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Abstract 30	

Genome sequences from diverse human groups are needed to understand the structure of 

genetic variation in our species and the history of, and relationships between, different 

populations. We present 929 high-coverage genome sequences from 54 diverse human 

populations, 26 of which are physically phased using linked-read sequencing. Analyses of 

these genomes reveal an excess of previously undocumented private genetic variation in 35	

southern and central Africa and in Oceania and the Americas, but an absence of fixed, private 

variants between major geographical regions. We also find deep and gradual population 

separations within Africa, contrasting population size histories between hunter-gatherer and 

agriculturalist groups in the last 10,000 years, a potentially major population growth episode 

after the peopling of the Americas, and a contrast between single Neanderthal but multiple 40	

Denisovan source populations contributing to present-day human populations. We also 

demonstrate benefits to the study of population relationships of genome sequences over 

ascertained array genotypes. These genome sequences are freely available as a resource with 

no access or analysis restrictions. 
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Introduction 45	

Genome sequences from diverse human groups can reveal the structure of genetic variation in 

our species and the history of, and relationships between, different populations, and provide a 

framework for the design and interpretation of medical-genetic studies. A consensus view of 

the history of our species includes divergence from the ancestors of the archaic Neanderthal 

and Denisovan groups 500,000-700,000 years ago, the appearance of anatomical modernity 50	

in Africa in the last few hundred thousand years, an expansion out of Africa and the Near 

East 50,000-70,000 years ago with a reduction in genetic diversity in the descendant 

populations, admixture with archaic groups in Eurasia shortly after this and large-scale 

population growth, migration and admixture following multiple independent transitions from 

hunter-gatherer to food producing lifestyles in the last 10,000 years (1). However, much still 55	

remains to be understood about the extent to which population histories differed between 

continents and regions, and how this has shaped the present-day distribution and structure of 

genetic variation across the species. Large-scale genome sequencing efforts have so far been 

restricted to large, metropolitan populations and employed low-coverage sequencing (2), 

while those sampling human groups more widely have mostly been limited to 1-3 genomes 60	

per population (3, 4). Here, we present 929 high-coverage genome sequences from 54 

geographically, linguistically and culturally diverse populations (Fig. 1A) from the Human 

Genome Diversity Project (HGDP)-CEPH panel (5), 142 previously sequenced (3, 6, 7) and 

787 reported for the first time here. We also used linked-read technology (8) to physically 

resolve the haplotype phase of 26 of these genomes from 13 populations (table S1). Several 65	

iterations of genetic assays applied to the HGDP-CEPH panel have contributed greatly to the 

understanding of human genetic variation (3, 9-14). We present here high-coverage HGDP-

CEPH genome sequences and discuss additional insights that emerge from analysis of them. 

 

 70	
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Figure 1: Genome sequencing and variant discovery in 54 diverse human populations. (A) Geographical 

origins of the 54 populations from the HGDP-CEPH panel, with the number of sequenced individuals from each 

in parentheses. (B) Maximum allele frequencies of variants discovered in the HGDP dataset but not in the 1000 

Genomes phase 3 dataset, and vice versa. The vertical axis displays the number of variants that have a 

maximum allele frequency in any single population equal to or higher than the corresponding value at the 

horizontal axis. To account for higher sampling noise due to smaller population sample sizes in the HGDP 

dataset, results obtained on versions of the 1000 Genomes dataset down-sampled to match the HGDP sizes are 

also shown. To conservatively avoid counting variants that are actually present in both datasets but not called 

in one of them for technical reasons, any variant with a global frequency of >30% in a dataset is excluded. (C) 

Comparison of Z-scores from all possible f4-statistics involving the 54 populations using whole genome 

sequences and commonly used, ascertained genotyping array sites (11). Points are coloured according to the 

number of African populations included in the statistic. 
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Genetic variant discovery across diverse human populations 

We performed Illumina sequencing to an average coverage of 35x and mapped reads to the 75	

