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Abstract 15 

Background 16 

Angiosperms employ an astonishing variety of visual and olfactory floral signals that 17 

are generally thought to evolve under natural selection. Mathematical tools for 18 

predicting multiple traits have been developed for decades and have advanced our 19 

understanding of evolution in various biological systems. Nevertheless, very few 20 

studies have yet attempted to predict the evolutionary trajectories of floral traits, 21 

particularly when considering a comprehensive set of genetically correlated floral 22 

traits. 23 

Results 24 

We used data from an artificial and a pollinator (bumblebee, hoverfly) selection 25 

experiment with fast cycling Brassica rapa plants to predict evolutionary changes of 26 

12 floral volatiles and 4 morphological floral traits in response to selection. Using the 27 

observed selection gradients and the genetic variance-covariance matrix (G-matrix) of 28 

the traits, we showed that the responses of most floral traits including volatiles were 29 

predicted well in artificial- and bumblebee-selection experiment. Genetic covariance 30 

had a mixed of constrained and facilitated effects on evolutionary responses. We 31 

further revealed that G-matrix also evolved in the selection processes. Nevertheless, 32 

the ancestral G-matrix can still be used for predicting micro-evolutionary scenarios. 33 

Conclusions 34 

Overall, our integrative study shows that floral signals, and especially volatiles, 35 

evolve under selection in a mostly predictable way, at least during short term 36 

evolution. Evolutionary constraints stemming from genetic covariance affected traits 37 

evolutionary trajectories and thus it is important to include genetic covariance for 38 

predicting the evolutionary changes of a comprehensive suite of traits. Other 39 

processes such as resource limitation and selfing also needs to be considered for a 40 

better understanding of floral trait evolution. 41 

Key words: adaptive evolution, artificial selection, Brassica rapa, experimental 42 

evolution, floral scent, G-matrix, multivariate prediction, pollinator selection.43 
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Introduction 44 

Flowers are complex organs with enormous diversity in morphology, color and scent. 45 

These visual and olfactory components, which characterize the radiation of 46 

angiosperms, are recognized to evolve as a means of interaction with their biotic 47 

environment (Schiestl & Johnson, 2013; Leonard & Francis, 2017). One important 48 

driver, the pollinators, has been emphasized to be important for floral trait evolution 49 

since long (Darwin, 1862; Grant, 1949). However, only a handful studies have 50 

attempted to test the predicted adaptive evolution of floral traits to pollinator selection 51 

(Campbell, 1996; Galen, 1996; Mitchell et al., 1998; Morgan & Ashman, 2003; 52 

Caruso, 2004). Moreover, these studies only examined one or a few morphological 53 

traits at a time, whereas interactions of flowers with other organisms are typically 54 

mediated by a combination of traits of morphological and/or olfactory nature (Raguso 55 

& Willis, 2005; Schiestl, 2015). Therefore, a well-designed experiment with multiple 56 

traits measurement is required to predict and test the joint evolution of a suite of floral 57 

traits under natural or artificial selection. 58 

Mathematically, genetic (co)variance matrix (G-matrix) and phenotypic 59 

selection (β) are the two parameters for predicting the evolutionary changes (Δz) of a 60 

suite of traits by using multivariate breeder’s equation Δz = G* β (Lande, 1979; 61 

Lande & Arnold, 1983). A great number of empirical studies have documented 62 

significant heritability and genetic (co)variance of diverse floral traits (Ashman & 63 

Majetic, 2006; Kaczorowski et al., 2008; Zu et al., 2016; Zu & Schiestl, 2017), as 64 

well as phenotypic selection acting on them (Gómez, 2003; Irwin & Strauss, 2005; 65 

Sandring & Ågren, 2009; Sletvold & Ågren, 2010; Hopkins & Rausher, 2012; 66 

Parachnowitsch et al., 2012; Ågren et al., 2013; Gross et al., 2016; Gervasi & 67 

Schiestl, 2017). Among those traits, floral scents have rarely been considered. Floral 68 

scents are usually highly variable and diverse on all taxonomic levels (Knudsen 69 

2006). We recently showed that this variation has a strong heritable genetic 70 

component (20% - 45%, Zu et al., 2016). Together with studies documenting natural 71 

selection on scent (Schiestl et al., 2010; Ehrlén et al., 2012; Parachnowitsch et al., 72 

2012; Gross et al., 2016; Gervasi & Schiestl, 2017), this suggests that their evolution 73 

can be predicted, although such predictions have never been attempted. 74 
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In this study, we predict floral traits evolution and test the predictive power of 75 

complex trait evolution using a G-matrix. We used data from two forward-in-time 76 

experimental evolution experiments that documented genetic co-variation and 77 

evolutionary responses in floral traits of fast cycling Brassica rapa plants. The first 78 

parameter G of the plant population was estimated from a three-generation bi-79 

directional artificial selection experiment on plant height (Zu & Schiestl, 2017). In 80 

that study, tall- and short-plants were selected artificially for building the two 81 

directional lines, in addition to a control line built with randomly selected plants. Four 82 

morphological floral traits and 12 floral volatiles were measured for each generation. 83 

Control lines in this experiment were used to estimate G-matrix. The other parameter 84 

β was calculated from four evolutionary scenarios: two from the tall- and short-85 

selection lines in the artificial selection experiment mentioned above (Zu & Schiestl, 86 

2017); the other two from a 9-generation pollinator selection experiment (Gervasi & 87 

