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Abstract
Viruses evolve in the background of host immune systems that exert selective pressure and drive viral evolutionary trajectories.

This interaction leads to different evolutionary patterns in antigenic space. Examples observed in nature include the effectively
one-dimensional escape characteristic of influenza A and the prolonged coexistence of lineages in influenza B. Here we use an
evolutionary model for viruses in the presence of immune host systems with finite memory to delineate parameter regimes of
these patterns in a in two-dimensional antigenic space. We find that for small effective mutation rates and mutation jump
ranges, a single lineage is the only stable solution. Large effective mutation rates combined with large mutational jumps in
antigenic space lead to multiple stably co-existing lineages over prolonged evolutionary periods. These results combined with
observations from data constrain the parameter regimes for the adaptation of viruses, including influenza.

I. INTRODUCTION

Different viruses exhibit diverse modes of evolu-
tion [1–4], from relatively slowly evolving viruses that
show stable strains over many host generations such as
measles [5], to co-existing serotypes or strains such as
noroviruses [6] or influenza B [7, 8], to quickly mutating
linear strains such as most known variants of influenza
A [9]. Despite the different patterns of evolutionary phy-
logenies and population diversity, all viruses share the
common feature that they co-evolve with their hosts’ im-
mune systems. The effects of the co-evolution depend on
the mutation timescales of the viruses and the immune
systems, the ratio of which varies for different viruses.
However, in the simplest setting, the population of hosts
exerts a selective pressure on the viral population, gen-
erating viral evolution towards increasing antigenic dis-
tance from the host population. Here, we explore this
mutual dynamics in a model of viruses that evolve in
the background of host immune systems. While a lot
of previous studies of pathogen-immune dynamics have
foccussed on specific systems [2, 4, 5, 8, 10–16], we fol-
low in the steps of more general considerations [3, 17].
Specifically, we are interested in how the host immune
cross-reactivity and memory control the patterns of viral
diversity.

These evolutionary processes lead to a joint dynamics
that has often been modeled by so called Susceptible-
Infected-Recovered (SIR) approaches to describe the host
population [18, 19], possibly coupled with a mutating
viral population. In their simplest form, these models
have successfully explained and predicted the temporal
and historical patterns of infections, such as measles [5],
where there are little mutations, or dengue, where en-
hancement between a small number of strains can lead
to complex dynamics [20]. These methods have been im-
portant in helping develop vaccination and public health
policies.

Apart from a huge interest in the epidemiology of

viruses [10], a large extension of SIR models has also tack-
led questions on the role of complete and partial cross-
coverage, and how that explains infection patterns for
different viruses [2, 11], the role of spatial structure on
infections [8], as well as antigenic sin [12, 21]. Most of
these questions were asked with the goal of explaining in-
fection and evolutionary patterns of specific viruses, such
as dengue [11, 12], influenza [4, 13–15] or Zika [16]. Here
we take a more abstract approach, aimed at understand-
ing the role of cross-reactivity and mutation distance in
controlling the evolutionary patterns of diversity.

At the same time, the wealth of samples collected over
the years, aided by sequencing technologies, has allowed
for data analysis of real evolutionary histories for many
types of viruses. One of the emerging results is the rel-
atively low dimensionality of antigenic space – an effec-
tive phenotypic space that recapitulates the impact of
hosts immune systems on viral evolution. Antigenic map-
ping, which provides a methodology for a dimensionality
reduction of data [9] based on phenotypic titer experi-
ments, such as Hemaglutanin Inhibition (HI) assays for
influenza [22], has shown that antigenic space is often ef-
fectively low-dimensional. For example, influenza A evo-
lution is centered on a relatively straight line in antigenic
space [15]. This form suggests that at a given time in-
fluenza A strains form a quasispecies of limited diversity
in antigenic space, with escape mutations driven by anti-
genic pressure moving its center of mass [3, 8, 17].

We focus on a simplified model of viral evolution in a
finite-dimensional space that delineates evolutionary pat-
terns with different complexity of coexisting lineages. Re-
cent models of these dynamics have focused only on the
linear evolutionary regime relevant of influenza A [8] or
have used an infinite-dimensional representation of anti-
genic space [3]. Here we also model immune memory in
more detail, while keeping a simplified infection dynam-
ics with a small number of model parameters. While our
treatment does not account for many features of host-
immune dynamics (as discussed in sections II and IV) it
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offers a stepping stone to future more in-depth analysis
of the role of host repertoires.

II. METHODS

A. The model

We implement a stochastic agent based simulation
scheme to describe viral evolution in the background of
host immune systems. Its main ingredients are sketched
in Fig. 1. We fix the number of hosts N = 107 and do
not consider host birth-death dynamics. Host can get
infected by a given viral strain if they are not already
infected by it (equivalently to susceptible individuals in
SIR models) in a way that the infection probability de-
pends on the hosts infection history. Hosts are defined
by the set of immune receptors they carry.

