as 1151 an increase in absorbance [405 nm]. The initial rate of reaction was calculated and expressed as a 1152 percentage compared to the untreated control. Data in **C**, **D** and **F** are presented as the average from at 1153 least two independent enzymatic assays (*bars*; n = 2-4) with the corresponding standard deviation of the 1154 mean (*error bars*) and the individual data points (*circles*). Results below the detection limit are indicated 1155 (*n.d.*).



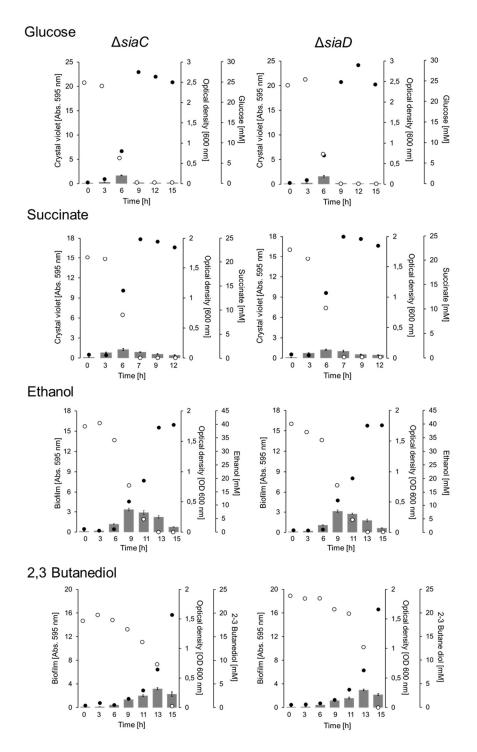
1156

1157 Fig 5: The SiaA-PP2C structure (PDB ID: 6K4E). (A) "Rainbow" representation of the SiaA-PP2C monomer. The N-terminus of SiaA-PP2C is coloured in blue and the C-terminus in red, with secondary 1158 1159 structures labelled. The three Mg²⁺ ions identified at the active site are represented as green spheres. (B) The SiaA-PP2C dimer displayed in cartoon (top) or surface (bottom). Monomer A is in purple and B in 1160 blue. (C) Size-exclusion chromatography of SiaA-PP2C. Elution volumes of markers are labelled below X-1161 1162 axis. (D) APBS surface electrostatic potential of SiaA-PP2C homodimer in the same orientation as in panel 1163 B. (E) Close-up view of the active site of the PP2C-like phosphatase domain of SiaA-PP2C with conserved acidic residues in the active site shown as sticks and labelled. An electron density map with Fourier 1164 1165 coefficients $2F_0$ - F_c is overlaid at a level of 1σ above the mean. The Mg²⁺ ions are shown as green spheres 1166 and the oxygen atoms of the coordinating water molecules are displayed as red spheres. M1 and M2 are 1167 both coordinated by oxygen atoms from three residues and three water molecules in an octahedral manner. Distances between the metal ions and the coordinating atoms are indicated. (F) Overlay of 1168 1169 SiaA PP2C monomer B (blue) and the phosphatase domain of Rv1364C (yellow). Mg2+ ions M1 and M2

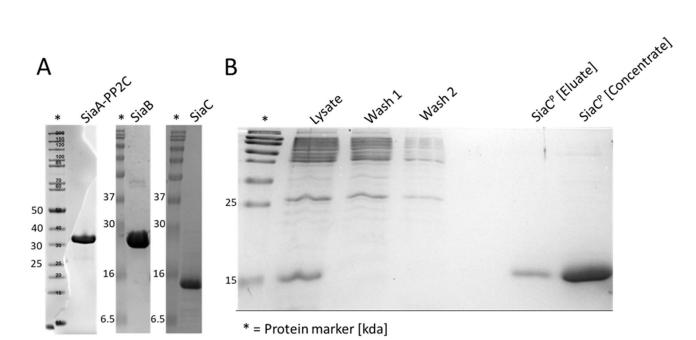

- 1170 of SiaA-PP2C shown as green spheres overlap with Mn²⁺ ions of Rv1643C (*yellow spheres*). The α1 and
- 1171 α2 helices of SiaA-PP2C are not displayed for clarity. (inset) Magnified view of the active site. Metal
- 1172 coordinating residues of SiaA-PP2C are labelled. (G) Residues of the hydrophobic pocket shown as sticks.
- 1173 (H) Superposition of SiaA monomer B (*blue*) and human PPM1A (*light pink*; PDB code 6B67-A). The Flap
- 1174 sub-domain of human PPM1A (absent in SiaA-PP2C) is circled.

bioRxiv preprint doi: https://doi.org/10.1101/674879; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

1175


Fig 6: (A) "Rainbow" representation of SiaC (PDB ID: 6K4F). The phosphorylation site T68 is shown as sticks. (B) Hydrophobic pocket of SiaC next to T68. (C) Surface electrostatic potential of SiaC with the hydrophobic pocket labelled. The structure is displayed in the same orientation as in panel B. (D) "Rainbow" representation of 4QTP. The phosphorylation site S58 is shown as sticks. (E) Size-exclusion chromatography profiles derived by UV-Absorption for SiaB/SiaC mixtures (1:1 molar ratio) in the presence (*orange line*) or absence (*blue line*) of 10 mM ATP and 20 mM MgCl₂. The SDS-PAGE analysis of the proteins causing the peaks in the size exclusion chromatography are shown above the profiles.

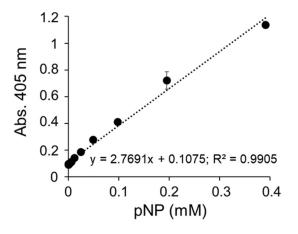
1183


1184 Fig 7: Binding of SiaA-PP2C to phosphorylated SiaC. (A) The simulated system using ZDOCK contains a SiaA-PP2C dimer (*blue/purple ribbon*) with SiaC (*cyan ribbon*) or SiaC^P (*orange ribbon*) docked to each 1185 SiaA-PP2C monomer. (B) Distance between Cα of T68/pT68 and Mg²⁺ ion (M3). Phosphorylated T68 of 1186 both SiaC^P (black and grey solid lines) remains coordinated with the Mg²⁺ ion (green sphere). 1187 Unphosphorylated T68 (black and grey dashed lines) dissociates from the Mg^{2+} ion in < 15 ns. The 1188 positions of T68 and Mg²⁺ ions before (C) and after the simulation (D) are displayed in the same color code 1189 1190 as in panel A. (E) The pT68 of SiaC^P is interacting with the bridging water molecules for the entire 60 ns 1191 of simulation. (F-G) Cartoon representations of specific parts of the SiaA-PP2C/SiaC^P complex after 60 ns of simulation (Supplementary zip-file). SiaC^P is coloured in orange; SiaA-PP2C dimer is coloured in 1192 1193 purple and blue (F) Interaction of pT68 with R652 and M3. R652 might be important for stabilisation of the complex through the formation of a salt bridge. pT68 remains in close proximity with M3 (2.1 Å). (G) F612 1194 interacts with the hydrophobic pocket of SiaC^P. Salt bridge formation between R618 and E609 in SiaA-1195 1196 PP2C might restrain the orientation of the flexible loop between α 5 and α 6 to accommodate its interaction 1197 with the hydrophobic pocket of SiaC^P. Cartoon representation of SiaA-PP2C (H1) and a homology model 1198 of the mutant allele SiaA-PP2C^{*} (I1) from the Δ *siaA* mutant (**Supplementary zip-file**), in which G611 and 1199 F612 at the flexible loop between α 5 and α 6 are deleted (*black arrows*). Stick representation of the flexible 1200 loop of SiaA-PP2C (H2) and SiaA-PP2C* (I2).