Schiestl, 2017). The pollinator selection experiment was carried out with bumblebees 88 

and hoverflies as the selection agents separately. The same set of floral traits were 89 

measured, and the parental plants were from the same seed bank as in the artificial-90 

selection experiment. 91 

In addition to the primary goal of this study to predict and examine floral traits 92 

evolution by employing the multivariate breeder’s equation, we also tested how the 93 

evolutionary trajectory of a trait would be affected (constrained/enhanced) by genetic 94 

correlations with traits by dissecting the total responses to selection into direct 95 

responses (caused by direct selection on target traits) and indirect responses (caused 96 

correlated responses through genetic covariance). Moreover, we assessed the 97 

evolution of genetic architectures (G-matrices) throughout the artificial selection 98 

processes. 99 

Results 100 

Predictions in the artificial selection experiment 101 

Tall- and short-directional selection can be regarded as the mirrored replicate to each 102 

other. The selection gradients of tall and short artificial selection lines were 103 

approximately opposite numbers to each other (Table S1), leading to a symmetric 104 

pattern of predicted changes of the floral traits: most traits increased in tall line and 105 

decreased in short line (Fig. 1). Plant height, the direct and only target of artificial 106 
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selection, was predicted accurately in both lines. Flower size traits (PW marginally, 107 

PL and FL) were predicted to decrease in short lines and matched the observations, 108 

and increase in tall lines, and, however, mismatched the observations (Fig. 1). VOCs 109 

were predicted well in most cases (filled violin plots, Fig. 1) in both lines except for 110 

three compounds in short lines (empty violin plots, Fig. 1). Note that the amount of 111 

some VOCs did not change significantly (red dashed-outlined violins, Fig. 1) 112 

although the predictions were correct (filled violins, Fig. 1). 113 

Predictions in the pollinator-selection experiment 114 

In this experiment, selection was stronger in the bumblebee than the hoverfly 115 

treatment (Table S2). Consequently, observed and predicted changes were larger in 116 

the bumblebee than the hoverfly treatment (Fig. 1, Fig. S1; Table 1).  In the 117 

bumblebee treatment, our predictions overestimated the evolutionary changes of all 118 

morphological traits, while responses of scent compounds (all 12 but benzyl nitrile, 119 

BenN) were correctly predicted (Fig. 1; Table 1). Among these seven VOCs 120 

significantly increased (solid-outlined violins, Fig. 1), and the other four VOCs were 121 

not (dashed-outlined violins, Fig. 1). In the hoverfly treatment, evolutionary responses 122 

of only 4 traits were correctly predicted (Fig. 1, Fig. S1; Table 1), among which petal 123 

length (PL) was the only one trait that changed significantly (solid-outlined violins). 124 

Effects of genetic covariance on predicting evolutionary trajectories 125 

We separate genetic variance-covariance matrix (G) into genetic variance matrix (G0) 126 

and genetic covariance matrix (G’). By comparing evolutionary responses using these 127 

three different matrices with the observed changes, we can disentangle the effects of 128 

genetic covariance on prediction. In the artificial selection experiment, the only trait 129 

under direct selection was height (i.e., β has only one non-zero element, see Table 130 

S1), and the observed changes in the other traits are thus entirely composed of their 131 

indirect responses to the selection on height.  132 

In the bumblebee selection experiment, selection targeted multiple traits with a 133 

mixture of positive and negative values (seven positive and nine negative values, 134 

Table S2). The direct component of the response predicted from the G0-matrix, 135 

reflecting the nature of the selection acting on them, showed the same positive or 136 

negative responses corresponding to their selection (Table 1). However, the observed 137 

responses were positive for all but one trait (MeS) (Table 1). Total predicted 138 
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responses (predicted from G-matrix) and indirect responses (predicted from G’-139 

matrix) were all positive, if not insignificant from zero (Table 1). The opposition 140 

between negative selection and positive total response is indicative of strong 141 

constraints acting on targets of negative selection. On the other hand, the response to 142 

selection was facilitated in the direction of selection when both the direct and indirect 143 

components of the response are aligned with the selection gradient, as found for 144 

height (Height), phenylacetaldehyde (PAA), methyl salicylate (MeB), and indole 145 

(Ind) (Table 1). 146 

The picture was different in the hoverfly treatment with a mix of positive and 147 

negative observed trait changes and eight traits with a predicted direct response in the 148 

same direction, but no selection gradient significantly different from zero. Phenotypic 149 

changes were better predicted without covariance only for petal width and petal 150 

length in the bumblebee experiment and flower diameter in the hoverfly experiment 151 

(Table 1).  152 

In addition to comparing the effects of genetic covariance on individual traits, 153 

we measured the overall constraining effect of genetic co-variation on the response to 154 

selection by comparing the angle � between the selection response vector (△z) and 155 

the first PC of G (PC1, or gmax) with the angle � between △z and the selection 156 

gradient (β). In the tall and short artificial selection experiments, the trait responses 157 

were strongly aligned with gmax, with � angle of 12.5 degree (95% HPD: 9.2, 16.6) 158 

and 11.2 degree (95% HPD: 7.2, 14.7), respectively. Given the close association of 159 

gmax with the first trait axis (height) (Fig. 2c) and thus with the selection gradients 160 

under artificial selection, the angle � between △z and β is 9.9 and 8.9 degree in tall 161 

and short, respectively, which are within the 95% HPD of � in both cases. In contrast, 162 

under pollinator selection, △z is more aligned with gmax than β, with � of 26.9 degree 163 

(95% HPD: 22.3, 33) and 60.8 degree (95% HPD: 57.1, 63.5), when compared to �, 164 

equal to 66.5 and 89.2 degree for bumblebee and hoverfly treatments, respectively. 165 

Evolution of the G-matrix during artificial selection 166 

By examining the G-matrices of the three lines in the artificial selection experiment, 167 

we found that a drastic decrease of the additive genetic variance of height in the tall 168 

line, with an estimate around 2.8 cm2, compared to the short line, which remained as 169 

high as in the control line around 23 cm2. This resulted in a large decrease of the 170 
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contribution of gmax (PC1) of Gtall to the total variance relative to Gcontrol and Gshort 171 

(see Fig. 2a-b, Table S5). The orientation of gmax also changed in Gtall, with reduced 172 

alignment with the height axis (Fig. 2c). The other eigenvalues and eigenvectors are, 173 

however, more constant across lines (Fig. 2a). For instance, the second eigenvector 174 