We work in a 2-dimensional antigenic space, where
each viral strain and each immune receptor in every host
is a point in a 2D phenotypic space. This phenotypic
space is motivated both by antigenic maps [9] and shape
space used in immunology to describe the effective dis-
tance between immune receptors and antigen [23–29].
The recognition probability of viruses by immune recep-
tors is encoded in a cross-reactivity kernel f(r) that de-
pends on the distance between the virus and the receptor
in this effective 2D space. We take f(r) = e−r/d to be
an exponential function with parameter d, that deter-
mines the cross-reactivity — the width of immune cover-
age given by a specific receptor [14].

All hosts start off with naive immune systems, imple-
mented as a uniformly zero immune coverage in pheno-
typic space. If a host is infected by a virus, after the
infection a new immune receptor is added to the host
repertoire with a phenotypic position equivalent to the
position of the infecting viral strain. Hosts have finite
memory and the size of the memory pool of each host
immune system M determines the maximum number of
receptors in a host repertoire, corresponding to the last
M viral strains that infected that host. This constraint
can also be seen as the amount of resources that can
be allocated to protect the host against that particular
virus.

An infection lasts a fixed time of tI = 3 days, after
which the infected host tries to infect a certain number
of new hosts (among those who are not already infected),
drawn from a Poisson distribution with average R0. At
this time the infection in the initial host is cleared and
a memory immune receptor is added to its repertoire as
explained above. During an infection a virus can mu-
tate in the host with a rate µ. Since we concentrate on
the low mutation limit, µtI � 1, we limit the number
of per-host mutations to at most one. Following [8, 17],

a mutation in a virus with phenotype a produces a mu-
tant with phenotype b with probability density function
ρ(a → b) = (1/2π)(4rab/σ

2)e−2rab/σ (Gamma distribu-
tion of shape factor 2), where rab is the Euclidean dis-
tance between a and b, so that the average mutation ef-
fect is σ. As a result the newly infected individual can be
infected with the same (“wild-type”) virus that infected
the previous individual with Poisson rate e−µtI , or by a
mutant virus with probability Pmut = 1− e−µtI for each
infection event.

Not all transmission attempts lead to an infection.
When a virus attempts to infect a host, an infection
takes place with probability f(r), where f is the cross-
reactivity kernel defined above and r is the distance in the
2D phenotypic space between the infecting viral strain
and the closest receptor in the host repertoire. If the
host repertoire is empty, the infection takes place with
probability one. The viral mutation jump size and the
cross-reactivity kernel set two length scales in the pheno-
typic space, σ and d (Fig. 1). Their dimensionless ratio
σ/d is one of the relevant parameters of the problem. In
this work we kept d fixed and then varied σ to explore
their ratio. We do not explicitly consider competition be-
tween immune receptors within hosts, or complex in-host
dynamics.

B. Initial conditions and parameter fine-tuning

We simulate several such cycles of infections and recov-
eries, keeping track of the phenotypic evolution of viruses
and immune receptors throughout time by recording the
set of points describing viruses and receptors in pheno-
typic space at each time, as well as what immune recep-
tors correspond to each host. Once every 360 days we
save a snapshot with the coordinates of all the circulat-
ing viruses. In addition we save the phylogenetic tree of
a subsample of the viruses.

In order to quickly reach a regime of co-evolution with
a single viral lineage tracked by immune systems, we set
initial conditions so that the viral population is slightly
ahead of the population of immune memories. Details of
the initial conditions are given in Appendix A 1).

Viruses can survive for long times only because of an
emergent feedback phenomenon that stabilizes the viral
population when R0 is fixed, as explained below in Sec-
tion III B. Even with that feedback, R0 needs to be fined-
tuned to obtain stable simulations. With poorly tuned
parameters, viruses go extinct very quickly after an en-
demic phase, as also noted in [8]. The detailed procedure
for setting R0 is described in Appendix A 2. Roughly
speaking, R0 needs to be chosen so that the average ef-
fective number of infected people at each transmission
event is equal 1, or R0pf = 1, where pf is the average
probability that each exposure leads to an infection. We
further require that the fraction of infected hosts tends
towards a target value, f̃i, which acts as an additional pa-
rameter in our model. To do this, R0 is first adaptively
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FIG. 1. Phenotypic space and key ingredients of the evolutionary model. During an infection, a virus attempts
to infect on average R0 hosts, however not all infections are successful. The immune repertories of some hosts can clear the
virus (case of host 3) since their cross-reactivity kernels from existing memory receptors confer protection. However if the host
does not have protection against the infecting virus (case of host 2), the hosts becomes infected. After the infection this host
acquires immunity against the infecting virus. Since the virus can mutate within a given host (host 1), the infecting virus can
be a mutated variant (case of host 2) with probability Pmut = 1 − e−µtI and the ancestral strain that infected host 1 with rate
1 − Pmut = e−µtI (case of host 3). The cross-reactivity kernel is taken to be an exponential function f(r) = exp(− r

d
), meaning

that viruses are recognized by receptors if they are closer in phenotypic space. Jumps are in a random direction and their size
are distributed as a Gamma distribution of mean σ and shape parameter 2. The dimensionless raio σ/d controls the ability of
viruses to escape immunity. We assume no selection within one host.

adjusted at each time as:

R0 =
1

〈pf 〉
+
f̄i − fi
f̄i

, (1)

where 〈pf 〉 is averaged over the past 1000 transmission
events, and fi the current fraction of infected hosts. Af-
ter that first equilibration stage, R0 is frozen to its last
value. Despite the explicit feedback (∝ f̄i− fi) being re-
moved, the population size is stabilized by the emergent
feedback. As a result, the virus population is stable for
long times for a wide range of parameter choices (Fig. 3).