1201 Supporting Information

1202

1203 Fig S1: Growth of wild type and the $\triangle siaC$ and $\triangle siaD$ strains in M9 medium with 22 mM glucose, 20 mM 1204 succinate, 40 mM ethanol or 20 mM 2,3 butanediol at 30°C and 200 rpm shaking. Individual cell-culture 1205 treated, 24 well microtiter plates were used to quantify attached biofilms (grey bars), OD₆₀₀ of supernatants 1206 (black dots), and substrate concentrations (open circles) at various time points. Attached biofilms were 1207 quantified by a modified crystal violet (CV) staining and error bars represent the standard deviation of four 1208 biological replicates (n = 4). OD_{600} of supernatants and substrate concentrations represent the mean value 1209 from the same quadruplicates but quantified from pooled (1:1:1:1 [v/v/v/v]) samples using a photometer, 1210 the GO assay kit, and specific HPLC methods (see Material and Method for details).



1211

Fig S2: SDS-PAGE analysis of the purified SiaA-PP2C, SiaB, SiaC and SiaAPP2C* protein samples after purification. A) The purified SiaA phosphatase domain (amino acids 386-663 of the SiaA protein sequence; Genbank ID: NP_248862), the SiaB (Genbank-ID: 248862) and SiaC (Genbank-ID: NP_248860) proteins produced in *E. coli* after affinity chromatography and subsequent gel filtration. B) The purified SiaC protein

1216 (Genbank-ID: NP_248860) produced in the $\Delta siaA$ mutant (SiaC^P) after affinity chromatography (eluate)

1217 and subsequent protein concentration.

1218

Fig S3: Standard calibration curve of p-nitrophenolate (pNP) concentrations against absorbance (Abs. 405 nm) in phosphatase assay buffer (150 mM NaCl, 100 mM Tris-HCl pH 7.5).

	β1	β2	β3		α3
SiaA	2				22222222222
	450	460	470	480	490
SiaA	HHFILWKPRDVVG	GDFYVYREQ.AD) G Y L I G V V <mark>D</mark> C A	GHGVPGALM	ſMLARAAIDHA
Rv1364C	DIAAEYLVAAEDTAAG	G <mark>D</mark> WFDALAL.GC	RLVLVVG <mark>D</mark> VV	GHGVEAAAVI	MSQLRTALRMQ
SpoIIE	STGAAHAAKG.GGLVS				
RsbX	QTLVYQLNKEGKSIC	G <mark>D</mark> SFFMKAD.DK	KELICAVA <mark>D</mark> GI	GSGSLANES	SAAIKDLVENY
MtX	EVGIYTRAREGEIAC				
Stp-1	EAQFFTDTGQHRDKN	EDAGGIFYNQTN	IQQLLVLC <mark>D</mark> GM	GGHKAGEVA	SKFVTDELKSR

		α4			β4	β5
SiaA	2222	22222222222	2222		>	
	500 [.]	510	520	530	540	
SiaA	IEAVGSR	DPAAILGETDQA	MRSMLSQE	QIPQALATNM	DAGLVWVDRR	RRQLAF
Rv1364C	ISAGY	TVVEALEAVDRF	HKQVP	GSKSA	TMCVGSLDFT	SGEFQY
SpoIIE	LESGI	DEKIAIKTINSI	LSLRT.	TDEIYS	TLDLSIIDLQ	DASCKF
RsbX	ASE	~				~ ~
MtX	MNT	~				~ ~
Stp-1	FEAENLIEQHQAEN	WLRNNIKDINFQ	LYHYA.QE	NAEYK.GMGT	TCVCALVFE.	.KSVVI

AI.GD PL.GS
PI.GI (L.SG (LGYN /M.GT

SiaA			β9 α5 2000	2	<u>α6</u> <u>0000000000</u>	
	580	590	600	610	620	
SiaA					FGSRRFADMLRDHAR.Q	
Rv1364C					LEASTAEFADLAASIASAF	
SpoIIE		~			NHDLWMKRKMKGLKT.N	
RsbX	~				VPDIRSHLKKGQ	~
MtX	~	~	~		EGAVPLAL.LA.N	
Stp-1	DKRVSP	DLFIKRLNFYD	YLLLNS <mark>DG</mark> LTI	ΟΥ	VKDNEIKRLLV.K	ίEG

	α7	β10
SiaA	000000000000000000000000000000000000000	>
6	30 640 650	660
SiaA	PLPEQAEAFVATLAEYQGEHPQR	DDITILSFRFD
Rv1364C	PIDRLCSDTLELLLRSTGYN	DDVTLLAMQRR
SpoIIE	DPQEIADLLMEEVIRTRS.GQIE	DDMTVVVVRID
RsbX	SVEEISNSLKMYTTSRK	DDLTYILGQLS
MtX	YRLTAEELVRLIGEKYGRRD	DDVAVIVAR
Stp-1	TIEDHGDQLMQLALDNHSK	DNVTFILAAIE

1221

Fig S4: Structure-based sequence alignment of SiaA-PP2C against other PP2C-type phosphatases, identified by an automated search using the Dali server (ekhidna2.biocenter.helsinki.fi/dali) of 3D structures. Conserved residues are highlighted in red. Secondary structure features and residue number of SiaA-PP2C are labelled on top of the alignment.

1226

Table S1: Summary of peptide fingerprinting-mass analysis of the SiaC protein after various incubations. Analysis of SiaC^P (purified from *P. aeruginosa*) in the absence **(A)** and presence of the phosphatase domain of SiaA (SiaA-PP2C) **(B)** after incubation for 2 h at 30°C in phosphatase buffer. SiaC (purified from *E. coli*) and SiaB incubated in the absence **(C)** and presence **(D)** of ATP after incubation for 2 h at 30°C in kinase buffer. Subsequently, the SiaC protein was separated by SDS-PAGE; the SiaC-protein band was cut out of the gel and analysed by PF-MS.