(PC2) is more consistently orthogonal to the height trait axis in the three G-matrices 175 

(Fig. 2c).  176 

Using the random skewers method, we found strong correlations of the mean 177 

selection response among matrices, larger than 70% for all three comparisons, 178 

although not significantly so between Gtall and Gshort, and very strong similarity 179 

between Gcontrol and Gshort (Table 2). The three G-matrices thus shared a significant 180 

portion of their structure. Gcontrol would predict selection responses similar to Gshort 181 

and to a lesser extent to Gtall. Further analysis of the similarity of the size and 182 

orientation of the eigenvectors of the G-matrices in the hierarchical analysis 183 

confirmed the similarity in shape between Gcontrol and Gshort and the dissimilarity of 184 

Gtall with Gcontrol, and with Gshort to a smaller degree (see Table 2). The G-matrix in 185 

the tall lines thus evolved more than in the short lines mostly because of the change in 186 

the genetic variance of plant height. Gshort remained closer to the starting G-matrix 187 

(Gcontrol) over the course of the experiment. 188 

Evaluation of the estimation of the G-matrices 189 

Randomization tests of G-matrices were conducted to examine whether G-matrix 190 

captured the meaningful biological structures rather than random assembling. The 191 

results revealed that Gcontrol was estimated with highest accuracy compared to Gtall and 192 

Gshort. The majority of the genetic covariance elements (101 out of 120) and additive 193 

genetic variances (14 out of 16) in Gcontrol were significant at the level of FDR < 0.05, 194 

after correcting for multiple testing (false discovery rate: Benjamini & Hochberg 195 

1995). In Gtall, 11 variance and 55 covariance elements were significant, and 15 and 196 

72 elements, respectively, in Gshort (Table S4), at the same FDR level.  197 

Discussion 198 

Total evolutionary responses are made up of direct and indirect responses. We could 199 

predict the evolutionary response of floral traits subject to two types of selection 200 

pressures by combining estimates of the ancestral G-matrix of the traits with estimates 201 

of the selection gradients acting on them, with relatively high accuracy. Importantly, 202 
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we found that predictions based only on the direct trait responses to selection failed to 203 

predict the observed responses and that the observed responses were biased towards 204 

the line of least genetic resistance (gmax) of the G-matrix. This indicates that making 205 

correct evolutionary predictions requires the additional knowledge of the indirect trait 206 

responses caused by multivariate selection acting on genetically correlated phenotypic 207 

traits. The pattern of genetic covariation among traits thus strongly affected the 208 

outcome of selection in the artificial and pollinator selection experiments. Although 209 

this pattern of trait covariation can change during evolution, we further showed that 210 

using an ancestral G-matrix, here estimated in the control lines, can lead to accurate 211 

evolutionary predictions over just a few generations. This approach allowed us to 212 

better understand how pollinators, the selective agents, interact with the complex set 213 

of floral traits composed of floral scent and morphology and may influence their 214 

evolution. 215 

We observed a few discrepancies between our evolutionary predictions and 216 

observed responses that need to be examined. In particular, the responses of the 217 

morphological traits in the artificial selection for tall plants did not show the expected 218 

increase of flower size but instead showed a decrease, despite the positive genetic 219 

correlations of flower size with plant height (see Gcontrol in Table S4), which remained 220 

positive during selection (see Gtall in Table S4). It thus cannot be caused by an 221 

evolutionary change of the sign of the genetic correlations with height. Instead, this 222 

selection experiment may have revealed an underlying resource allocation trade-off 223 

masked by the apparent positive genetic covariation between plant height and the size 224 

of the reproductive organs. This is reminiscent of classical theory on the effect of 225 

variation in resource acquisition and allocation on fitness components (Van 226 

Noordwijk & de Jong, 1986; Houle, 1992; Agrawal et al., 2010), which states that a 227 

positive correlation between fitness components can be observed despite an 228 

underlying trade-off when individuals vary more in the acquisition than in the 229 

allocation of their resources. Variation in resource acquisition among the genotypes 230 

may have been pre-existing in the base population of B. rapa, and lead to the 231 

observed positive correlation between traits pertaining to two fitness components, 232 

plant reproduction for flower size traits, and plant somatic growth for plant height. 233 

However, the observation of a negative correlated response of flower size to selection 234 

for reduced plant height in the low artificial selection experiment is more in line with 235 
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a positive correlation between height and floral morphology. This may be caused by 236 

unconstrained allometries when selecting for smaller plants where resource limitation 237 

may be less stringent than when selecting for taller plants. 238 

In contrast to flower size, we found mismatches of our predictions of the 239 

response of floral volatiles to artificial- and bumblebee-selection in the cases where 240 

predictions of reduced scent concentration were not observed. This finding is 241 

consistent with another study using the same plant genotypes and conducting bi-242 

directional artificial selection on floral volatiles, which showed that they responded 243 

strongly to upward selection but hardly changed in response to downward selection 244 

(Zu et al., 2016). This lack of response for reduced concentrations may be caused by 245 

the natural low amounts of volatiles in the starting population, minimizing the genetic 246 

variance in the downward direction (Zu et al., 2016). Finally, the large overshooting 247 

of the predictions of the response of plant height and flower size in the bumblebee 248 

experiment is probably due to an overestimation of the genetic variance of the 249 

morphological traits, although we cannot test for this hypothesis because we are 250 

missing an estimate of the G-matrix in that 9-generation selection experiment. 251 

In contrast to predictions in the bumblebee-pollinated plants, the ones in 252 

hoverfly-pollinated plants were largely not different from zero or incorrect. The 253 

observed changes were also not consistently in the same direction, implying that an 254 

evolutionary response along one major axis of overall positive trait co-variation is not 255 

likely, at least when estimating the co-linearity of the response vector with gmax of 256 