To have more control on our evolution experiment we
also analyze a variant of the model where we keep con-
straining the viral population size, constantly adjusting
R0 using Eq. 1 for the whole duration of the simulation
(100 years). In this way the fraction of infected hosts fi
is stabilized around the average f̄i.

Simulations were analyzed by grouping viral strains
into lineages using a standard clustering algorithm, as
described in Appendix C 1. The traces each lineage clus-
ter were analyzed to evaluate their speed and variance
in phenotypic space, as well as their angular persistence
time (see Appendix C 2 for details). We built phyloge-
netic trees from subsamples of strains as detailed in Ap-
pendix C 3.

C. Detailed mutation model

We also considered a detailed in-host mutation model,
in which we explicitly calculate the probability of produc-
ing a new mutant within a host. We present this model in
detail in Appendix B for the case where only one mutant
reaches a high frequency during the infection time and
we compare the results of this model to the simplified
fixed mutation rate model described above.

The general idea is that we consider a population of
viruses that replicate with rate α and mutate with rate
µ resulting in a non-homogeneous Poisson mutation rate
µeαt. The replication rate is the same for all mutants,
i.e. there is no selection within one host and the relative
fraction of the mutants depend only on the time at which
the corresponding mutation arised.

For the case when only one mutation impacts the an-
cestral strain frequency, we simply calculate the time of
the mutation event and use it to find the probability that
an invader mutant reaches a certain frequency at the end
of the infection. We then randomly sample the ancestral
or mutant strain according to their relative frequencies
at the end of the infection to decide which one infects the
next host.
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FIG. 2. Modes of antigenic evolution: A) ballistic regime, B) diffusive regime, C) transient splitting regime,
and D) stable splitting regime. Left: trajectory of the population in phenotypic space (in units of d); Middle: time to most
recent common ancestor (TMRCA); Right: phylogenetic tree of the population across time. When viruses evolve in a single
lineage the phylogenetic tree show a single trunk dominating evolution. When viruses split into more lineages, the phylogenetic
tree shows different lineages evolving independently. Each lineage diffuses in phenotypic space with a persistence length that
depends itself on the model parameters. In these simulations viral population size is not constrained, but parameters are
tuned to approach a target fraction of infected hosts, f̄i = 10−3. Parameters are A) µ = 10−3, σ/d = 10−2, B) µ = 10−2,
σ/d = 3 · 10−4 C) µ = 10−2, σ/d = 3 · 10−3, D) µ = 0.1, σ/d = 10−4.

III. RESULTS

A. Modes of antigenic evolution

Typical trajectories in phenotypic space show differ-
ent patterns depending on the model parameters. In the
following, we describe a ballistic (Fig. 2 A), a diffusive
(Fig. 2 B), a transient splitting (Fig. 2 C), and a stable
splitting (Fig. 2 D) regime and delineate the correspond-
ing regions of the µ− σ parameter space.
Ballistic regime. In this regime of one-dimensional evolu-
tion, viruses mutate locally forming a concentrated clus-
ter of similar individuals, called a lineage. Successful
mutation events that take the viral strains away from the

protection of hosts immune systems progressively move
the lineage forward (Fig. 2 A). For small values of the mu-
tation rate and small mutation jump sizes the trajectory
in phenotypic space is essentially linear, with new mu-
tants always growing as far away as possible from exist-
ing hosts immune system, which themselves track viruses
but with a delay. The delayed immune pressure creates
a fitness gradient for the virus population, which forms
a traveling fitness wave [3, 30, 31] fuelled by this gradi-
ent. A similar linear wave scenario was studied in one
dimension by Rouzine and Rozhnova [17].

Diffusive regime. As we increase the mutation jump
range the trajectories loose their persistence length and
the trajectories in phenotypic space start to turn ran-
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FIG. 3. The rate at which viruses go extinct depends
on model parameters. Viruses extinction rate (1/year) as
a function of µ and σ. In these simulations viral population
size is not constrained, and f̄i = 10−3. For each parameter
point we simulated 100 independent realizations.

domly, as new strains are less sensitive to the pressure of
hosts immune systems (Fig. 2 B).

Both ballistic and diffusive regimes lead to phyloge-
netic trees with one main trunk and a short distance to
the last common ancestor. This trend is characteristic of
influenza A evolution and has been discussed in detail in
Ref. [8].
Transient splitting regime. Alternatively, we observe a bi-
furcation regime, where at a certain point in time two mu-
tants form two new co-existing branches, roughly equidis-
tant from each other and the ancestral strain in antigenic
space (Fig. 2 C). Each branch has similar characteristics
as the single lineage in the one dimensional evolution
of Fig. 2 A and B. These co-existing branches give rise
to phylogenetic trees with two trunks. In the example
shown the two lineages stably co-exist for ∼ 20 years,
leading to a linear increase of the distance to the last
common ancestor, until one of them goes extinct, return-
ing the evolution to one dominant lineage with small dis-
tances to the last common ancestor.
Stable splitting regime. The two branches can stably co-
exist for over ∼ 80 years (Fig. 2 D, only the first 50 years
are shown), starting with similar trends as in the exam-
ple in Fig. 2 C, not returning to the one dominant lineage
regime, but even further branching in a similar equidis-
tant way at later times (not shown). This trend leads to
evolutionary trees with multiple stable trunks, with local
diversity within each of them and a linear increase of the
distance to the last common ancestor over long times.