GRCh38 reference assembly. By analysing local sequencing coverage across the genome, we 

identified and excluded nine samples with large-scale alterations in chromosomal copy 

numbers that we presume arose during lymphoblastoid cell line culturing.  The remaining 

individuals provided high-quality genotype calls (figs. S1, S2). In this set of 929 genomes we 

identified 67.3 million single-nucleotide polymorphisms (SNPs), 8.8 million small insertions 80	

or deletions (indels) and 39,997 copy number variants (CNVs). This is nearly as many as the 

84.7 million SNPs discovered in 2504 individuals by the 1000 Genomes Project (2), 

reflecting increased sensitivity due to high-coverage sequencing as well as the greater 

diversity of human ancestries covered by the HGDP-CEPH panel. While the vast majority of 

the variants discovered by one of the studies but not the other are very low in frequency, the 85	

HGDP dataset contains substantial numbers of variants that were not identified by the 1000 

Genomes Project but are common or even high-frequency in some populations: ~1 million 

variants at ≥20%, ~100,000 variants at ≥50% and even ~1000 variants fixed at 100% 

frequency in at least one sampled population (Fig. 1B). This highlights the importance of 

anthropologically-informed sampling for uncovering human genetic diversity. 90	

 

The unbiased variant discovery enabled by whole-genome sequencing avoids potential 

ascertainment biases associated with the pre-defined variant sets used on genotyping arrays. 

We find that while analyses of the SNPs included on commonly-used arrays accurately 

recapitulate relationships between non-African populations, they sometimes dramatically 95	

distort relationships involving African populations (Fig. 1C). Some of the f4-statistics 

commonly used to study population history and admixture (13) even shift sign when using 

array SNPs compared to when using all discovered SNPs, thus incorrectly reversing the 

direction of the ancestry relationship one would infer from the same set of genomes (for 

example: f4(BantuKenya,San;Mandenka,Sardinian) is positive (Z=2.9) using all variants but 100	

negative (Z=-3.11) when using commonly employed array sites). We demonstrate that 1.3 

million SNPs ascertained as polymorphic among three archaic human genomes, mainly 

reflecting shared ancestral variation (69% of them being polymorphic in Africa), provide 

more accurate f4-statistics than the variants on commonly used arrays, as well as more 

accurate FST values and cleaner estimates of individual ancestries in model-based clustering 105	

analyses (fig. S3), consistent with the theoretical properties of outgroup-ascertained variants 

(13). 
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Rare variants, largely absent from genotyping arrays, are more likely to derive from recent 

mutation and can therefore be particularly informative about recently shared ancestry 110	

between individuals. The patterns of rare variant sharing across the 929 genomes reveal 

abundant structure (Fig. 2A), as well as a general pattern of greater between-population rare 

allele sharing among Eurasian as opposed to Oceanian and American populations. We do not 

find a general increase in the power to detect population relationships in the form of non-zero 

f4 statistics when using all the discovered SNPs, most of which are rare, compared to using 115	

just the ~600,000 variants present on commonly used genotyping arrays (Fig. 1C). However, 

stratifying D-statistics by derived allele frequency can reveal more nuanced views of 

population relationships (15). In the presence of admixture, statistics of the form 

D(Chimp,X;A,B), quantifying the extent to which the allele frequencies of X are closer to 

those of A or B, can take different values for variants that have different derived allele 120	

frequencies in X. For example, we find that the west African Yoruba have a closer 

relationship to non-Africans than to the central African Mbuti at high allele frequencies but 

the opposite relationship at low frequencies (Fig. 2B), suggesting recent gene flow between 

Mbuti and Yoruba since the divergence of non-Africans. An excess sharing of San with 

Mandenka relative to Mbuti at low allele frequencies may similarly reflect low amounts of 125	

West African-related admixture into San (Fig. 2C) (16). The known Denisovan admixture in 

Oceanian populations manifests itself, without making use of any archaic genome sequences, 

in a greater affinity of African populations to Eurasians over Oceanians specifically at 

variants that are fixed in Africans (Fig. 2D). In a manner analogous to this, at fixed variants 

the central African Biaka have much greater affinity to Yoruba than to the Mandenka, 130	

another West African population (Fig. 2E), which would be consistent with Mandenka having 

some ancestry that is basal to other African ancestries (17). 