Gcontrol. Instead, the observed change is more consistent with very weak selection and 257 

altered patterns of trait covariation. Indeed, in the hoverfly-selection experiment, a 258 

separate study found very little adaptive evolution in plant traits with the exception of 259 

strongly increased autonomous selfing (Gervasi & Schiestl, 2017). Thus, increased 260 

selfing and the associated reduction of genetic variation (Charlesworth, 2003), 261 

possibly altered the G-matrix, leading to the low accuracy of our predictions and the 262 

reduced efficiency of pollinator-induced selection. Previous studies in bottlenecked 263 

insect populations have shown that rapid changes in the G-matrix are expected in 264 

inbred populations (e.g., Phillips et al. 2001, Whitlock et al. 2002). 265 

Targets of bumblebee selection 266 
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Overall, bumblebee selection was in favor of taller plants with bigger petals and 267 

increased concentration of certain odor volatiles, most notably indole and methyl 268 

benzoate (see also Gervasi and Schiestl 2017). Because of the largely positive genetic 269 

correlation of most floral traits with height, it is not surprising to observe positive 270 

selection responses of those traits, and our evolutionary predictions match well with 271 

that pattern. However, our analysis revealed that some of those responses may be 272 

maladaptive because opposed to the selection gradient acting on them (e.g., 273 

benzaldehyde and benzyl nitrile, see Tables 1 and S2). This suggests that bumblebees 274 

tended to dislike flowers with increased concentration of those volatiles, whose 275 

increased observed amounts were caused by indirect selection on height and other 276 

positively correlated traits under positive selection. These indirect selection responses 277 

thus pushed the trait values further away from their optimum values and have 278 

emphasized or even created the negative selection gradient acting on them. However, 279 

without estimates of the selection gradient at each generation we cannot ascertain 280 

whether those traits are generally under negative selection by pollinators who disliked 281 

such compounds from the start or whether the negative selection gradients appeared 282 

as an indirect consequence of pollinator selection on correlated traits after the start of 283 

the selection experiment. In any case, their positive, non-adaptive responses point to 284 

the existence of strong evolutionary constraints acting on them. Overall, knowledge of 285 

the selection gradient, the G-matrix and selection response of the traits showed that 286 

they evolved in a direction biased towards gmax, the "line of least resistance" (Schluter 287 

1996), which constrained the evolutionary response away from the selection gradient, 288 

although the selection responses of some traits were enhanced by trait covariation. 289 

The role of genetic covariance in adaptive evolution 290 

Our results are in line with the established expectation that genetic covariance can 291 

influence traits' evolutionary response by constraining or augmenting their response to 292 

selection depending on the relative signs of genetic covariances and selection 293 

gradients (Lande 1979; Arnold et al. 2001; Walsh & Blows 2009). This expectation 294 

has been rarely directly tested with experimental evolution as we did here (see also 295 

Careau et al. 2014). More commonly, empirical studies use estimates of contemporary 296 

selection gradients and G-matrices to evaluate the potential for evolutionary 297 

constraints, which are present in some cases (e.g., Blows et al. 2004; Smith & 298 
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Rausher 2008; Wailing et al. 2014; Teplitsky et al. 2014) but not in others (e.g., 299 

Merilä & Björklund 1999; McGuigan et al. 2005; Berner et al. 2010). 300 

The relevance of predictions of evolutionary constraints depends on the 301 

constancy of patterns of genetic variance-covariance over time. Our study shows that 302 

constancy cannot be assured when selection strongly reduces the genetic variance of a 303 

trait, as during artificial selection for taller plants (see also Doroszuk et al. 2008; 304 

Björklund et al. 2013; Careau et al. 2014). Yet, using Gcontrol as an estimate of the 305 

ancestral G-matrix allowed us to make correct evolutionary predictions in most cases. 306 

Had we used Gtall in the tall selection experiment, we would have badly 307 

underestimated the selection response of plant height and floral scent (results not 308 

shown). This illustrates two important points concerning the evolutionary significance 309 

of the structure of the G-matrix. First, changes in G can happen quickly, over just a 310 

few generations, and we have illustrated a rapid change in trait variance caused by 311 

selection. Second, despite those changes, estimation of G is still useful to make 312 

predictions of future trait changes over few generations. This can be useful to predict 313 

evolution and adaptation under rapid environmental changes, for instance, because the 314 

state of the G-matrix before a change in selection pressures will strongly influence the 315 

resulting evolutionary trajectory of a population, as we have shown. 316 

The evolutionary significance of the structure of the G-matrix is still debated, 317 

especially regarding the interpretation of the constraining effects of the main 318 

eigenvectors of G (especially gmax). The debate, however, mostly crystallized on 319 

inferences of past evolutionary constraints from contemporary estimates of trait 320 

variance-covariance patterns. The retrospective use of G is questionable knowing how 321 

evolutionarily labile are patterns of variance-covariance, an important caveat already 322 

emphasized by Turelli (1988). Indeed, many processes may affect the evolution of 323 

trait variance and covariances because they depend on variation in allele frequencies 324 

in a population. As such, genetic drift (Jones et al. 2003) and fluctuating selection 325 

(Jones et al. 2004), have been shown to reduce the stability of the G-matrix, while 326 

migration (Guillaume & Whitlock 2007), correlational selection (Jones et al. 2003), 327 

and mutation (Jones et al. 2003, Chebib & Guillaume 2017) can improve its stability 328 