B. Stability

The extinction rate of viral populations depends on the
parameter regime (Fig. 3). A stable viral population is
achieved in the σ � d regime thanks to stabilizing feed-

back [3]: if viruses become too abundant they drag the
immune coverage onto the whole viral population, and
the number of viruses decreases since infecting a new host
becomes harder. As a result the relative advantage of the
fittest strains with respect to the bulk of the population
decreases as more hosts are protected against all viruses.
This feedback slows down the escape of viruses to new
regions of antigenic space and the adaptation process.
Conversely, when the virus abundance drops, the pop-
ulation immune coverage is slower in catching up with
the propagating viruses. The fittest viral strains gain a
larger advantage with respect to the bulk and this drives
viral evolution faster towards new antigenic regions and
higher fitness, increasing the number of viruses.

This stabilizing feedback is very sensitive to the speed
and amplitude of variation. Abrupt changes or big fluc-
tuations in population size can drive the viral population
to extinction. Because of this, viruses often go extinct
very quickly after an endemic phase [3, 8], as is proposed
to have been the fate of the Zika epidemic [3]. Here we
focus on the stable evolutionary regimes, starting from
a well equilibrated initial condition as explained in sec-
tion II B.

C. Phase diagram of evolutionary regimes

Our results depend on three parameters: the mutation
rate µ, the mutation jump distance measured in units of
cross-reactivity σ/d, and the target fraction of infected
individuals in the population, f̄i. The observed evolu-
tionary regimes described in Fig. 2 depend on the pa-
rameter regimes, as summarized in the phase diagrams
presented in Fig. 4 for various fractions of infected hosts
f̄i.

The mean number of distinct stable lineages increases
with both the mutation rate and the mutation jump dis-
tance (Fig. 4 A). Because the process is stochastic, even
in regimes where multiple lineages are possible, particular
realizations of the process taken at particular times may
have one or more lineages. The fraction of time when
the population is made of a single lineage decreases with
mutation rate and jumping distance (Figure 4 B), while
the rate of formation of new lineages increases (Fig. 4C).
All three quantities indicate that large and frequent mu-
tations promote the emergence of multiple lineages. This
multiplicity of lineages arises when mutations are fre-
quent and large enough so that two simulataneous es-
cape mutants may reach phenotypic positions that are
distant enough from each other so that their sub-lineages
stop feeling each other’s competition and become inde-
pendent.

Increasing the mutation rate or the mutation jump dis-
tance alone is not always enough to create a multiplicity
of lineages. For small f̄i = 5 · 10−4 and moderate jump
sizes, the single-lineage regime is very robust to a large in-
crease in the mutation rate, meaning the cross-immunity
nips in the bud any attempt to sprout a new lineage from
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jump size σ, and f̄i. (A) Average number of lineages, (B) fraction of evolution time where viruses are organized in a single
lineage, (C) rate of lineages splitting (per lineage), and (D) average coalescence time. In these simulations viral population size
is not constrained, and the target fraction of infected individuals f̄i is 5 · 10−4, 8 · 10−4, 10−3, 1.2 · 10−3, from left to right. For
each parameter point we simulated 100 independent realizations.

mutations with small effects, however frequent they are.

Coalescence times (Fig. 4 D) give a measure of the
number of mutations to the last common ancestor, and
are commonly used in population genetics to characterize
the evolutionary dynamics. In the case of a single lineage,
coalescence times are short, corresponding to the time
it takes for an escape mutation furthest away from the
immune pressure to get established in the population.
However, when there are multiple lineages, the coales-
cence time corresponds to the last time a single lineage
was present. Such an event can be very rare when the
average nmber of lineages is high, leading to very large
coalescence times. Accordingly, the coalescence time in-
creases with lineage multiplicity, and thus with mutation
rate and jump size.

In general, large target fraction of infected hosts, f̄i,
lead to more lineages on average and a higher probability
to have more than one lineage. Increasing the number of

infected individuals increases the effective mutation rate
and allows the virus to explore evolutionary space faster.
This rescaling allows more viruses to find niches and in-
creases the chances of having co-existing lineages. While
an increased fraction of infected hosts may also limit the
virgin exploration space where viruses can attack non-
protected individuals, this effect may be negligible when
the target fractions f̄i are small as considered here.

D. Incidence rate

When viruses split into lineages, the implicit feedback
mechanism described earlier to explain stability remains
valid for each cluster independently (unless the number of
independent lineages exceeds the immune memory pool
M). As a result each lineage can support roughly a frac-
tion f̄i of the hosts, which defines a “carrying capacity”
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FIG. 5. The average number of viruses is proportional
to the number of independent clusters. The total num-
ber of viruses (green curve) and of lineages (red curve) as a
function of time for f̄i = 10−3, µ = 10−2, σ/d = 3 ·10−3. The
initial single lineage splits into two lineages at t ≈ 59 years
and then into three lineages at t ≈ 67 years (dashed verti-
cal lines), and the number of viruses first doubles and then
triplicates following the lineage splittings.

of each lineage. As a result the viral population size, also
known as incidence rate, is proportional to the number of
lineages (Fig. 5). Yet the incidence fluctuates with time,
with clear bottlenecks when a new cluster is founded.