 

The Y chromosome sequences in the dataset recapitulate the well-understood structure of the 

human Y chromosome phylogeny, but also contain a number of rare lineages of interest (fig. 135	

S9). An F* lineage representing the deepest known split in the FT branch that is carried by 

the vast majority of non-African men was found only once across the 1205 males of the 1000 

Genomes Project (18). Here, we find it in five out of seven sampled males in the Lahu from 

Yunnan province in southern China (who also carry high levels of population-specific rare 

autosomal alleles (Fig. 2A)), pointing to the importance of East Asia for understanding the 140	
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early dispersal of non-African Y chromosomes, and highlighting how sequencing of diverse 

human groups can recover genetic lineages that are globally rare. 

 

 

 145	

Figure 2: Insights into population relationships from low-frequency variants. (A) A heatmap of pairwise 

counts of doubleton alleles (alleles observed exactly twice across the dataset) between all 929 individuals, 

grouped by population. (B-D) D-statistics of the form D(Chimp,X;A,B), stratified by the derived allele frequency 

in X. Darker red points correspond to |Z| > 3. 

 

The extremes of human genetic differentiation 

We next studied the extremes of human genetic variation by identifying variants that are 

private to geographic regions (excluding individuals with likely recent admixture from other 

regions). We find no such private variants that are fixed in a given continent or major region 150	

(Fig. 3A-C). The highest frequencies are reached by a few tens of variants present at >70% 

(and a few thousands at >50%) in each of Africa, the Americas and Oceania. In contrast, the 

highest frequency variants private to either Europe, East Asia, the Middle East or Central and 

South Asia reach just 10-30%. This likely reflects greater genetic connectivity within Eurasia 

owing to culturally driven migrations and admixture in the last 10,000 years, events which 155	
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did not involve the more isolated populations of the Americas and Oceania (1), allowing 

variation accumulating in the latter to remain private. Even comparing Central and South 

America, we find variants private to one region but absent from the other reaching >40% 

frequency. Within Africa, ~1000 variants private to the rainforest hunter-gatherer groups 

Mbuti and Biaka reach >30%, and the highly diverged San of southern Africa harbour 160	

~100,000 private variants at >30% frequency, ~1000 at >60% and even about 20 that are 

fixed in our small sample of six individuals. 

 

The vast majority of these geographically restricted variants reflect novel mutations that 

occurred after, or shortly before, the diversification of present-day groups, with >99% of 165	

alleles private to most non-African regions being the derived rather than the ancestral allele 

(Fig. 3D). Alleles private to Africa, however, include a higher proportion of ancestral alleles, 

and this proportion increases with allele frequency, reflecting old variants that have been lost 

outside of Africa. For the same reason, many high frequency private African variants are also 

found in available Neanderthal or Denisovan genomes (6, 15, 19) (Fig. 3E). The fraction of 170	

variants private to any given region outside of Africa that are shared with archaic genomes is 

very low, consistent with most or all gene flow from these archaic groups having occurred 

before the diversification of present-day non-African ancestries. The exception to this is 

Oceania, in which at least ~35% of private variants present at ≥20% frequency are shared 

with the Denisovan genome. Generally, at least ~20% of common (>10% allele frequency) 175	

variants that are present outside of Africa but absent inside Africa are shared with and thus 

likely derive from admixture with Neanderthals and Denisovans (Fig. 3F). The remaining up 

to ~80% are more likely to have derived from novel mutations, which thus have been a 

stronger force than archaic admixture in introducing novel variants into present-day human 

populations. 180	

 

Indel variants private to geographic regions display frequency distributions similar to those of 

SNPs, although reduced in overall numbers by approximately 10-fold (Fig. 3B). The same is 

mostly true of CNVs, with an even greater reduction in overall numbers, except for a slight 

excess of high-frequency private CNVs in Oceanians over what would be expected based on 185	

the number of private Oceanian SNPs (Fig. 3C, fig. S4). Several of these variants are shared 

with the available Denisovan genome, suggesting that, relative to other variant classes and 

geographical regions, positive selection has acted with a disproportionate strength on copy 

number variants of archaic origin in the history of Oceanian populations. 
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 190	

 

Figure 3: Counts and properties of geographically private variants. (A-C) Counts of region-specific variants. 