(reviewed in Arnold et al. 2008). Those changes thus make retrospective use of G at 329 

the least dangerous, unless its long-term stability can be determined. Prospective use 330 

of G is potentially less sensitive to such variations when predicting short term 331 
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selection responses. Our analysis provides a good illustration of the prospective 332 

versus retrospective usage of a G-matrix when considering the changes in G's 333 

structure between Gcontrol and Gtall and the respective predictions and inferences we 334 

can make from them. 335 

Outlook 336 

Our study showed that even highly plastic chemical traits such as floral scent, can be 337 

successfully included into predictive models of floral trait evolution. Even more so, 338 

we show that a complementary set of traits is important to consider, because 339 

pollinator selection acts on multiple traits, and genetic correlations link them in their 340 

evolutionary response. In the future, improved sampling and analysis techniques may 341 

allow the standard inclusion of a large set of traits and large sample sizes into 342 

evolutionary studies. Larger sample sizes may allow more accurate prediction models 343 

by incorporating the dynamics of G-matrix evolution over multiple generations. In 344 

addition, more assessments of selection on those traits in nature by specific groups of 345 

interacting organisms (Ehrlén et al., 2012; Ågren et al., 2013; Vanhoenacker et al., 346 

2013; Gross et al., 2016; Ramos & Schiestl, 2019) may further improve our ability to 347 

predict evolutionary changes in the face of environmental change in natural habitats.  348 

Materials and methods 349 

The workflow of the main analysis procedures is summarized in Fig. S1. 350 

Plant species and focal traits 351 

In our experiment, we used the rapid cycling Brassica rapa L. (syn. B. campestris: 352 

Brassicaceae) from the Wisconsin Fast PlantsTM Program (Carolina Biological Supply 353 

Company, Burlington, NC, USA), selected for short generation time, rapid seed 354 

maturation, absence of seed dormancy, small plant size and high female fertility 355 

(Williams & Hill, 1986). Brassica rapa is a self-incompatible species with a 356 

generalized pollination system (e.g. bees, syrphid flies and butterflies as pollinators). 357 

The line used needs only ca. 35 to 40 days to complete a life cycle and maintains 358 

sufficient genetic variability for selection experiments (Miller & Schemske, 1990; 359 

Ågren & Schemske, 1992; Zu et al., 2016; Zu & Schiestl, 2017). 360 

Our analysis includes a total of 16 traits with 12 floral volatile organic 361 

compounds (VOCs), and 4 morphological traits (plant height, petal width, petal 362 
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length, and flower diameter). The measurement methods were described in detail in 363 

Zu & Schiestl (2017). Floral VOCs were collected from at least four freshly opened 364 

flowers per plant at a flow rate of 100 mL per min for 3 hours. Floral VOC amounts 365 

were standardized in amounts per flower per liter sampled air, and log transformed 366 

(by ln(x +1), x being the raw value) prior to statistical analysis to approach normal 367 

distributions. Scent collection and analysis details can be found in Supporting 368 

information. The whole experiment was conducted at the Botanical Garden of the 369 

University of Zürich. 370 

Experiment I: artificial selection experiment 371 

Details of the experimental procedure for artificial selection can be found in Zu & 372 

Schiestl (2017). To summarize, we sowed out 150 seeds to form the parental 373 

generation. Up and down directional artificial selection on plant height were imposed 374 

to produce a tall and a short line with the ten tallest and ten shortest plants, 375 

respectively. Additionally, ten randomly selected plants were chosen to form a control 376 

line. Selected plants were randomly hand pollinated within each line. Pollen donor, 377 

pollen receiver and their offspring were labeled for each fruit to generate a breeding 378 

pedigree. After fruit maturation, around 50 seeds from each of the three lines were 379 

sown out to form the next generation. The same procedures were carried out to obtain 380 

three generations of selection. Extra seeds were sowed out to ensure a minimum of 381 

150 individual plants in each generation. In total, we analyzed 628 plants. The 382 

experiment was conducted in a phytotron with 24h fluorescent light per day, 22°C, 383 

60% relative humidity, and regular watering twice a day (at 08:00 and 18:00). 384 

Experiment II: pollinator selection experiments 385 

The procedures of experimental evolution experiment can be found in detail in 386 

Gervasi & Schiestl (2017). To summarize, we sowed out 300 seeds to generate 108 387 

full sib families by manual cross pollination. These 108 full sib families were then 388 

equally divided into three replicates each containing 36 plants, for each of the three 389 

treatments (bumblebee, hoverfly, and hand pollination treatment). In each replicate, 390 

the 36 plants were placed in a 6×6 array with a distance of 20 cm from each other in a 391 

flight cage (2.5m×1.8m×1.2m). In bumblebee and hoverfly treatments, five 392 

pollinators (either Bombus terrestris or Episyrphus balteatus) were introduced one at 393 

a time in the flight cage, with each allowed to freely visit maximal three different 394 
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plants before being removed from the cage. A total number of 12 - 15 out of 36 plants 395 

per replicate received one or more pollinator visitation. The average (± s.d.) visitation 396 

(in visited plants) was 1.35 ± 0.63 for bumblebee-pollinated plants and 1.28 ± 0.53 for 397 

hoverfly-pollinated plants. In the control treatment 12 plants were randomly chosen 398 

and were manually pollinated among each other. Floral traits were measured prior to 399 

pollinators’ visits or hand pollination. The number of seeds were recorded after fruit 400 

maturation. Seeds from the pollinated plants were sown out proportionally 401 

((individual seed set /replicate sum of seeds)×36, values below 0.5 were rounded up 402 

to 1) to form again a total number of 36 plants for the next generation of each 403 

replicate. The same selection and sowing-out procedures were conducted for 9 404 

generations, after which plants were sowed out again and randomly hand crossed 405 

between the replicates within each treatment to get rid of potential inbreeding 406 

depression. Fruits from random crosses were sown out to form the 11th generation and 407 

the measurements of floral traits in this generation were used as observed responses to 408 

selection.  409 

Estimation of the genetic variance-covariance matrices (G-matrix) 410 

With known breeding pedigree and plant trait values for each individual in the control 411 

and treatment lines of the artificial selection experiment, we were able to estimate 412 

three genetic variance-covariance matrices: Gcontrol in control, Gtall (or Gshort) in 413 

selection lines for increased (or decreased) plant height (see Table S3). The pedigree 414 

of the seeds sowed in the pollinator experiment was unknown. We thus used Gcontrol 415 

from artificial selection experiment for evolutionary predictions in both experiments. 416 