E. Speed of adaptation and intra-lineage diversity

Whether there is a single lineage or multiple ones, each
lineage moves forward in phenotypic space by escaping
the immune pressure of recently infected and protected
hosts lying close behind. We examined the speed of
adaptation and the diversity of lineages of viral diver-
sity present at a given time (Fig. 6). We calculated the
speed of adaptation in units of cross-reactivity radii d per
year by taking, for each lineage, the difference in the two
dimensional phenotypic coordinate of the average virus
at time points one year apart. We quantified the di-
versity by approximating the density of each lineage at a
given time by a Gaussian distribution in two-dimensional
phenotypic space and calculating its variance along the
direction of the lineage adaptation in phenotypic space.

The speed of adaptation increases with the mutational
jump size σ, and also shows a weak dependence on the
mutation rate µ. The variance in the viral population
also increases with the jump size, and in general scales
with the speed of adaptation. Fisher’s theorem states
that the speed of adaptation is proportional to the fit-
ness variance of the population. A correspondance be-
tween speed and variance in phenotypic space is thus ex-
pected if fitness is linearly related to phenotypic position.
While such a linear mapping does not hold in general in
our model, the immune pressure does create a nonlinear
and noisy fitness gradient, which can explain this scaling
between speed and diversity.

F. Antigenic persistence

While lineage clusters tend to follow a straight line,
their direction fluctuates as escape mutants can explore
directions that are orthogonal to the main direction of
the immune pressure. In Fig. 7 we plot the rate at which
trajectories turn, changing their direction by at least 30
degrees (see Appendix C 2). As noted in Fig. 2, small
mutation jump sizes σ favor long periods of linear mo-
tion and low turn rates. As σ increases, the turn rate
increases.

Several factors affect the turn rate as measured from
the simulations. A lineage splitting induces a turn, and
regions of phase space where multiple lineages are pos-
sible favor short persistence times. The same goes for
population extinction: regimes where the population ex-
tinction rate is higher do not allow us to observe long
persistence times, masking the dependence of turn rate
on µ. Generally, we expect lineage clusters to undergo
more angular diffusion in phenotypic space as mutations
become more important (large σ). Mutants can explore
new regions of the phenotypic space, causing the pop-
ulation to stochastically turn while keeping a cohesive
shape. On the other hand, lower mutation rates may
mean that fewer mutants will do this exploration, increas-
ing stochasticity in cluster dynamics and effectively in-
creasing the turn rate. In that regime of stochastic turn-
ing, predictions of the phenotype of future viral strains
is much harder than in the linear regime.

G. Dimension of phenotypic space

We explored the role of phenotypic space dimensions
in our results. In Fig. 8 we plot the average number of
neighbours of a given viral strain within distance r from
that strain (for short distances so that only pairs from
the same lineage are considered). This measure scales as
rD for the cumulative number of neighbours plotted in
Fig. 8, where D = 2 the dimension of phenotypic space,
as expected for a uniformly distributed cluster of strains
in finite dimension. By contrast, that number would be
expected to scale exponentially with r for a neutral pro-
cess in infinite dimensions. This results suggests that in
low dimensions, which seems to be the experimentally
valid limit, the dimension of the space does restrict the
dynamics and cannot be neglected. However we are un-
able to separate the effects of selection and phenotypic
space dimensionality. It also implies that lineages form
dense, space-filling clusters in phenotypic space. We ex-
pect this result to hold for any reasonably low dimension,
and will break down in high dimension.

H. Robustness to details of intra-host dynamics
and population size control
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FIG. 6. Speed of adaptation and the within-cluster diversity. Phase diagrams as a function of mutation rate µ and
mutation jump rate σ for (A) the average speed of the evolving viral lineages and (B) the variance of the size of the cluster in the
direction parallel to the direction of instantaneous mean adaptation for different values of target infected fraction f̄i = 5 · 10−4,
8 · 10−4, 10−3, and 1.2 · 10−3 from left to right. For each parameter point we simulated 100 independent realizations.

FIG. 7. Turn rate. Phase diagrams as a function of mutation rate µ and mutation jump rate σ for rate of turns (defined as
a change of direction of at least 30 degrees) of the trajectories, for different values of the mean number of infected individuals
f̄i: 5 · 10−4, 8 · 10−4, 10−3, 1.2 · 10−3, from left to right.

To test whether a detailed treatment of intra-host viral
dynamics would affect our results, we also considered a
detailed mutation model, where we calculate the proba-
bility of producing a mutation within in each individual
(see Appendix B). Specifically, we compare the model
that calculates the probability of having a mutated strain
given in Eq. B9 to the simplified model with simple mu-
tation rate discussed above. As we see from Fig. 9 and
Fig. 10, the general evolutionary features are the same as
for the simplified model: the probability of multi-lineage
trajectories increases with increasing µ and σ, as does
the lineage splitting rate and the speed of adaptation.
The diversity in phenotypic space in the direction paral-
lel (Fig. 10 B) to the direction of motion increases with
the mutation jump size, as expected, as well as the turn
rate (Fig. 9 D).