The vertical axis displays the number of variants private to a given geographical region that have an allele 

frequency in that region equal to or higher than the corresponding value at the horizontal axis. (A) SNPs. (B) 

Indels. (C) CNVs. (D) The fraction of SNPs private to a given region and at a frequency equal to or higher than 

the corresponding value on the horizontal axis for which the private allele is the derived as opposed to ancestral 

state. (E) The fraction of SNPs private to a given region and at a frequency equal to or higher than the 

corresponding value on the horizontal axis for which the private allele is observed in any of three high-

coverage archaic genomes. (F) As E, but counting not variants absent from every other region, but only absent 

from Africa. 

 

 

Effective population size histories 

We next examined what present-day patterns of genetic variation can tell us about the past 195	

demographic histories of different human populations. The distribution of coalescence times 

between chromosomes sampled from the same population can be used to infer changes in 

effective population size over time (20, 21), but resolution in recent times is limited when 

analysing single human genomes, and haplotype phasing errors can cause artefacts when 

using multiple genomes (22, 23). We therefore applied a related method (SMC++) (23) which 200	

extends this approach to also incorporate information from the site frequency spectrum as 

estimated from a larger number of unphased genomes, thereby enabling inference of effective 

population sizes into more recent time periods (Fig. 4A). In Europe and East Asia, most 

populations are inferred to have experienced major growth in the last 10,000 years, but some 
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geographically or culturally more isolated groups less so, including the European Sardinians, 205	

Basques, Orkney islanders, the southern Chinese Lahu and the Siberian Yakut. In Africa, 

while the sizes of agriculturalist populations increased over the last 10,000 years, those of the 

hunter-gatherer groups, Biaka, Mbuti and San, saw no growth or even declined. These 

findings may reflect a more general pattern of human prehistory, in which hunter-gatherer 

groups which previously might have been more numerous and widespread retracted as 210	

agriculturalist groups expanded. 

 

We also find evidence for substantial population growth in the ancestors of Native Americans 

coinciding with entry into the American continents ~15 kya (Fig. 4B), mirroring observations 

of rapid diversification of mitochondrial and Y-chromosome lineages at this time (24, 25) but 215	

not previously observed using autosomal data. While this inference is sensitive to SMC++ 

parameter settings and likely counteracted by very recent bottlenecks in the Native American 

groups, other populations do not display similar histories under these parameter settings. The 

inferred growth rate exceeds even those of large European and East Asian populations in the 

last 10,000 years, suggesting this could be one of the most dramatic growth episodes in 220	

modern human population history. 

 

While informative, these analyses still appear to have limited resolution to infer more fine-

scale population size histories during the transitions to agriculture, metal ages and other 

cultural processes that have occurred during the last 10,000 years. This might require yet 225	

larger sample sizes, novel analytical methods that exploit other features of genetic variation 

(26), or both. 
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Figure 4: Effective population size histories of 54 diverse populations. (A) Effective population sizes for all 

populations inferred using SMC++, computed using composite likelihoods across six different distinguished 

individuals per population. Our ability to infer recent size histories in some South Asian and Middle Eastern 

populations might be confounded by the effects of recent endogamy. (B) Results for the Native American 

Karitiana population with varying SMC++ parameter settings. Decreasing the regularization or excluding the 

last few thousand years from the time period of inference leads to curves displaying massive growth 

approximately in the period 10 to 20 kya. 

 230	

 

The time depth and mode of human population separations 

We used the 26 genomes physically phased by linked-read technology to study the time-

course of population separations using the MSMC2 method (21, 27). As a heuristic 

approximation to the split time between two populations we take the point at which the 235	

estimated rate of coalescence between them is half of the rate of coalescence within them, but 

we also assess how gradual or extended over time the splits were by comparing the shape of 

the curves to those obtained by running the method on simulated instant split scenarios 

without subsequent gene flow. Assuming a mutation rate of 1.25×10-8 per base-pair per 

generation and a generation time of 29 years, our midpoint estimates suggest (Fig. 5A) splits 240	

between the two central African rain forest hunter-gatherer groups Mbuti and Biaka ~62 kya, 