Description	Score	Coverage	# Unique Peptides	# PSMs	Area	# AAs	MW [kDa]	calc. pl		
SiaC [Pseudomonas aeruginosa PAO1: NC_002516]	5852,44	73,02	8	318	1,3E+09	126		4,68		
Sequence	# PSMs	Modifications	Area	PEP	IonScore	Exp Value	Charge	MH+ [Da]	ΔM	R
AmmDILDLLEEAHQGGRPVSLR	1	M2(Oxidation);	1,7E+06	1,6E-01	27	1,0E-02	4	[Da] 2483,24	[ppm] 0,95	
AmMDILDLLEEAHQGGRPVSLR	2	M3(Oxidation) M2(Oxidation)	2,0E+06	1,1E-01	11	3,5E-01	4	2467,24	0,19	9 37
AMMDILDLLEEAHQGGRPVSLR	3		9,7E+05	4,8E-03	48	5,4E-05		2451,25		
EDcSFPFAIQAHDE	11	C3(Carbamidomethyl)	3,4E+07	2,7E-02	86	3,6E-09		1665,69		
FLADGQRPLELDLR	75		1,6E+09	1,6E-02	58	3,6E-06	3	1642,89		
LLYLNtSSIK	34	T6(Phospho)	1,8E+08	7,7E-02	44	1,1E-04	2	1231,63	0,64	13
LLYLNTSSIK	95		1,9E+09	1,2E-02	64	4,0E-07		1151,67	0,28	32
mSDLHIPGTQSTPAIQGDWQAGR	26	M1(Oxidation)	6,9E+07	3,7E-04	74	1,8E-07	3	2482,18	1,18	32
MSDLHIPGTQSTPAIQGDWQAGR	22		4,3E+08	2,2E-03	70	5,0E-07	3	2466,19	2,35	5 2
SDLHIPGTQSTPAIQGDWQAGR	e		6,6E+06	4,0E-02	53	2,0E-05	3	2335,14	0,58	32
VAELAEEFR	29		2,0E+08	1,5E-02	83	9,0E-09		1063,54		
VAELAEEFREDcSFPFAIQAHDE		C12(Carbamidomethyl)		3,2E-04	92	2,3E-09		2710,21		
Description	Score	Coverage	# Unique	# PSMs	Area	# AAs	MW	calc. pl		
SiaC [Pseudomonas aeruginosa	7095,27		Peptides 9		3,110E9	126	[kDa] 14,5	4,68		
PAO1: NC_002516]			5		0,11020	120	1,0	MH+	ΔM	
Sequence	# PSMs	Modifications	Area	PEP	IonScore	Exp Value	Charge	[Da]	[ppm]	
AmmDILDLLEEAHQGGRPVSLR	3	M2(Oxidation); M3(Oxidation)	5,6E+06	5,1E-02	26	1,3E-02	4	2483,24	-0,13	33
AmMDILDLLEEAHQGGRPVSLR	12	M2(Oxidation)	7,5E+06	4,7E-03	39	6,1E-04	4	2467,24	-0,01	13
AMMDILDLLEEAHQGGRPVSLR	2		3,9E+06	2,2E-02		3,6E-05		2451,25		
EDcSFPFAIQAHDE	3	C3(Carbamidomethyl)	9,1E+06	1,9E-02	80	1,3E-08	2	1665,69	1,51	13
FLADGQRPLELDLR	121		3,8E+09	9,0E-03	49	2,6E-05	3	1642,89	0,81	12
LLYLNtSSIK	7	T6(Phospho)	1,6E+07	8,0E-02		2,0E-03		1231,63		13
LLYLNTSSIK	178		3,7E+09	7,3E-03		2,5E-06		1151,67		
mSDLHIPGTQSTPAIQGDWQAGR		M1(Oxidation)	3,0E+08	1,3E-03		2,4E-07		2482,18		
MSDLHIPGTQSTPAIQGDWQAGR	41		1,8E+09	9,9E-04		2,0E-07		2466,18		
SDLHIPGTQSTPAIQGDWQAGR	5		1,7E+07	2,3E-03		1,3E-05		2335,15		
VAELAEEFR VAELAEEFREDcSFPFAIQAHDE		C12(Carbamidomethyl)	5,7E+07 5,8E+07	5,3E-03 4,9E-03	79 85	1,8E-08 1,3E-08		1063,54 2710,21		
WHYDR	2		1,6E+06	4,9E-03	21	7,5E-03		776,35		
			# Unique				MW		-0,00	,
Description	Score	Coverage	Peptides	# PSMs	Area	# AAs	[kDa]	calc. pl		
SiaC [Pseudomonas aeruginosa PAO1: NC_002516]	9385,72	92,86	9	501	2,115E9	126	14,5	4,68		
Sequence	# PSMs	Modifications	Area	PEP	IonScore	Exp Value	Charge	MH+ [Da]	ΔM [ppm]	T.
sequence								[Du]		լո
AmmDILDLLEEAHQGGRPVSLR	34	M2(Oxidation); M3(Oxidation)	2,3E+08	7,6E-12	63	2,6E-06	4	2483,24	0,56	
			2,3E+08 3,6E+08		63 74	2,6E-06 2,1E-07			0,56	3
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR	60	M3(Oxidation) M2(Oxidation)	3,6E+08 6,2E+07	7,6E-12 5,3E-11 6,8E-11	74 78	2,1E-07 5,3E-08	3	2483,24 2467,25 2451,25	0,56 1,45 1,58	3
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR EDcSFPFAIQAHDE	60 9 15	M3(Oxidation) M2(Oxidation) G3(Carbamidomethyl)	3,6E+08 6,2E+07 3,6E+07	7,6E-12 5,3E-11 6,8E-11 4,7E-08	74 78 74	2,1E-07 5,3E-08 4,5E-08	3	2483,24 2467,25	0,56 1,45 1,58 1,65	3
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR EDcSFPFAIQAHDE FLADGQRPLELDLR	60 9 19 105	M3(Oxidation) 0 M2(Oxidation) 0 GC3(Carbamidomethyl)	3,6E+08 6,2E+07 3,6E+07 2,5E+09	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06	74 78 74 50	2,1E-07 5,3E-08 4,5E-08 2,0E-05	3 3 2 3	2483,24 2467,25 2451,25 1665,69 1642,89	0,56 1,45 1,58 1,65 1,03	3 4 3 2
AmmDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGGRPLELDLR LLYLNtSSIK	60 9 19 105 2	M3(Oxidation) DM2(Oxidation) GC3(Carbamidomethyl) G T <mark>6(Phospho)</mark>	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02	74 78 74 50 31	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03	3 3 2 3 2	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63	0,56 1,45 1,58 1,65 1,03 0,74	3 3 4 3 2 3
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR EDcSFPFAIQAHDE FLADGQRPLELDLR LLYLNISSIK LLYLNISSIK	60 9 15 105 2 135	M3(Oxidation) DA2(Oxidation) C3(Carbamidomethyl) C3 T6(Phospho)	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06 2,9E+09	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06	74 78 74 50 31 70	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-08	3 3 2 3 2 2 2	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63 1151,67	0,56 1,45 1,58 1,65 1,03 0,74 0,71	3 3 4 3 2 3 3 2 3
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGGRPLELDLR LLYLINISSIK LSMQGDSYPENSYELFGQVIDWVER	60 9 15 105 2 135	M3(Oxidation) M2(Oxidation) C3(Carbamidomethyl) T6(Phospho) M3(Oxidation)	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03	74 78 74 50 31 70 17	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-08 1,2E-01	3 3 2 3 2 2 2 3	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63 1151,67 2978,36	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08	3 3 4 3 2 3 3 5
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR EDcSFPFAIQAHDE FLADGQRPLELDLR LLYLNISSIK LLYLNISSIK	60 9 19 105 2 135 1 38	M3(Oxidation) M2(Oxidation) C3(Carbamidomethyl) T6(Phospho) M3(Oxidation) BM1(Oxidation)	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13	74 78 74 50 31 70 17 80	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-08 1,2E-01 5,3E-08	3 3 2 3 2 2 3 3 3	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63 1151,67 2978,36 2482,18	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99	3 3 4 3 2 3 2 5 2
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LIVINTSSIK LIVINTSSIK LSmQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR	60 9 15 105 2 135	M3(Oxidation) M2(Oxidation) C3(Carbamidomethyl) C3(Carbamidomethyl) M3(Oxidation) M1(Oxidation)	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03	74 78 74 50 31 70 17	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-08 1,2E-01	3 3 2 3 2 2 3 3 3 3 3	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63 1151,67 2978,36	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99 1,46	3 3 4 3 2 3 2 5 2 2
AmmDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LLYLNISSIK LLYLNISSIK LSmQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR	60 19 105 2 135 135 38 32	M3(Oxidation) M2(Oxidation) C3(Carbamidomethyl) T6(Phospho) M3(Oxidation) M1(Oxidation)	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08 8,4E+08	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11	74 78 74 50 31 70 17 80 65	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-08 1,2E-01 5,3E-08 1,9E-06	3 3 2 3 2 2 3 3 3 3 3 3 3 3	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63 1151,67 2978,36 2482,18 2466,19	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99 1,46 -0,20	3 3 4 3 2 3 2 5 2 2 2 2 2