Lastly we asked how our results would be affected
by strictly constraining the viral population size (as ex-
plained in Sec. II B), rather than letting it fluctuate under
the control of the emergent negative feedback. The cor-

responding phase diagrams show the same evolutionary
regimes as a function of µ and σ/d (Fig. S1), and the
same general dependencies on model parameters of the
speed of adaptation (Fig. S2) and turn rate (Fig. S3), as
with a fluctuating population.

IV. DISCUSSION

Our model describes regimes of viral evolution with
different complexity: one strain dominates (Fig. 2 A, B),
two dominant strains coexist over timescales longer than
the host lifetime (Fig. 2 C), or multiple strains coexist in
a stable way (Fig. 2 D). The single-strain regime clearly
maps onto influenza A. Influenza B evolution, which is
split into the Victoria or Yamagata sublineages, is con-
sistent with prolonged (Fig. 2 C) or stable coexistence
(Fig. 2 D). We can use our results to characterize the
differences in the evolutionary constraints acting on the
adaptive processes of influenza A and B. Our results sug-
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FIG. 8. Effect of phenotypic space dimensionality on
viral evolution. Cumulative average number of neighbours
of a given viral strain as a function of phenotypic distance r
to that strain for f̄i = 10−3, µ = 10−2, σ/d = 3 · 10−3. The
average number of neighbours depends on the dimension of
the phenotypic space as rD where r is the distance and D = 2
the dimension of phenotypic space (dotted line).

FIG. 9. Phase diagram for the detailed intra-host mu-
tation model. As a function of the mutation rate µ and
mutation jump size σ we plot (A) the mean number of co-
existing lineages, (B) the fraction of time with one lineage,
(C) the lineage splitting rate and (D) the lineage turn rate.
In these simulations viral population size is not constrained,
and f̄i = 10−3. For each parameter point we simulated 100
independent realizations.

gest that the combination of mutation rate and effective
mutation jump distance in influenza A must be smaller
than in influenza B. Since the mutation rates are similar,
this means that the effect of mutations at sites in in-
fluenza B has a larger different phenotypic affect. Alter-
natively, the effective number of infected individuals per
transmission event (R0 in classical SIR models, equal to
R0pf in our model) could be larger in influenza B than in-
fluenza A. Another possibility is that, since lineage split-
ting happens stochastically, the difference between the
two species is just due to different random realizations.
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FIG. 10. Phase diagram for speed of adaptation and
within cluster diversity of the detailed intra-host mu-
tation model. As a function of the mutation rate µ and
mutation jump size σ we plot (A) the mean speed of adapta-
tion, and (B) the variance in the cluster size in the direction
parallel to the direction of motion. In these simulations viral
population size is not constrained, and f̄i = 10−3. For each
parameter point we simulated 100 independent realizations.

Our model shares similarities with previously consid-
ered models of viral evolution [3, 8], while focusing on dis-
tinct questions. Among differences in modeling details,
our hosts have finite memory capacity and forget past
strains after some time, compared to infinite memory as-
sumed in past work. Comparing our simulations with
Ref. [3, 8] in their relevant regimes, we do not see notice-
able differences in the main trends of evolution, which
suggests that the effects of losing memory are quanti-
tative rather than qualitative at the population scale, at
least for the parameters regimes that were inspected. We
assume exponentially decaying cross-reactivity, similarly
to [3] (although it is linearized in their analysis). By con-
trast, Ref. [8] uses a linear cross-reactivity, but this mi-
nor difference is unlikely to influence the results. Ref. [8]
focused specifically on the question of explaining the sin-
gle dominant lineage in influenza A evolution. While
the existence of lineage bifurcations was acknowledged
in Ref. [8], this regime was not explored. Instead, a more
detailed geographical model was considered, with migra-
tions between different geographical zones. Ref. [3] asked
a similar question we did about the conditions under
which strain bifurcations may occur, but in the context
of an infinite antigenic space. The general trends seem to
be independent of the dimensionality of the space, since
both models recover the same behaviour. However, the
exact scaling laws reported in Ref. [3] seem to be more
sensitive to the model assumptions. Lastly, while we also
considered a more detailed model of intra-host influenza
evolution, we found that it could be mapped onto an ef-
fective model of viral transmission with mutations, with
little impact on the results.

Two main effective parameters control the evolution-
ary patterns: the effective mutation rate and the muta-
tional jump size, measured in units of the cross-reactivity
radius. The effective mutation rate is a combination of
the actual mutation rate per host, and the mean number
of infected hosts at each cycle: larger fractions of infected
individuals lead to more opportunities for the virus to
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escape host immunity, and faster viral adaptation as a
whole. Additionally, a feedback mechanism is observed
between the host immune systems and the viruses: too
successful viruses infect many hosts, effectively speed-
ing up the rate at which the susceptible host reservoir is
depleted, and mounting up the immune pressure. Our
model does not include host death, since we assume we
are in the limit of very large host reservoirs. Account-
ing for host extinction may leads to a different interesting
problem that has been explored using SIR models [5, 32].
In the context of our model however, host death would ef-
fectively amount to reducing the hosts’ immune memory
capacity M .