More specifically, we estimated the G-matrix of the 16 traits by using a multivariate 417 

animal model in which the kinship (relatedness) matrix was obtained from the four-418 

generation pedigree of the plants crossed within the experiments (sire = pollen donor, 419 

dam = pollen receiver), independently in the control, tall, and short experimental lines 420 

(Table S3). We fitted a linear mixed model using the Bayesian method implemented 421 

in the MCMCglmm R package (Hadfield, 2010) to estimate random effect variance 422 

components for additive genetic effects (VA) from which we estimated the G-matrix, 423 

and among-dam (VD) and among-sire (VS) components to remove potential maternal 424 

and paternal effects, respectively. We added generation as a block factor modeled as a 425 

fixed effect. This method was previously shown to have good applications with a few 426 

traits (Reid, 2012; Teplitsky et al., 2014).  427 
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In MCMCglmm, we used weakly informative inverse-Wishart prior with limit 428 

variance of one and covariance of zero and low degree of belief (0.002). Posterior 429 

distributions were robust to several different prior settings (e.g. V = diag(n)×0.1, V = 430 

diag(n)×10, n = number of traits). We used 1,200,000 iterations, with a burn-in of 431 

200,000 and a thinning of 500 to ensure convergence and low autocorrelation among 432 

thinned samples (< 0.1). The thinning resulted in a posterior distribution with 2000 433 

samples.  434 

Finally, because the Bayesian approach does not allow us to directly test for the 435 

accuracy of our estimates of the G-matrices, we implemented a permutation test in 436 

which we randomly shuffled the dam and sire of each offspring within each 437 

generation and re-estimated the G-matrix for each of 500 replicates using the same 438 

MCMCglmm procedure as before. To evaluate the accuracy of the observed G-439 

matrices (Gcontrol, Gtall, and Gshort), we then compared them to their randomized 440 

estimates, element by element. For each element, we computed an empirical P-value 441 

as: P = (Nrandom.estimates < observed.value)/500. If the observed value was smaller than the 442 

mean of the random estimates, then (1 – P) was used instead of P. The random 443 

estimates were obtained from the posterior mode of the 500 random estimates of each 444 

G-matrix. An element of G (a variance or covariance term within G) was considered 445 

significant if its P-value was < 0.05. If it was not the case, then the specific element 446 

estimation did not capture its biological meaning. 447 

Estimation of selection gradients 448 

In the artificial selection experiment, we calculated the selection gradient on height 449 

(βh) by using 450 

 451 

βh  = S/VP,  452 

 453 

where VP is the phenotypic variation of height and S the selection differential 454 

calculated as the difference between the mean plant height of the selected plants and 455 

all measured plants in the same generation.  456 
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We calculated βh in each generation and each selected line (table S1) and used 457 

its sum over the three generations to predict the accumulated evolutionary responses 458 

in each line. 459 

In the pollinator selection experiments, we estimated the selection gradients 460 

following the partial correlation approach of Lande and Arnold (1983). We used 461 

generalized linear models with fitness as dependent variable and morphological and 462 

scent variable as covariates. We estimated fitness as the total number of seeds 463 

produced per plant (female fitness component) plus a male fitness component gained 464 

through pollen export. We calculated the male component as the product of “number 465 

of pollinator visits” (i.e. number of visits by pollinators to a given plant) times their 466 

respective efficiency. Pollinator efficiency is the average of the resulting number of 467 

“seeds per fruit” per single pollinator visit to a plant across all generations. Pollinator 468 

efficiency was strongly species dependent (mean ± S.D.: bumblebee: 10.57±6.34; 469 

hoverfly: 4.81±3.83; t267=10.11, P<0.001). Fitness was ln(1+x) transformed before 470 

analysis to reach normality. The average per generation selection gradients (β) were 471 

calculated separately per treatment (bumblebee, hoverfly, and control), for all the 472 

measured generations and replicates combined (for details, see Gervasi and Schiestl 473 

2017). Therefore, we used 9*β to predict the total evolutionary changes after 9 474 

generations of pollinator selection. The non-significant selection gradients were still 475 

used as the best approximate estimations of selection. 476 

Calculation of predicted and observed evolutionary changes 477 

To estimate the predicted responses to selection, we used the multivariate breeder's 478 

equation (Lande, 1979), △z = G*β. We used G from the control group in the artificial 479 

selection experiment (Gcontrol, Table S3, S4) for predictions as the best estimation of 480 

genetic architecture of the original population. We used the 2000 posterior samples of 481 

the G-matrix to generate a distribution of predicted trait changes from which we could 482 

evaluate the accuracy of our evolutionary prediction using its 95% highest posterior 483 

density (HPD) interval. 484 

To calculate the observed trait changes, we did three step calculations as 485 

follows (Fig. S1). 1) We calculated the absolute phenotypic changes between the last 486 

and the first generation (△z_obs. = ��Fn - ��P, where n is 3 in artificial selection 487 

experiment, and 11 in pollinator selection experiment) for each line or each treatment, 488 
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and P stands for 'parental'. 2) We estimated environmental fluctuations by using the 489 

control groups. Ideally, there should be no selection and no systematic changes of trait 490 

values in the control groups beside random fluctuations. However, traits values may 491 

have changed due to unaccounted-for selection pressures unknown to the 492 

experimenters. Therefore, we subtracted the predicted changes due to unknown 493 

selection (G* βcontrol = △z_control_pred.) from the observed changes in control group to 494 

estimate environmental fluctuations. We calculated environmental fluctuations in both 495 

artificial- and pollinator-selection experiments. 3) We subtracted the environmental 496 

fluctuations (values in step 2) from the absolute changes (values in step 1) and used 497 

the resulting values as the observed evolutionary changes to compare with predicted 498 

changes. We present the observed and predicted changes scaled by the phenotypic 499 

standard deviation of each trait in the parental generation.  500 

Direct and indirect selection responses 501 

To examine the importance of trait covariance in affecting evolutionary trajectories, 502 

we separated the total selection response △z of each trait into its direct and indirect 503 

components. The direct component of the predicted selection response is obtained by 504 

setting all genetic covariance to zero in Gcontrol, leading to the so-called G0-matrix 505 