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LIYLNISSIK LSmQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR	60 9 105 105 135 135 138 32 32 7 7	M3(Oxidation) M2(Oxidation) C3(Carbamidomethyl) T6(Phospho) M3(Oxidation) M1(Oxidation)	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08 8,4E+08 9,5E+06 1,6E+07 9,9E+08	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 5,5E-10	74 78 74 50 31 70 17 80 65 58	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-08 1,2E-01 5,3E-08 1,9E-06 6,8E-06	3 3 2 3 2 3 3 3 3 3 3 2	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63 1151,67 2978,36 2482,18 2466,19 2335,14	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99 1,46 -0,20 0,35	3 3 4 3 2 3 2 5 2 2 2 2 2 2 2 2 2 2 2
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LIYLNTSSIK LIYLNTSSIK LSmQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR MSDLHIPGTQSTPAIQGDWQAGR VAELAEEFR	60 9 105 105 135 135 138 32 32 7 7	M3(Oxidation) M2(Oxidation) C3(Carbamidomethyl) T6(Phospho) M3(Oxidation) M1(Oxidation)	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08 8,4E+08 9,5E+06 1,6E+07	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 5,5E-10 7,1E-09	74 78 74 50 31 70 17 80 65 58 66	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-08 1,2E-01 5,3E-08 1,9E-06 6,8E-06 4,4E-07	3 3 2 3 2 3 3 3 3 3 3 2	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63 1151,67 2978,36 2482,18 2466,19 2335,14 1063,54	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99 1,46 -0,20 0,35	3 3 4 3 2 3 2 5 2 2 2 2 2 2 2 2 2 2 2
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LIYLNISSIK LSmQGDSYPENSYLEFQQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR NSDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR VAELAEEFR VAELAEEFR	60 9 19 105 2 135 1 38 32 7 2 55	M3(Oxidation) M2(Oxidation) C3(Carbamidomethyl) T6(Phospho) M3(Oxidation) M1(Oxidation) M1(Oxidation) C12(Carbamidomethyl) Coverage	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08 8,4E+08 9,5E+06 1,6E+07 9,9E+08 # Unique	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 5,5E-10 7,1E-09 1,0E-14 # PSMs	74 78 74 50 31 70 17 80 65 58 66 94	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-08 1,2E-01 5,3E-08 1,9E-06 6,8E-06 4,4E-07 1,6E-09	3 3 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63 1151,67 2978,36 2482,18 2466,19 2335,14 1063,54 2710,21	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99 1,46 -0,20 0,35	3 3 4 3 2 3 3 2 3 2 5 2 2 2 2 2 2 2 2 2 2 2 2
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LLYLINSSIK LSmQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR MSDLHIPGTQSTPAIQGDWQAGR VAELAEER VAELAEERR VAELAEERR VAELAEFREDCSFPFAIQAHDE Description SiaC [Pseudomonas aeruginosa	60 5 105 4 135 13 32 32 55 55 55 55	M3(Oxidation) M2(Oxidation) C3(Carbamidomethyl) T6(Phospho) M3(Oxidation) M1(Oxidation) M1(Oxidation) C12(Carbamidomethyl) Coverage	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08 8,4E+08 9,5E+06 1,6E+07 9,9E+08 # Unique Peptides	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 5,5E-10 7,1E-09 1,0E-14 # PSMs	74 78 74 50 31 70 17 80 65 58 66 94 Area	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9, 9,E -08 1,9E-06 6,8E-06 4,4E-07 1,6E-09 # AAs	3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63 1151,67 2978,36 2482,18 2482,18 2466,19 2335,14 1063,54 2710,21 calc. pl 4,68 MH+	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99 1,46 -0,20 0,35 1,66	3 3 4 3 2 3 2 5 2 2 2 2 2 2 3
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LIVINTSSIK LSmQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR MSDLHIPGTQSTPAIQGDWQAGR VAELAEER VAELAEERR VAELAEERR VAELAEERR VAELAEERR VAELAEERR VAELAEERR VAELAEERR VAELAEERR VAELAEERR VAELAEERR	60 9 105 2 135 135 132 132 132 132 132 132 132 132 132 132	M3(Oxidation) M2(Oxidation) 5 C3(Carbamidomethyl) 5 T5(Phospho) 5 M3(Oxidation) 8 M1(Oxidation) 9 C12(Carbamidomethyl) Coverage 76,98	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08 8,4E+08 9,5E+06 1,6E+07 9,9E+08 # Unique Peptides 9	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 5,5E-10 7,1E-09 1,0E-14 # PSMs 428	74 78 74 500 311 70 17 80 65 58 66 94 Area 1,494E9	2,1E-07 5,3E-08 2,0E-05 1,8E-03 9,8E-08 1,2E-01 5,3E-08 1,9E-06 6,8E-06 4,4E-07 1,6E-09 # AAs 126	3 3 2 3 3 3 3 3 3 3 3 3 3 4 5 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63 1151,67 2978,36 2482,18 2482,18 2466,19 2335,14 1063,54 2710,21 calc. pl 4,68 MH+	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99 1,46 -0,20 0,35 1,66	3 3 4 3 2 5 2 2 2 2 2 2 2 3
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LLYLINTSSIK LSmQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR MSDLHIPGTQSTPAIQGDWQAGR VAELAEERR VAELAEEFREDCSFPFAIQAHDE Description SiaC [Pseudomonas aeruginosa PAO1: NC_002516] Sequence	60 9 19 10 13 32 7 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	M3(Oxidation) M2(Oxidation) C3(Carbamidomethyl) T6(Phospho) M3(Oxidation) M1(Oxidation) C12(Carbamidomethyl) C12(Carbamidomethyl) Coverage 76,98 Modifications	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08 8,4E+08 8,4E+08 9,5E+06 1,6E+07 9,9E+08 # Unique Peptides 9 Area	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 5,5E-10 7,1E-09 1,0E-14 # PSMs 428 PEP	74 78 74 50 31 70 65 58 66 94 Area 1,494E9 IonScore	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9, 8E-06 1,2E-01 5,3E-08 1,9E-06 4,4E-07 1,6E-09 # AAs 126 Exp Value	3 3 2 3 3 3 3 3 3 3 2 3 3 4 5 5 8 6 14,5 5 6 14,5 5 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63 1151,67 2978,36 2482,18 2482,18 2466,19 2335,14 1063,54 2710,21 calc. pl 4,68 MH+ [Da]	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99 1,46 -0,20 0,35 1,66 ΔΜ [ppm] 1,40	3 3 4 3 2 3 2 2 2 2 2 2 2 2 2 3 3 1 2 2 2 2 2
AmmDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LIVINTSSIK LIVINTSSIK LIVINTSSIK SDLHIPGTQSTPAIQGDWQAGR MSDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR VAELAEEFR VAELAEEFR VAELAEEFR VAELAEEFR VAELAEEFR SDL Pseudomonas aeruginosa PAO1: NC_002516] Sequence AmmDILDLLEEAHQGGRPVSLR	60 9 15 105 2 332 32 7 2 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	M3(Oxidation) M2(Oxidation) M2(Oxidation) G3(Carbamidomethyl) T6(Phospho) M3(Oxidation) M1(Oxidation) C12(Carbamidomethyl) C02(Carbamidomethyl) C02(Carbamidomethyl) C02(Carbamidomethyl) M3(Oxidation); M3(Oxidation) M3(Oxidation) M3(Oxidation)	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08 8,4E+08 9,5E+06 1,6E+07 9,9E+08 # Unique Peptides 9 Area 6,0E+07	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 5,5E-10 7,1E-09 1,0E-14 # PSMs 428 PEP 3,1E-08	74 78 74 50 31 70 17 80 65 58 66 94 Area 1,494E9 IonScore 54 79	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-08 1,2E-01 5,3E-08 1,9E-06 6,8E-06 4,4E-07 1,6E-09 # AAs 1226 Exp Value 1,7E-05	3 2 3 2 2 3 3 3 3 3 2 3 3 2 3 1 4,5 2 6 harge 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63 1151,67 2978,36 2482,18 2466,19 2335,14 1063,54 2710,21 calc. pl 4,68 MH+ [Da] 2483,24	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99 1,46 -0,20 0,35 1,66 (ppm] 1,40 4,87	3 3 4 3 2 2 5 2 2 2 2 3 3 1 2 2 2 3 1 3 1 3 1 3 1 3 1