The effects of dimensionality on the observed evolu-
tionary trajectories are worth discussing in more detail.
The infinite dimensional model is similar in spirit to the
infinite sites model of sequence evolution: infinite dimen-
sions mean there is always a direction for the virus to
escape to. Conversely, low dimensions result in an ef-
fectively stronger feedback of the host immune systems
on the possible trajectories of the escaping virus. This
generates effective mutation and jump rates that depend
on the primary parameters in a nonlinear way, with pos-
sibly different effects in different parameter regimes. We
also observe a breakdown of the scaling of observables

such as the coalescence time and the mean number of co-
existing lineages with µσ2 (see Fig. S4), as would be pre-
dicted by the diffusion limit of the traveling wave frame-
work [31, 33]. These results indicate that the discreteness
of mutations matter. The effective dimensionality of the
phenotypic space depends on the parameters, going from
effectively one in the linear regime to the dimension of
the phenotypic space in the splitting regime. We expect
that our results generalize to higher dimensions than 2,
with each splitting event leading to a new direction in
phenotypic space and increasing the effective dimension
of the viral population.

In summary, a detailed exploration of the mutation
rate and jump distance, as well as the fraction of infected
individuals allowed us to understand the constraints that
lead to different modes of antigenic evolution and, in par-
ticular, lineage splitting at different rates and with dif-
ferent survival times of new (sub-)lineages. Observed bi-
furcations are rare in nature, which puts an evolutionary
constraint on the adaptation process.
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Appendix A: Simulation details

1. Initialization

We initialize all simulations in an immune coverage
background that favors the evolution of one dominant
antigenic lineage. We draw viral positions uniformly in
a rectangle with bottom-left and top-right corners po-
sitioned at (−3σPmut, 0) and (3σPmut, σ). Each host is
initialized with one immune receptor as a point in anti-
genic space, which grants localized protection. The ini-
tial memory repertoires of the different hosts are drawn

uniformly from a rectangle with bottom-left and top-
right corners positioned at (−3σPmut,−5 σ

f̄i
Pmut) and

(3σPmut, 0), where f̄i is the target fraction of infected
hosts, determining the number around which the vi-
ral population is stabilized (see Section II B) and the
timescale with which all hosts add (or renew) an immune
receptor to their repertoire. In order to lose memory of
the artificial initial conditions we let the system evolve
until 99% of the host population have been infected by a
virus, so that most hosts have added at least one strain
to their repertoires before recording any data.

2. Control of the number of infected hosts

We studied two versions of the same model, one con-
straining the viral population size strictly, the other let-
ting it fluctuate. In the latter case, we still have to con-
strain population size for an initial transient in order to
reach a well equilibrated initial condition.

We control the virus population size through the frac-
tion of infected hosts around a target value of f̄i. We
modify R0 – the average number of new hosts that are
drawn to be infected in a given transmission event – based
on the current fraction of infected hosts fi at each time:

R0 =
1

〈pf 〉
+
f̄i − fi
f̄i

, (A1)

where pf is the probability of a successful infection at a
transmission event, i.e. the probability that a new host is
susceptible to the infecting viral strain. We evaluate its
average 〈pf 〉 over segments of 1000 transmission events.

On average,

〈fi(t+ tI)〉 ≈ 〈fi(t)〉R0〈pf 〉. (A2)

Using eq. (A1), we find that the average fraction of in-
fected hosts 〈fi(t)〉 is governed by a logistic map with
fix point f̄i, effectively producing a process where the vi-
ral population growth is limited by an effective carrying
capacity Nf̄i.

Appendix B: Detailed mutation model

We present the detailed in-host mutation model, in
which we explicitly find the probability of producing a
new mutant within an infected host. We assume that
the immune system responds only to the first viral strain
it sees, and that all viruses see the immune system in the
same way, undergoing the same deterministic dynamics,
i.e. evolution is neutral within one host. This intra-
host neutral selection holds if the characteristic mutation
jump size is smaller than the cross reactivity length, σ �
d, which is the case for our simulations. We consider this
mutation-proliferation process up to time tI .
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We call the total viral population vtot, the first viral
invader, that is the first viral strain infecting one host, v0,
and the new mutants, appearing with size 1, vj . These
three quantities (neglecting the discreteness of the pro-
cess) grow deterministically as function of time t as:

vtot(t) = eαt , (B1)

v0(t) = eαt −
∑
i0

eα(t−ti0 )Θ(t− ti0) , (B2)

vj(t) = eα(t−tj) −
∑
ij

eα(t−tij )Θ(t− tij ) , (B3)

where ij denotes the indexes of the viral mutants origi-
nated from mutant j (if any) and tij indicates the times
at which such mutations arose (Θ(x) is the Heaviside
function, = 0 for x < 0 and 1 otherwise). Each muta-
tion jumps to new phenotypic coordinates. From these
equations the relative mutants fractions are

x0 = 1−
∑
i0

e−αti0 Θ(t− ti0) , (B4)

xj = e−αtj −
∑
ij

e−αtijΘ(t− tij ). (B5)