Mbuti and the west African Yoruba ~69 kya, Yoruba and the southern African San ~126 kya 
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and between San and both of Biaka and Mbuti ~110 kya. Non-Africans have separation 

midpoints from Yoruba ~76 kya, Biaka ~96 kya, Mbuti ~123 kya and, representing the 

deepest split in the dataset, from San ~162 kya. However, all of these curves are clearly 245	

inconsistent with clean splits, suggesting a picture where genetic separations within Africa 

were gradual and shaped by ongoing gene flow over tens of thousands of years. For example, 

there is evidence of gene flow between San and Biaka until at least 50 kya, and between each 

of Mbuti, Biaka and Yoruba until the present day or as recently as the method can infer. 

 250	

For the deepest splits, there is some evidence of genetic separation dating back to before 300 

or even 500 kya, in the sense that even by that time the rate of coalescence between 

populations still differs from that within populations. The implication of this would be that 

there lived populations already at this time which have contributed more to some present-day 

human ancestries than to others. We find that a small degree of such deep structure in 255	

MSMC2 curves might be spuriously caused by batch effects associated with sequencing and 

genotyping pairs of chromosomes from diploid human samples together, but that such effects 

are not large enough to fully explain the differences in coalescence rates at these time scales 

(fig. S6). However, even if this signal reflects actual ancient population structure, its 

magnitude is such that it would only apply to small fractions of present-day ancestries. An 260	

analogy to this is how Neanderthal and Denisovan admixture results in a few percent of non-

African ancestries separating from some African ancestries approximately half a million 

years ago, while most of the ancestry was connected until much more recently. We argue, in 

the light of such composite ancestries in present-day human populations and the clear 

deviation of our MSMC2 results from instant split behaviours, that single point estimates are 265	

inadequate for describing the timing of early modern human population separations. A more 

meaningful summary of our results might be that the structure we observe among human 

populations today formed predominantly during the last 250 kya, but that some small fraction 

of present-day ancestries retains traces of structure that is older than this, potentially by 

hundreds of thousands of years. 270	

 

We also applied MSMC2 to the history of separation between archaic and modern human 

populations. While the method relies on phased haplotypes, the high degree of homozygosity 

of Neanderthals and Denisovans means that it might still perform well despite the absence of 

phase information for heterozygous sites in these genomes. The midpoint estimates suggest 275	

that modern and archaic populations separated 550-700 kya (Fig. 5A), in line with, but 
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potentially slightly earlier than, estimates obtained with other methods (15, 19). These results 

also provide relative constraints on the overall time depth of modern human structure that are 

independent of the mutation rate we use to scale the results, in the sense that the deepest 

modern human midpoints are less than one-third of the age of the midpoints of the archaic 280	

curves. However, the deep tails of some modern human curves partly overlap a time period 

when genetic separation from the archaics might still not have been complete. The separation 

between archaic and modern humans appears more sudden than those between different 

modern human populations, and only slightly less sudden than expected under an instant split 

scenario, suggesting a qualitatively different mode of separation between modern and archaic 285	

groups than between modern human groups within Africa. While the divergence time 

between modern human and Neanderthal mitochondrial genomes shows that there is at least 

some ancestry shared more recently than 500 kya (28), these MSMC2 results suggest that 

post-split gene flow to and from the archaic groups, likely geographically restricted to 

Eurasia, overall would have been limited. 290	

 

Outside of Africa, the time depths of population splits are in line with previous estimates (3, 

4, 21), with all populations sharing most of their ancestry within the last 70 kya (Fig. 5B). 