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LLYLINTSSIK LSmQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR VAELAEEFR VAELAEEFR VAELAEEFREDCSFPFAIQAHDE Description SiaC [Pseudomonas aeruginosa PAO1: NC_002516] Sequence AmmDILDLLEEAHQGGRPVSLR	60 9 15 105 2 332 32 7 2 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	M3(Oxidation) M2(Oxidation) C3(Carbamidomethyl) T6(Phospho) M3(Oxidation) M1(Oxidation) C12(Carbamidomethyl) C012(Carbamidomethyl) C012(Carbamidomethyl) M0(Oxidation); M3(Oxidation); M3(Oxidation) M3(Oxidation)	3,6E+08 6,2E+07 3,6E+07 2,5E+09 4,3E+06 1,6E+08 8,4E+08 8,4E+08 8,4E+08 9,5E+06 1,6E+07 9,9E+08 9 Area 6,0E+07 5,8E+07	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 5,5E-10 7,1E-09 1,0E-14 # PSMs 428 PEP 3,1E-08 3,1E-08	74 78 74 50 31 70 17 80 65 58 66 94 Area 1,494E9 IonScore 54 79	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-06 1,2E-01 5,3E-08 1,9E-06 4,4E-07 1,6E-09 # AAs 126 Exp Value 1,7E-05 5,7E-08	3 3 2 3 3 3 3 3 3 3 3 2 3 3 4 5 5 6 14,5 5 6 14,5 5 6 14,5 5 6 14,5 5 7 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63 1151,67 2978,36 2482,18 2466,19 2335,14 1063,54 2710,21 calc. pl 4,68 MH+ [Da] 2483,24 2467,26	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99 1,40 0,35 1,66 ΔΜ [ppm] 1,40 4,87 0,61	3 3 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LIVINTSSIK LSmQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR MSDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR VAELAEEFR VAELAEFREDCSFPFAIQAHDE Description SiaC [Pseudomonas aeruginosa PAO1: NC_002516] Sequence AmmDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR	600 911 105 4 138 322 55 50 50 50 50 50 50 50 50 50	M3(Oxidation) M2(Oxidation) C3(Carbamidomethyl) T6(Phospho) M3(Oxidation) M1(Oxidation) M1(Oxidation) C12(Carbamidomethyl) C02(Carbamidomethyl) M3(Oxidation); M3(Oxidation) M2(Oxidation)	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08 8,4E+08 9,5E+06 1,6E+07 9,9E+08 # Unique Peptids 9 Area 6,0E+07 5,8E+07 7,6E+06	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 5,5E-10 7,1E-09 1,0E-14 # PSMs 428 PEP 3,1E-08 3,1E-09 4,7E-09	74 78 74 50 31 70 17 80 65 88 66 94 1,494E9 1,494E9 1,494E9 1,494E9 54 54 79 51	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-08 1,2E-01 5,3E-08 1,9E-06 6,8E-06 4,4E-07 1,6E-09 # AAs 126 Exp Value 1,7E-05 5,7E-08 2,7E-05	3 3 2 2 3 3 3 3 3 2 2 3 3 2 2 3 3 4,5 5 4,5 5 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3	2483,24 2467,25 2451,25 1665,69 1642,899 11642,899 2710,21 2482,18 2466,19 2335,14 2482,18 2462,19 2482,18 2482,18 2482,12 2482,12 2483,24 2467,25 1665,69 1642,89	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99 1,46 -0,20 0,35 1,66 ΔM [ppm] 1,40 4,87 0,61 0,48 0,03	3 3 4 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2
AmmDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LIVILNSSIK LSmQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR MSDLHIPGTQSTPAIQGDWQAGR VAELAEER VAELAEERR VAELAERR VAELAEERR VAELA	66(5 1050) 133(333) 133(333) 555 555 555 555 555 555 55	M3(Oxidation) M2(Oxidation) C3(Carbamidomethyl) T6(Phospho) M3(Oxidation) M1(Oxidation) C12(Carbamidomethyl) C012(Carbamidomethyl) M3(Oxidation); M3(Oxidation); M3(Oxidation) M2(Oxidation) M2(Oxidation) M2(Oxidation) M2(Oxidation)	3,6E+08 6,2E+07 3,6E+07 2,5E+09 4,3E+06 1,6E+08 8,4E+08 8,4E+08 8,4E+08 9,5E+06 1,6E+07 9,9E+08 # Unique 9 Area 6,0E+07 5,8E+07 7,6E+06 9,7E+07 1,8E+09 1,8E+09	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 5,5E-10 7,1E-09 1,0E-14 # PSMs 428 PEP 3,1E-08 3,1E-08 3,1E-09 4,7E-09 1,0E-08 3,2E-05	74 78 74 50 31 70 17 80 65 58 66 94 Area 1,494E9 IonScore 54 79 51 76 54	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-06 9,8E-06 6,8E-06 4,4E-07 1,6E-09 # AAs 126 Exp Value 1,7E-05 5,7E-08 2,7E-05 3,6E-08 9,3E-06 2,7E-06	3 3 2 2 2 3 3 3 3 3 3 3 2 2 3 3 (kDa] 14,5 Charge 3 3 3 3 3 3 3 2 2 2 3 3	2483,24 2467,25 2451,25 1665,69 1642,89 1151,67 2978,36 2482,18 2466,19 2335,14 1063,54 2710,21 4,68 MIH+ [Da] 2483,24 2483,24 2463,25 1665,69 1656,69 1231,655,69 1231,655,69	0,56 1,45 1,58 1,58 1,65 1,03 0,74 0,71 1,99 1,46 -0,20 0,35 1,66 ΔM [ppm] 1,46 4,87 0,61 1,45 0,20 0,35 1,66 ΔM 4,87 0,68 0,48 0,48 1,69 1,69 1,99 1,45 1,99 1,99 1,99 1,99 1,46 1,99 1,99 1,99 1,99 1,46 1,99 1,99 1,46 1,99 1,99 1,46 1,99 1,46 1,99 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,65 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,99 1,46 1,487 1,948 1	3 3 4 3 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
AmmDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LIVINTSSIK LSmQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR MSDLHIPGTQSTPAIQGDWQAGR VAELAEEFR VAELAEEFR VAELAEFREDCSFPFAIQAHDE SiaC (Pseudomonas aeruginosa PAO1: NC_002516] Sequence AmmDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LIVINTSSIK	66(5 11 13 13 13 13 13 13 13 13 13	M3(Oxidation) M2(Oxidation) M2(Oxidation) C3(Carbamidomethyl) M3(Oxidation) M3(Oxidation) M3(Oxidation) C12(Carbamidomethyl) Coverage Modifications M3(Oxidation); M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation)	3,6E+08 6,2E+07 3,6E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08 8,4E+08 9,5E+06 1,6E+07 9,9E+08 # Unique Peptides 9 Area 6,0E+07 5,8E+07 7,6E+06 9,7E+07 1,8E+09 1,5E+09 2,7E+08	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 5,5E10 7,1E-09 1,0E-14 # PSMs 428 PEP 3,1E-08 3,1E-09 4,7E-09 1,1E-09 1,1E-09 1,1E-09 1,0E-08 3,2E-05 8,9E-09	74 78 74 50 31 70 17 80 65 58 66 94 1,494E9 1,494E9 1,494E9 1,494E9 1,494E9 54 54 79 51 76 54 60 66	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-08 1,2E-01 5,3E-08 1,2E-01 5,3E-08 4,4E-07 1,6E-09 # AAs 126 Exp Value 1,7E-05 5,7E-08 2,7E-06 3,6E-08 9,3E-06 2,7E-06 2,3E-07	3 3 2 2 2 2 3 3 3 3 3 2 2 3 14,5 Charge 3 3 3 3 3 2 2 2 2 2 2 2 2	2483,24 2467,25 2451,25 1665,69 1642,89 1231,63 2978,36 2978,36 2978,36 2978,36 2978,36 2978,36 2978,36 2978,36 2978,36 2010,24 2482,24 2482,24 2483,24 2451,25 21665,69 1151,67 2351,57 2351,57 2351,57 2351,57 2451,57 25165,59 2152,57 2351,57 2351,57 2351,57 2451,57 2516,57 2451,57 2516,57 2451,57 2516,57 2451,57 2516,57 2451,57 2516,57 2451,57 2516,57 2451,57 2516,57 2451,57 2516,57 2451,57 2516,57 2451,57 2516,57 2451,57 2516,57 2451,57 2516,57 2451,57 2516,57 2451,57 2516,57 2451,57 2516,57 2451,57 2516	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99 1,46 -0,20 0,35 1,66 ΔM [ppm] 1,40 4,87 0,61 0,49 0,33 1,24 0,49	3 3 4 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2
AmmDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LIYINTSSIK LISMQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR MSDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR VAELAEEFR VAELAEEFR VAELAEEFR VAELAEEFR VAELAEEFR VAELAEEFR VAELAEEFR VAELAEEFR VAELAEEFR VAELAEEFR VAELAEEFR VAELA	666 5 11 10 13 33 33 7 2 555 555 555 555 555 7632,288 # PSMs 14 322 2 155 838 337 7632,288 14 322 15 33 33 488 33 33 33 33 33 33 33 33 33 33 33 33 3	M3(Oxidation) M2(Oxidation) C3(Carbamidomethyl) M3(Oxidation) M1(Oxidation) M1(Oxidation) C12(Carbamidomethyl) C2(Carbamidomethyl) M2(Oxidation); M3(Oxidation) M2(Oxidation) M2(Oxidation) M2(Oxidation) M2(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation)	3,6E+08 6,2E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08 8,4E+08 9,5E+06 1,6E+07 9,9E+08 # Unique Peptides 9 Area 6,0E+07 5,8E+07 5,8E+07 5,8E+07 1,8E+09 1,5E+09 2,7E+08 4,2E+08	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 5,5E-10 7,1E-09 1,0E-14 # PSMs 428 PEP 3,1E-08 3,1E-08 3,1E-09 1,0E-08 3,2E-05 8,9E-09 2,2E-15	74 78 74 50 31 70 17 80 65 8 8 66 94 1,494E9 1,494E9 1,494E9 1,494E9 1,494E9 51 54 54 66 60 66 66 60 100	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-08 1,2E-01 5,3E-08 1,2E-01 5,3E-08 4,4E-07 1,6E-09 # AAs 126 Exp Value 1,7E-05 5,7E-08 2,7E-05 3,6E-08 9,3E-06 2,7E-06 2,3E-07 4,3E-10	3 3 2 2 3 3 3 3 3 2 2 3 3 14,5 Charge 3 3 2 2 3 3 2 2 3 3 2 2 2 3 3 3 2 2 3	2483,24 2467,25 2451,25 1665,69 1642,899 11642,899 2731,63 1151,67 2978,36 2482,18 2466,19 2483,24 2482,18 2482,18 2482,18 2483,24 2467,26 2482,18 2482,18	0,56 1,45 1,58 1,65 1,03 0,74 3,08 1,99 1,46 -0,20 0,35 1,66 ΔM [ppm] 1,40 4,87 0,61 0,48 0,03 1,24 0,49 2,29	3 3 4 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LIVLINSSIK LISMQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR	66(5 11 1000 13 33 33 2 55 55 55 55 55 55 7632,28 # PSMs 14 32 2 2 33 55 55 55 55 55 55 55 55 55 55 55 55	M3(Oxidation) M2(Oxidation) C3(Carbamidomethyl) T6(Phospho) M3(Oxidation) M1(Oxidation) C12(Carbamidomethyl) C012(Carbamidomethyl) C012(Carbamidomethyl) M3(Oxidation); M3(Oxidation) M2(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation)	3,6E+08 6,2E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08 8,4E+08 8,4E+08 9,9E+08 # Unique Peptides 9 Area 6,0E+07 5,8E+07 7,6E+06 9,7E+07 1,8E+09 1,8E+09 1,2E+08 4,2E+08 4,2E+08	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 5,5E-10 7,1E-09 1,0E-14 # PSMs 428 PEP 3,1E-08 3,1E-08 3,1E-09 4,7E-09 1,1E-09 1,0E-08 3,2E-05 8,9E-09 2,2E-15 1,9E-12	74 78 74 50 31 70 65 58 66 94 Area 1,494E9 IonScore 54 79 51 76 54 60 66 64 60 66	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-06 9,8E-06 6,8E-06 4,4E-07 1,6E-09 # AAs 126 Exp Value 1,7E-05 5,7E-08 2,7E-05 3,6E-08 9,3E-06 2,7E-06 2,	3 3 2 2 3 3 3 3 3 3 3 3 2 2 4,5 5 7 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	2483,24 2467,25 2451,25 1665,69 1642,89 1151,67 2978,36 2482,18 2482,18 2466,19 2335,14 1063,54 2710,21 calc. pl 4,68 MH+ [Da] 2483,24 2467,26 2451,25 1665,69 1642,89 1231,65 1642,89 1234,65 ,19 2482,24 2466,19	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99 1,46 0,35 1,66 ΔΜ [ppm] 1,40 4,87 0,61 0,48 0,48 0,48 0,48 0,48 0,49 2,29 2,27	33 34 37 24 37 24 37 25 27 27 37 37 37 37 37 37 37 37 37 3
AmmDILDLLEEAHQGGRPVSLR AMMDILDLLEEAHQGGRPVSLR EDCSPFAQAAHDE FLADGQRPLELDLR LIVINTSSIK LSmQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR MSDLHIPGTQSTPAIQGDWQAGR VAELAEER VAELAEERR VAELAER	660 9 10 10 10 10 10 10 10 10 10 10	M3(Oxidation) M2(Oxidation) M2(Oxidation) C3(Carbamidomethyl) M3(Oxidation) M1(Oxidation) C12(Carbamidomethyl) C0verage Modifications M2(Oxidation); M3(Oxidation) M2(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation)	3,6E+08 6,2E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08 8,4E+08 9,5E+06 1,6E+07 9,9E+08 # Unique Peptids 9 Area 6,0E+07 5,8E+07 7,6E+06 9,7E+07 1,8E+09 2,7E+08 1,1E+09	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 1,55E-10 7,1E-09 1,0E-14 # PSMs 428 PEP 3,1E-08 3,1E-09 1,0E-02 1,0E-09 1,0E-02	74 78 74 50 31 70 17 80 65 58 66 94 1,494E9 1,494E9 1,494E9 1,494E9 51 76 54 60 66 100 75 53	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-08 6,8E-06 4,4E-07 1,6E-09 # AAs 126 Exp Value 1,7E-05 5,7E-08 2,7E-06 3,6E-08 9,3E-06 2,3E-07 4,3E-10 2,0E-07 1,9E-05	3 3 2 2 2 3 3 3 3 3 2 2 14,5 14,5 14,5 2 Charge 3 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	2483,24 2467,25 2451,25 1665,69 1642,89 231,63 2482,18 2482,18 2482,18 2465,19 2335,14 1063,54 2710,21 calc, pl 4,68 MH+ [Da] 2483,24 2451,25 1665,69 1642,89 1151,67 2482,18 2465,19 2335,15	0,56 1,45 1,58 1,65 1,03 0,74 3,08 1,99 1,46 -0,20 0,35 1,66 ΔM [ppm] 1,40 4,87 0,61 4,87 0,64 9,03 1,24 0,49 2,27 2,39	i 36 37 41 31 28 31 29 31 29 31 29 31 29 31 31 31 31 31 31 31 31 31 31
AmmDILDLLEEAHQGGRPVSLR AmMDILDLLEEAHQGGRPVSLR EDCSFPFAIQAHDE FLADGQRPLELDLR LIVLINSSIK LISMQGDSYPENSYELFGQVIDWVER mSDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR SDLHIPGTQSTPAIQGDWQAGR	666 5 11 10 13 33 37 7 2 555 555 555 555 7632,228 # PSMs 14 32 2 155 838 838 911 33 3488 488 435 555	M3(Oxidation) M2(Oxidation) M2(Oxidation) C3(Carbamidomethyl) M3(Oxidation) M1(Oxidation) C12(Carbamidomethyl) C0verage Modifications M2(Oxidation); M3(Oxidation) M2(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation) M3(Oxidation)	3,6E+08 6,2E+07 2,5E+09 1,3E+06 2,9E+09 4,3E+05 1,6E+08 8,4E+08 9,5E+06 1,6E+07 9,9E+08 # Unique Peptides 9 Area 6,0E+07 5,8E+07 7,6E+06 9,7E+07 1,8E+09 1,5E+09 2,7E+08 4,2E+08 1,1E+07	7,6E-12 5,3E-11 6,8E-11 4,7E-08 4,6E-06 3,7E-02 1,4E-06 3,8E-03 7,5E-13 1,7E-11 5,5E-10 7,1E-09 1,0E-14 # PSMs 428 PEP 3,1E-08 3,1E-08 3,1E-09 4,7E-09 1,1E-09 1,0E-08 3,2E-05 8,9E-09 2,2E-15 1,9E-12	74 78 74 50 31 70 17 80 65 88 66 94 1,494E9 1,494E9 1,494E9 1,494E9 54 54 54 66 66 66 66 66 66 6100 75 53 379	2,1E-07 5,3E-08 4,5E-08 2,0E-05 1,8E-03 9,8E-06 9,8E-06 6,8E-06 4,4E-07 1,6E-09 # AAs 126 Exp Value 1,7E-05 5,7E-08 2,7E-05 3,6E-08 9,3E-06 2,7E-06 2,	3 3 2 2 2 2 3 3 3 3 2 2 3 3 14,5 14,5 Charge 3 3 3 3 2 2 2 3 3 3 3 2 2 2 3 3 3 3 2 2 3 3 3 2 2 3	2483,24 2467,25 2451,25 1665,69 1642,89 1151,67 2978,36 2482,18 2482,18 2466,19 2335,14 1063,54 2710,21 calc. pl 4,68 MH+ [Da] 2483,24 2467,26 2451,25 1665,69 1642,89 1231,65 1642,89 1234,65 ,19 2482,24 2466,19	0,56 1,45 1,58 1,65 1,03 0,74 0,71 3,08 1,99 1,46 -0,20 0,35 1,66 ΔM [ppm] 1,40 4,87 0,61 0,48 0,03 1,24 0,48 0,29 2,29 2,27 2,39 0,24	i 36 i 37 i 41 i 31 i 28 i 31 i 28 i 31 i 28 i 31 i 28 i 31 i 28 i 29 i 21 i 38 i 31 i 28 i 31 i 31 i 31 i 31 i 31 i 31 i 31 i 31