(G0), and by multiplying G0 by the selection vector β. Accordingly, the direct 506 

response of trait i is the product Gii*βi, with Gii the additive genetic variance of the 507 

trait (diagonal element of Gcontrol). The indirect component is then obtained by setting 508 

all diagonal elements of G to zero when computing G*β, which is equal to 509 

subtracting the direct component from the total response △z. The three predictions, 510 

from direct (G0), indirect (G’), and total response (G) were compared to the observed 511 

change of each trait to evaluate when the direct response is constrained (direct and 512 

indirect components of opposite sign) or enhanced (direct and indirect components of 513 

same sign) by genetic covariance.  514 

Finally, we measured the constraining effect of genetic co-variation on the 515 

response to selection by comparing the angle � between the selection response vector 516 

(△z) and the first PC of G (PC1, or gmax) with the angle � between △z and the 517 

selection gradient (β). We generated the posterior distribution of � from the posterior 518 

distribution of Gcontrol, which allowed us to test whether � is larger (smaller) than �, 519 

which tests if △z is biased (unbiased) in the direction of gmax by genetic correlations.  520 
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G-matrices similarity among artificial selection lines 521 

We compared the G-matrices from control, tall and short selection lines to assess the 522 

stability of G between treatments and control. We used the random skewers (RS) 523 

method in one comparison test because it examines the similarity between two G-524 

matrices of their expected evolutionary response to a random set of selection vectors 525 

(skewers), which fits our purpose of evaluating the stability of such predictions using 526 

different estimates of the G-matrix. We used Roff et al.'s (2012) implementation of 527 

the RS method, and report the mean over 10,000 random selection skewers of the 528 

correlation between the selection response vectors of the two G-matrices compared. 529 

Significance was obtained from the distribution of the test statistics obtained from the 530 

500 random estimates of each G-matrix. We performed a further test of shape 531 

similarity between the G-matrices using the hierarchical approach of Roff et al. 532 

(2012), also known as the Flury hierarchy (Phillips & Arnold, 1999). This method 533 

tests the degree of shape similarity sequentially by comparing the size and orientation 534 

of the eigenvectors (principal components, PCs) of the G-matrices. Two G-matrices 535 

can have common principal components (CPC) if their PCs have the same orientation 536 

but not the same size (i.e., have different eigenvalues), be proportional if their PCs 537 

only differ proportionally, or be equal. The three levels of similarity are tested relative 538 

to the hypothesis of unrelated matrices. The test statistics are provided in Roff et al. 539 

(2012). We determined the significance of the RS and Flury tests using the previous 540 

500 randomized estimates of Gcontrol, Gtall, and Gshort. 541 

All statistics were conducted with R version 3.3.3. (R Core Team, 2017). 542 
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Figure Legends 667 

Figure 1. Predicted and observed responses of various traits to artificial- and 668 

pollinator-selection (for full names of traits see Table 1). For a scaled-up version of 669 

hoverfly group see Fig. S2. The shapes of violin plots indicate the distributions of the 670 

predicted values. Black dots are the observed changes. Solid-line violin plots indicate 671 

prediction of significant evolutionary change with large confidence (95% HPD 672 

interval not overlapping with zero), whereas red and dashed-line violin plots indicate 673 

prediction of no changes (95% HPD largely overlapping with zero). Violin plots are 674 

filled when the observed changes fall within 95% HPD of predicted changes, whereas 675 

those without filling indicate the observed changes fall outside of the 95% HPD of 676 

predicted changes. Both predicted and observed changes were scaled by the 677 

phenotypic standard deviation of the trait. Sample sizes artificial selection: plant 678 

height: 600; flower size traits (PW, PL, FD): 581; volatiles: 579. Sample sizes 679 

pollinator selection: plant height: 524, flower traits: 525, volatiles: 414.  680 

Figure 2. Comparison of the size and orientation of the major and five first 681 

eigenvectors (PCs) of the G-matrices in the artificial selection experiment. a) 682 

Distribution of the eigenvalues (size) of each PC of the three G-matrices in the 683 

control (grey), tall (red), and short (blue) artificial selection experiments. The scale of 684 

the y-axis is on the left for PC1 and on the right for PC2-5. b) Contribution of PC1 to 685 

the total variation in the 16 traits, measured as the size of PC1 relative to the sum of 686 

all PCs. c) Angle of the first and second PC with the first trait axis (height) in degree. 687 

In all cases, variation of all variables stems from the posterior distribution of each G-688 

matrix estimated with MCMCglmm (see Methods and Supporting information). 689 
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Table 1. Observed and predicted (total, direct and indirect) changes of traits during nine-generation selection by (A) 690 

bumblebees and (B) hoverflies. Values were scaled by the phenotypic standard deviation of the traits. Total Δz, the predicted 691 

responses from the full G-matrix; direct Δz, direct responses from only genetic variance (G0-matrix); indirect Δz, indirect responses 692 

from only genetic covariance. Δz values are given as posterior mode, the most likely estimate of a posterior distribution. Bold numbers 693 

indicate that the observed values fall within the 95% HPD of predicted changes; italic numbers indicate that the predicted changes are 694 

largely overlapping with zero. 695 

       

 Observed 
changes 

Predicted changes 

Traits Total Direct Indirect 

(Abbr.) Δz 95% HPD Δz 95% HPD Δz 95% HPD 

(A) Bumblebee 
          

Plant height 
(Height) 