The mutation process from any virus present in the
viral pool is a non homogeneous Poisson process with
rate µeαt. The probability of having n mutations up to
the time t is:

P (n, t) =
(Λ(t))n

n!
e−Λ(t) , (B6)

with

Λ(t) =

∫ t

0

dt′µeαt
′

=
µ

α
(eαt − 1) . (B7)

The time t1 of the first mutation event is distributed as:

ρ(t1) = µeαt1−Λ(t1). (B8)

In our simulations, we assume that all mutations other
than the first are negligible, that is, we can have more
than one mutation, but those after the first don’t affect
significantly the relative fraction, therefore we have only
one mutant. The fraction of the mutant is x1(t) = e−αt1

if t > t1. Knowing the distribution of the first mutation
times t1, we can calculate the probability distribution of
the mutant fraction x1 at the time of the transmission
event tI :

ρ(x1, tI) = e−Λ(tI)δ(x1) +
µe−

µ
α ( 1

x1
−1)

αx2
1

Θ(x1 − e−αtI ) .
(B9)

In the simulations we fixed the growth rate to α = 4
day−1.

Appendix C: Analysis of simulations

1. Lineage identification

In order to analyze the organization of viruses in the
phenotypic space, for each saved snapshot we take the po-
sitions of a subset of 2000 viruses and then cluster them
into separate lineages through the python scikit-learn
DBSCAN algorithm [34] [35] with the minimal number of
samples parameter min samples = 10. We perform the
clustering for different values of the parameter ε defining
the maximum distance between two samples for one to be
considered as in the neighborhood of the other, and then
select the value that minimizes the variance of the 10th
nearest neighbor distance (the clustering results are not
sensitive to this choice). From the clustered lineages we
can easily obtain a series of related observables, such as
the number of lineages and the fraction of time in which
viruses are clustered in a single lineage (Fig. 4). A split of
a lineage into two new lineages is defined when two clus-
ters are detected where previously there was one, and
the two new clusters centroids are farther away than the
sum of the maximum distances of all the points in each
cluster from the corresponding centroid. We impose this
extra requirement in order to reduce the noise from virus
subsampling and the clustering algorithm. A cluster ex-
tinction is defined when a cluster ceases to be detected
from one snapshot to the next.

2. Turn rate estimation

We estimate the turn rate by detecting turns in the tra-
jectories of lineages centroids in phenotypic space. This
is done by calculating the trajectory’s angle between sub-
sequent centroids recordings and smoothing it with a 5
year averaging window. A turn is detected when the an-
gle difference with respect to the initial direction reaches
30 degrees, and the time before the turn is recorded as
the persistence time. Then the procedure is repeated un-
til the end of the trajectory. In order to have enough
timepoints in the trajectory, we limit this analysis to lin-
eages that last more than 20 years. This is done for all
the lineages trajectories in all the realization. Finally
to estimate the turn rate we divide the total number of
detected turns by the sum of the durations of all the
analyzed trajectories.

3. Phylogenetic tree analysis

From the model simulations we record a subsample of
the viral phylogenetic tree. For every recorded strain,
apart from some descendants we also save their extinc-
tion events. To compute the coalescence time we take the
recorded circulating strains once every year, that is all
the strains recorded before that year that have not gone
extinct yet. Then we calculate the time to their most
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recent common ancestor, and finally we average over all
these TMRCAs calculated year after year, for all the re-

alizations. Phylogenetic tree analysis and rendering are
done using the python open software ETE Toolkit [36].
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FIG. S1. Phase diagram for a fixed population size of the single- to multiple lineage transition, as a function
of mutation rate µ and mutation jump size σ. The figure is similar to the one presented in the main text in Fig. 4
but assuming a fixed fraction of infected hosts f̄i = 8 · 10−4, 10−3, and 1.5 · 10−3 (from left to right). (A) Average number
of lineages, (B) fraction of time where viruses are organized in a single lineage, (C) rate of lineage splitting, and (D) taverage
coalescence time (D).
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FIG. S2. Speed of adaptation and within-cluster diversity. Same phase diagram as in Fig. 6 of the main text but with
constant fixed fraction of infected hosts f̄i = 8 · 10−4, 10−3, and 1.5 · 10−3 (from left to right). Phase diagrams as a function
of mutation rate µ and mutation jump rate σ for (A) the average speed of the evolving viral clusters and (B) the phenotypic
variance in the direction parallel to the direction of instantaneous mean adaptation.

FIG. S3. Persistence time. Same phase diagram as in Fig. 7 of the main text but with constant fixed population size
f̄i = 8 · 10−4, 10−3, and 1.5 · 10−3 (from left to right). Phase diagrams as a function of mutation rate µ and mutation jump
rate σ for persistence time of the trajectories.
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FIG. S4. Single- to multiple lineage transition a function of rescaled diffusivity µσ2. Same quantities as in Fig. 4
of the main text, but as a function of the effecive diffusivity µσ2, showing absence of collapse as a function of that parameter
for various values of the mutation rate µ. (A) Average number of lineages, (B) fraction of evolution time where viruses are
organized in a single lineage, (C) rate of lineages splitting (per lineage), and (D) average coalescence time.
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