- 1234 **Table S2**: X-ray diffraction data collection, solution and statistics of the native and SeMet crystals of SiaA-
- 1235 PP2C and SiaC.

	SiaA Native	SiaA SeMet	SiaC Native	SiaC SeMet
Wavelength (Å)	0.9764	0.979	0.9801	0.9766
Resolution range (Å)	49.81 - 2.094	27.35 - 2.49	57.96 - 1.735	38.74 - 2.94
	(2.169 - 2.094)	(2.579 - 2.49)	(1.797 - 1.735)	(3.045 - 2.94)
Space group	P 21 21 21	P 21 21 21	1222	P 31 2 1
Unit cell (Å)	51.17 110.48 111.6 90 90 90	51.354 109.416 111.46 90 90 90	35.4 72.8 95.8 90 90 90	77.482 77.482 85.02 90 90 120
Total reflections	205960 (19009)	606993 (59041)	116718 (7271)	130598 (12091)
Unique reflections	37739 (3471)	22684 (2229)	13113 (1176)	6550 (603)
Multiplicity	5.5 (5.5)	26.8 (26.5)	8.9 (6.2)	19.9 (19.9)
Completeness (%)	99.18 (93.11)	99.85 (99.82)	98.94 (90.81)	99.53 (96.20)
Mean I/sigma (I)	7.20 (0.99)	20.17 (1.65)	12.05 (0.90)	21.22 (1.56)
Wilson B-factor (Å ²)	41.65	66.72	34.21	97.73
R-merge	0.1603 (1.432)	0.1411 (1.813)	0.09846 (1.129)	0.1306 (1.444)
CC1/2	0.993 (0.461)	0.998 (0.752)	0.998 (0.62)	0.999 (0.784)
R-work	0.2177 (0.3346)	0.2055 (0.2768)	0.1972 (0.3956)	0.2122 (0.3450)
R-free	0.2522 (0.3782)	0.2542 (0.3665)	0.2348 ´ (0.4305)	0.2812 (0.4126)
RMS (bonds) (Å)	0.014	0.014	Ò.008	0.015
RMS (angles) (°)	1.71	1.77	1.19	1.82
Ramachandran outliers (%)	0.00	0.00	0.00	0.41
Rotamer outliers (%)	3.73	4.07	0.00	12.50
Clashscore	2.80	3.23	2.65	8.62
Average B-factor (Å ²)	53.79	71.23	43.58	106.10