Our analyses of these physically phased genomes do not replicate a previously observed 

earlier divergence of West Africans from Oceanians than from Eurasians in MSMC analyses 295	

(4, 27), suggesting those results were caused by some artefact of statistical phasing. Instead, 

all non-African populations display very similar histories of separation from African 

populations (fig. S5). Like those within Africa, many curves between non-African 

populations are more gradual than instant split simulations. However, some curves, including 

those between the Central American Pima and the South American Karitiana, between Han 300	

Chinese and the Siberian Yakut, or between the European Sardinians and the Near Eastern 

Druze, do not deviate appreciably from those expected under instant splits. This suggests that 

once modern humans had expanded into the geographically diverse and fragmented 

continents outside of Africa, populations would sometimes separate suddenly and without 

much subsequent gene flow. 305	

 

We also fit simple pairwise split models for the complete set of 1431 population pairs to the 

site-frequency spectrum using momi2 (29), obtaining estimates with high concordance to the 

MSMC2 midpoints (r = 0.93). This much larger set of split time estimates is consistent with 

present-day populations sharing the majority of their ancestry within the last 200 kya. Using 310	
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these estimates, we also find that the strength of allele frequency differentiation between 

populations (FST) relative to split times is about three times greater outside than inside of 

Africa (Fig. 5C). This could partly reflect increased rates of drift in some non-African 

populations, but is likely largely explained by the amplifying effects on FST of the reduced 

diversity of these groups following their shared bottleneck event (30). 315	

 

 

Figure 5: The time depth and mode of population separations. (A) MSMC2 cross-population results for pairs 

of African populations, including Han Chinese as a representative of non-Africans, as well as between archaic 

populations and Mbuti as a representative of modern humans. Curves between modern human groups were 

computed using 4 physically phased haplotypes per population, while curves between modern and archaic 

groups were computed using 2 haplotypes per population and unphased archaic genomes. The results of 

simulated histories with instantaneous separations at different time points are displayed in the background in 
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alternating yellow and grey curves. (B) MSMC2 cross-population results, as in A, for pairs of non-African 

populations. (C) Split times estimated under simple, sudden pairwise split models using momi2 for all possible 

pairs among the 54 populations against FST, a measure of allele frequency differentiation. The plot does not 

include Native American populations, as we could not obtain reliable momi2 fits for these. 

 

The genetic contribution of archaic hominins to present-day human populations 

We estimate an average of 2.4% and 2.1% Neanderthal ancestry in eastern non-Africans and 320	

western non-Africans, respectively. We estimate 2.8% (95% confidence interval: 2.1-3.6%) 

Denisovan ancestry in Papuan highlanders, substantially lower than the first estimate of 4-6% 

(31) based on less comprehensive modern and archaic data, but only slightly lower than more 

recent estimates (6, 32, 33). The proportion of ancestry that remains in present-day Oceanian 

populations after the Denisovan admixture is thus likely not much higher than the amount of 325	

Neanderthal ancestry that remains in non-Africans generally. 

 

We identified Neanderthal and Denisovan segments in non-African genomes using a hidden 

Markov model, and studied the diversity of these haplotypes to learn about the structure of 

these admixture events and whether they involved one or more source populations. For 330	

Neanderthals, several lines of evidence are consistent with there having been a single source 

with no apparent contribution from any additional population which was detectably different 

in terms of ancestry, geographical distribution or admixture time. Neanderthal segments 

recovered from modern genomes across the world show very similar distributions along the 

genome (fig. S14 and table S6) and profiles of divergence to available archaic genomes (fig. 335	

S15), and different Neanderthal haplotypes detected at the same location in modern genomes 

rarely form geographically structured clusters (fig. S20, table S8). The structure of absolute 

divergence (DXY) in Neanderthal segments between pairs of non-African populations mirrors 

that in unadmixed segments (Fig. 6A), suggesting a shared admixture event before these 

populations diverged from each other. A substantial later episode of admixture from 340	

Neanderthals into one or more modern populations would have resulted in greater structure 

(more divergence between some populations) in the Neanderthal segments relative to that in 

unadmixed segments. Instead, the diversity in unadmixed segments relative to that in 

Neanderthal segments is higher in western than in eastern non-Africans, perhaps due to gene 

flow from a source with little or no Neanderthal ancestry into the former (34). Although 345	

phylogenetic reconstructions indicate that some regions in the genome contain more than 10 

different introgressing Neanderthal haplotypes (Fig. 6B, table S7), thus clearly ruling out the 
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scenario of a single contributing Neanderthal individual, the average genetic diversity of 

admixed Neanderthal sequences is limited (Fig. 6B,C). Coalescent simulations suggest that, 

genome-wide, as few as 2-4 founding haplotypes are sufficient to produce the observed 350	

distribution of haplotype network sizes.  