1.359 8.663 5.966 10.911 7.980 5.347 10.109 0.565 0.045 1.091 

Petal width 
(PW) 

0.232 1.906 0.270 3.230 0.149 0.114 0.198 1.751 0.130 3.072 

Petal length 
(PL) 

0.403 2.680 0.901 4.208 0.406 0.304 0.535 2.258 0.469 3.683 

Flower diameter 
(FD) 

0.241 2.071 1.132 3.617 -0.131 -0.192 -0.095 2.559 1.286 3.840 
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Benzaldehyde 
(Ben) 

0.348 0.710 -1.388 3.325 -0.746 -1.011 -0.563 1.646 -0.582 4.208 

Phenylacetaldehyde 
(PAA) 

1.781 2.071 0.742 4.212 1.067 0.707 1.654 1.118 -0.407 2.711 

Phenylethyl alcohol 
(PhA) 

2.878 3.848 0.686 7.396 -0.483 -0.779 -0.367 4.321 1.251 8.125 

Methyl salicylate 
(MeS) 

-0.344 0.886 -1.020 2.488 -0.019 -0.026 -0.013 0.909 -1.003 2.507 

Methyl benzoate 
(MeB) 

1.031 2.416 0.588 4.020 0.989 0.706 1.329 1.195 -0.333 2.827 

Methyl anthranilate 
(MeA) 

1.221 1.619 0.299 3.730 -0.354 -0.504 -0.224 2.502 0.637 4.168 

Benzyl nitrile 
(BenN) 

1.729 0.096 -0.905 1.690 -0.694 -0.914 -0.492 1.137 -0.155 2.586 

2-Amino benzaldehyde 
(ABen) 

1.231 1.696 0.357 2.930 0.276 0.152 0.360 1.411 0.159 2.678 

Indole 
(Ind) 

1.238 1.942 0.876 3.691 0.604 0.419 0.846 1.625 0.357 2.952 

α-Farnesene 
(FAR) 

0.880 1.951 0.624 3.231 -0.124 -0.173 -0.099 2.090 0.768 3.407 

Z-(3)-Hexenyl acetate 
(ZHA) 

0.102 0.999 -0.490 2.617 -0.131 -0.174 -0.094 1.139 -0.336 2.773 

1-Butene-4-isothiocyante 
(ITC) 

0.665 1.002 -1.821 3.940 -0.606 -0.968 -0.395 1.726 -1.303 4.587 

(B) Hoverfly 
         

Plant height 
(Height) 

-0.295 2.022 1.318 2.571 1.964 1.316 2.488 0.021 -0.261 0.290 

certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as not
this version posted June 20, 2019. 

; 
https://doi.org/10.1101/675413

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/675413


26/28 

 

Petal width 
(PW) 

0.118 0.354 -0.144 0.784 -0.195 -0.260 -0.149 0.668 0.074 1.046 

Petal length 
(PL) 

0.371 0.697 0.246 1.145 0.094 0.071 0.124 0.605 0.113 0.990 

Flower diameter 
(FD) 

0.213 0.711 0.406 1.107 0.299 0.216 0.437 0.389 0.123 0.718 

Benzaldehyde 
(Ben) 

0.618 -0.096 -0.645 0.480 -0.322 -0.436 -0.243 0.267 -0.315 0.840 

Phenylacetaldehyde 
(PAA) 

0.408 0.152 -0.325 0.497 -0.358 -0.555 -0.237 0.461 0.034 0.911 

Phenylethyl alcohol 
(PhA) 

0.465 0.395 -0.440 1.119 -0.057 -0.092 -0.044 0.372 -0.371 1.191 

Methyl salicylate 
(MeS) 

-0.984 0.012 -0.352 0.498 0.177 0.121 0.247 -0.074 -0.531 0.321 

Methyl benzoate 
(MeB) 

0.764 -0.001 -0.409 0.424 -0.157 -0.210 -0.112 0.032 -0.250 0.592 

Methyl anthranilate 
((MeA) 

0.320 -0.057 -0.487 0.324 -0.517 -0.736 -0.328 0.533 0.081 0.934 

Benzyl nitrile 
(BenN) 

0.622 0.183 -0.118 0.503 0.211 0.149 0.277 -0.042 -0.345 0.291 

2-Amino benzaldehyde 
(ABen) 

0.002 0.233 -0.119 0.483 -0.046 -0.060 -0.025 0.202 -0.078 0.527 

Indole 
(Ind) 

0.080 0.462 0.093 0.764 0.253 0.175 0.354 0.243 -0.139 0.496 

α-Farnesene 
(FAR) 

0.767 0.512 0.207 0.863 0.228 0.182 0.318 0.234 -0.015 0.576 

Z-(3)-Hexenyl acetate 
(ZHA) 

-0.773 -0.036 -0.438 0.292 -0.286 -0.378 -0.204 0.162 -0.139 0.600 
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1-Butene-4-isothiocyante 
(ITC) 

0.868 0.361 -0.544 0.876 -0.013 -0.020 -0.008 0.378 -0.544 0.876 
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Table 2. Comparisons of the three G-matrices using random skewers and hierarchical analyses (see also Table S3, S4). The 697 

random skewers section reports the mean correlation among response vectors of two G-matrices subject to the same set of 10,000 698 

random selection vectors. The hierarchical analysis reports the P-values to reject the hypotheses of equality, proportionality, or 699 

common principal components (CPC) in favor of unrelated matrices. The P-values are obtained by randomization (see Methods).  700 

 
Random Skewers Hierarchical 

Paired G Mean correlation P-value Equal Prop. CPC 

Gcontrol - Gtall 0.734 < 0.01a < 0.005 < 0.005 0.002 

Gcontrol - Gshort 0. 987 < 0.002b 0.23 0.23 0.32 

Gtall - Gshort 0.722 < 0.21a 0.19 0.19 < 0.05 

a: left tail; b: right tail 701 
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