1236

1237 **Table S3.** Strains and plasmids used in the study.

Strains	Relevant features	Reference
P. aeruginosa		
PAO1	Wild-type Pseudomonas aeruginosa	Holloway Collection
∆siaA	PAO1 with a 6 bp deletion in <i>siaA</i>	[1]
∆siaB	PAO1 with a markerless <i>loxP</i> -site insertion in <i>siaB</i> (PA0171)	This study
∆siaC	PAO1 with a markerless <i>loxP</i> -site insertion in <i>siaC</i> (PA0170)	This study
∆siaD	PAO1 with a markerless <i>res</i> -site insertion in <i>siaD</i> (KO0169)	[1]
PW1292	MPAO1 with transposon phoAwp091G03 inserted at bp 311 of the coding region of the <i>siaB</i> gene[[2]
PW1290	PW1290 MPAO1 with transposon phoAwp09q2A10 inserted at bp 181 of the coding region of the <i>siaC</i> gene	
E. coli		
DH5a	fhuA2 lac(del)U169 phoA glnV44 Φ80' lacZ(del)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17	[3]
S17-λpir	Tp ^r Sm ^r <i>recA, thi, pro, hsdR-</i> M ⁺ RP4: 2-Tc:Mu: Km ^r Tn7 λpir	[4]
BL21(DE3) Rosetta T1R $E. \ coli \ str. \ B \ F^- \ ompT \ gal \ dcm \ lon \ hsdS_B(r_B^-m_B^-) \ \lambda(DE3 \ [lacl \ lacUV5-T7p07 \ ind1 \ sam7 \ nin5]) \ [malB^+]_{K-12}(\lambda^S) \ tonA$		NTU Protein Production Plattform
Plasmids		
pCR2.1	TOPO TA cloning plasmid, Amp ^r , Kan ^r	Invitrogen
pBBR	Broad host range expression plasmid pBBR1MCS-5, Gm ^r	[5]
pJEM1	Rhamnose inducible broad host range expression plasmid, Kan ^r	[6]
pNIC28-BSA4	DNIC28-BSA4 Protein production plasmid, N-terminal His6, TEV-cleavable MHHHHHSSGVDLGTENLYFQ*SM, Kan ^r	
pNIC-CTHF	Protein production plasmid, Cleavable C-terminal His6-FLAG tag, Kan ^r	[7]
pNIC28-BSA4 harbouring the partial <i>siaA</i> gene (C-terminal phosphatase domain from amino acid 386-663) for the production of a N-terminal His6-TEV-SiaA allele (SiaA-PP2C).		This study
pNIC[SiaB]	pNIC28-BSA4 for the production of a N-terminal His6-TEC SiaB allele	This study
pNIC[SiaC]	NIC[SiaC] pNIC28-BSA4 for the production of a N-terminal His6-TEV-SiaC allele	
pJEM[SiaC]	pJEM1 harbouring the <i>siaC</i> gene for the production of a N-terminal His6-TEV-SiaC allele in <i>Pseudomonas aeruginosa</i> strains	This study
pCre1	Plasmid for the expression of Cre recombinase	[8]
Phage		
E79tv2	Generalised transducing phage	[9]

1239 References

- Klebensberger, J., Birkenmaier, A., Geffers, R., Kjelleberg, S. & Philipp, B. SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in *Pseudomonas aeruginosa*.
 Environ Microbiol. 2009;11: 3073–3086.
- 1243 2. Jacobs, M. A. *et al.* Comprehensive transposon mutant library of *Pseudomonas aeruginosa*. Proc Natl
 1244 Acad Sci. 2003;100: 14339–14344.
- 1245 3. Bethesda Research Laboratories. *E. coli* DH5 alpha competent cells. Focus-Bethesda Res Lab.
 1246 1986;8:9.
- 4. Simon, R., Priefer, U. & Pühler, A. A broad host range mobilization system for in vivo genetic
 engineering: Transposon mutagenesis in gram negative bacteria. *Bio/Technology* 1, 784–791
 (1983).Lämmli, U. K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage
 T4. Nature. 1970;227: 680–685.
- **5.** Kovach, M. E. *et al.* Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying
 different antibiotic-resistance cassettes. Gene. 1995;166: 175-176.
- 1253 6. Jeske, M. & Altenbuchner, J. The *Escherichia coli* rhamnose promoter rhaP BAD is in *Pseudomonas* 1254 *putida* KT2440 independent of Crp–cAMP activation. Appl Microbiol Biotechnol. 2010;85: 1923–1933.
- 1255 7. Savitsky, P. *et al.* High-throughput production of human proteins for crystallization: The SGC
 1256 experience. J Struct Biol. 2010;172: 3–13.
- 1257 8. Bailey, J. A. *et al.* Recent segmental duplications in the human genome. Science. 2002;297: 1003–
 1007.
- 1259 9. Morgan, A. F. Transduction of *Pseudomonas aeruginosa* with a mutant of bacteriophage E79. J
 1260 Bacteriol. 1979;139: 137–140.
- 1261

1262 **Table S4:** Primers used in the study.

Gene/Construct	Primer name and sequence (5' to 3')				
SiaA-PP2C	SiaA-f6117	TACTTCCAATCCATGCGGCACACCGCCGAGCT			
	SiaA-r6103	TATCCACCTTTACTGTCAGTCGAATCGGAAGGACAGG			
SiaB	SiaB-f6118	TACTTCCAATCCATGATGGAAACGCTAGACCTGCT			
	SiaB-r6104	TATCCACCTTTACTGTCATCAGATCACGGCGCGCAG			
SiaC	SiaC-f6119	TACTTCCAATCCATGATGAGTGACCTGCACATACC			
	SiaC-r6105	TATCCACCTTTACTGTCACTACTCGTCGTGGGCCTG			
His6-TEV-SiaC	His_TEV_SiaC_F	ACAATTCTTAAGAAGGAGATATACAATGCACCATCATCATC ATCATTCTTC			
	His_TEV_SiaC_R	GCTTCCGGTAGTCAATAAACCGGTACTACTCGTCGTGGGC CT			

1263

1264 **Supplementary zip-file:**

- 1265 1. SiaB model_I-Tasser
- 1266 2. SiaC-PhosT68 model_Energy minimised
- 1267 3. SiaAC complex_MD simulation_60ns2
- 1268 4. SiaAC-T68P complex_MD simulation_60ns2
- 1269 5. SiaA-PP2C_Mutant allele_homology model