 

In contrast, Denisovan segments show evidence of a more complex admixture history. 

Segments in Oceania are distinct from those in East Asia, the Americas and South Asia, as 

shown by their different distribution along the genome (fig. S14 and table S8), high DXY 355	

values (Fig. 6A) and a clear separation in most haplotype networks between these two 

geographical groups (fig. S21, table S8), corresponding to a deep divergence between the 

Denisovan source populations. East Asian populations also harbour some Denisovan 

segments that are very similar to the Altai Denisovan genome but which are absent from 

Oceania (fig. S15). This is consistent with the Denisovan ancestry in Oceania having 360	

originated from a separate gene flow event not experienced in other parts of the world (35). 

We do not, however, find clear evidence of more than one source in Oceanians (36). The 

more complicated structure of the Denisovan segments in East Asia (and likely also in 

America and South Asia) is difficult to explain by one or even two admixture events, and 

may possibly reflect encounters with multiple Denisovan populations by the ancestors of 365	

modern humans in Asia. Some Denisovan haplotypes found in Cambodians are somewhat 

distinct from those in the rest of East Asia with tentative connections to those in Oceania. 

Overall, these results paint a picture of an admixture history from Denisovan-related 

populations into modern humans that is substantially more complex than the history of 

admixture from Neanderthals. 370	

 

In MSMC2 analyses, we find that non-Africans display clear modes of non-zero cross-

coalescence rates with the Vindija Neanderthal in recent time periods (<100 kya), providing 

an additional line of evidence for the known admixture episode without requiring 

assumptions about African populations lacking admixture (Fig. 6D, fig. S7). The Denisovan 375	

gene flow into Oceanians is also visible in these analyses but is less pronounced and 

substantially shifted backwards in time (fig. S7), consistent with the introgressing population 

being highly diverged from the sequenced individual from the Altai mountains. The West 

African Yoruba also display a Neanderthal admixture signal, similar in shape but much less 

pronounced than the signal in non-Africans (Fig. 6D). Other African populations do not 380	

clearly display the same behaviour. These results provide evidence for low amounts of 
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Neanderthal ancestry in West Africa, consistent with previous results based on other 

approaches (15, 19), and we estimate this at 0.18%±0.06% in Yoruba using an f4-ratio 

(assuming Mbuti has none). The most likely source for this is West Eurasian admixture (37), 

and assuming a simple linear relationship to Neanderthal ancestry, our estimate implies 385	

8.6%±3% Eurasian ancestry in Yoruba. 

 

While there is an excess of haplotypes deriving from archaic admixture in non-Africans, 

many single variants present in archaic populations are also present in Africans due to their 

having segregated in the population ancestral to archaic and modern humans, and some of 390	

these variants were subsequently lost in non-Africans due to increased genetic drift. Counting 

how many of the variants carried in heterozygote state in archaic individuals are segregating 

in balanced sets of African and non-African genomes, we find that more Vindija Neanderthal 

variants survive in non-Africans than in Africans (31.0% vs 26.4%). However, more 

Denisovan variants survive in Africans (18.9% vs 20.3%). These numbers might change if 395	

larger numbers of Oceanian populations were surveyed, but they highlight how the high 

levels of genetic diversity in African populations mean that, despite having received much 

less or no Neanderthal and Denisovan admixture, they still retain a substantial, and only 

partly overlapping (Fig. 3E), subset of the variants which were segregating in late archaic 

populations. 400	
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Figure 6: Archaic haplotypes in modern human populations. (A) Nucleotide divergence DXY within segments 

deriving from archaic admixture and within other segments in non-African populations. (B) The mean number 

of archaic founding haplotypes estimated by constructing maximum likelihood trees for each archaic segment 

identified in present-day non-Africans, and then determining the number of ancestral branches in the tree at the 

approximate time of admixture (2000 generations ago). (C) The distribution of estimated ages of archaic 

haplotype networks in the present-day human population. The distribution is compared to results obtained in 

simulations performed with different numbers of archaic founding haplotypes. (D) MSMC2 cross-population 

results for African (two individual curves per population) and selected non-African (one individual curve per 

population) against the Vindija Neanderthal, zooming in on the signal of Neanderthal genome flow in modern 

human genomes (note the highly reduced range of the vertical axis). 

 

 

Discussion 405	

While the number of human genomes sequenced as part of medically-motivated genetic 

studies is rapidly growing into the hundreds of thousands, the number resulting from 

anthropologically-informed sampling to characterize human diversity still remains in the 

hundreds to low thousands. With the set of 929 genomes from 54 diverse human populations 

presented here, we greatly extend the number of high-coverage genomes freely available to 410	

the research community as part of human global diversity datasets, and substantially expand 
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the catalogue of genetic variation to many underrepresented ancestries. Our analyses of these 

genomes highlight several aspects of human genetic diversity and history, including the 

extent and source of geographically restricted variants in different parts of the world, the time 

depth of separation and extensive gene flow between populations in Africa, a potentially 415	

dramatic population expansion following entry into the Americas and a simple pattern of 

Neanderthal admixture contrasting with a more complex pattern of Denisovan admixture. 

 

One aim of the 1000 Genomes Project (2) was to capture most common human genetic 

variation, which it achieved in the populations included in the study. However, the more 420	

diverse HGDP dataset reveals that there are several human ancestries for which this aim was 

not achieved, and which harbour substantial amounts of genetic variation, some of it 

common, that so far has been documented poorly or not at all. This is particularly true of 

Africa and the ancestries represented by the southern African San, and central African Mbuti 

and Biaka groups. Outside of Africa, Oceanian populations represent one of the major 425	

lineages of non-African ancestries and have substantial amounts of private variation, some of 

it deriving from Denisovan admixture. Any biomedical implications of variants common in 

these populations but rare or absent elsewhere are unknown, and will remain unknown until 

genetic association studies are extended to include these and other currently underrepresented 

ancestries. 430	

 

Our analyses demonstrate the value of generating multiple high-coverage whole-genome 

sequences to characterise variation in a population, compared to genotyping using arrays, 

sequencing to low-coverage or sequencing just small numbers of genomes. In particular, such 

an approach enables unbiased variant discovery, including of large numbers of low-frequency 435	

variants, and higher resolution assessments of allele frequencies. The experimental phasing of 

haplotypes using linked-read technology aids analyses of deep human population history and 

structural variation, and is now becoming a feasible alternative to statistical phasing, 

especially useful in diverse populations. However, short read sequencing still imposes 

limitations on the ability to identify more complex structural variation. We expect the 440	

application of long-read or linked-read sequencing technologies to large sets of diverse 

human genomes, combined with de-novo assembly or variation graph (38) approaches that 

are less reliant on the human reference assembly, to unveil these additional layers of human 

genetic diversity. 

 445	
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While the HGDP genome dataset substantially expands our genomic record of human 

diversity, it too contains considerable gaps in its geographical, linguistic and cultural 

coverage. We therefore argue for the importance of continued sequencing of diverse human 

genomes. Given the scale of ongoing medical and national genome projects, producing high-

coverage genome sequences for at least ten individuals from each of the approximately 7000 450	

(39) human linguistic groups would now arguably not be an overly ambitious goal for the 

human genomics community. Such an achievement would represent a scientifically and 

culturally important step towards diversity and inclusion in human genomics research. 

 

Data availability 455	

Raw read alignments are available from the European Nucleotide Archive under study 

accession PRJEB6463. Processed per-sample read alignment files are made available by the 

International Genome Sample Resource at the European Bioinformatics Institute (EMBL-

EBI) (http://www.internationalgenome.org/). The 10x Genomics sequencing data generated 

for 26 samples are available at the European Nucleotide Archive under study accession 460	

PRJEB14173. Genotype calls and other downstream analysis files are available from the 

Wellcome Sanger Institute (ftp://ngs.sanger.ac.uk/production/hgdp). DNA extracts from the 

samples in the HGDP-CEPH collection can be obtained from the CEPH Biobank at 

Fondation Jean Dausset-CEPH in Paris, France (http://www.cephb.fr/en/hgdp_panel.php). 
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