bioRxiv preprint doi: https://doi.org/10.1101/675637; this version posted June 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 Phosphoprotein-based Biomarkers as Predictors for Cancer Therapy

2 Authors: Angela M. Carter¹, Chunfeng Tan², Karine Pozo^{3,4}, Rahul Telange¹, Roberto Molinaro^{5,6}, Ailan

3 Guo⁷, Enrica De Rosa^{5,8}, Jonathan O. Martinez⁵, Shanrong Zhang⁹, Nilesh Kumar¹⁰, Masaya Takahashi⁹,

4 Thorsten Wiederhold¹¹, Hans K. Ghayee¹², Sarah C. Oltmann^{4,21}, Karel Pacak¹³, Eugene A. Woltering¹⁴,

5 Kimmo J. Hatanpaa¹⁵, Fiemu E. Nwariaku^{4,21}, Elizabeth G. Grubbs¹⁶, Anthony J Gill¹⁷, Bruce Robinson¹⁸,

Frank Gillardon¹⁹, Sushanth Reddy^{1,22}, Renata Jaskula-Sztul^{1,22}, James A. Mobley²⁰, M. Shahid Mukhtar^{1,10},
 Ennio Tasciotti^{5,23}, Herbert Chen^{1,22}, James A. Bibb^{1,22*}.

8 Affiliations:

⁹ ¹Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA.

- ²Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- ³Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- ⁴Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- ⁵Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA.
- ⁶Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy.
- ⁷Bluefin Biomedicine, Beverly, MA 01915, USA.
- ⁸Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- ⁹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390,
 USA.
- ¹⁰Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
- ²⁰ ¹¹Cell Signaling Technology, Danvers, MA 01923, USA.
- ¹² Department of Internal Medicine, Division of Endocrinology, University of Florida College of Medicine
- 22 and Malcom Randall VA Medical Center, Gainesville, FL 32608, USA
- ¹³Section on Medical Neuroendocrinology, *Eunice Kennedy Shriver* National Institute of Child Health and
- Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
- ¹⁴Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 70112,
 USA.
- ¹⁵Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- ¹⁶Department of Surgical Oncology, University of Texas MD Anderson Medical Center, Houston, TX
 77030, USA
- ³⁰ ¹⁷Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, University of Sydney, St
- 31 Leonards 2065, Australia
- ¹⁸Kolling Institute and Department of Endocrinology, Royal North Shore Hospital, University of Sydney, St
- 33 Leonards 2065, Australia
- ¹⁹Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Birkendorferstrasse 65, 88397
 Biberach an der Riss, Germany.
- ²⁰Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham,
- 37 Birmingham, AL 35233, USA.
- ²¹Harrold B. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center,
 Dallas, TX 75390, USA.
- 40 ²²O'Neal Comprehensive Cancer Center, Alabama at Birmingham, Birmingham, AL 35233, USA.
- 41 ²³Houston Methodist Orthopedic and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030
- 42 USA
- 43

- 44 *Correspondence to: jbibb@uab.edu
- 45

46 Abstract

47 Disparities in cancer patient responses have prompted widespread searches to identify differences in sensitive vs. non-sensitive populations and form the basis of personalized medicine. This customized 48 approach is dependent upon the development of pathway-specific therapeutics in conjunction with 49 biomarkers that predict patient responses. Here, we show that Cdk5 drives growth in subgroups of human 50 patients with multiple types of neuroendocrine neoplasms. Phosphoproteomics and high throughput 51 screening identified novel phosphorylation sites downstream of Cdk5. These phosphorylation events serve as 52 biomarkers of Cdk5 activity and effectively pinpoint Cdk5-driven tumors. Toward achieving targeted 53 therapy, we demonstrate that mouse models of neuroendocrine cancer are responsive to selective Cdk5 54 inhibitors and biomimetic nanoparticles are effective vehicles for enhanced tumor targeting and reduction of 55 drug toxicity. Finally, we show that biomarkers of Cdk5-dependent tumors effectively predict response to 56 anti-Cdk5 therapy in patient-derived xenografts. Thus, a phosphoprotein-based diagnostic assay combined 57 with Cdk5-targeted therapy is a rational treatment approach for neuroendocrine malignancies. 58

59

60 Text

Cyclin dependent kinases (Cdks) are a family of proline-directed serine/threonine kinases that are 61 required for progression of normal cell division. Typical Cdks are regulated through binding to cyclins, 62 proteins which are expressed at varying levels at distinct stages of the cell cycle¹. As master regulators of cell 63 division, Cdk1/2/4/6 currently serve as popular targets for cancer therapy development²⁻⁴. Although Cdk5 64 shares ~60% sequence identity with founding family members Cdk1 and Cdk2⁵, it possesses non-canonical 65 features. Specifically, Cdk5 is not required for normal cell cycle progression and is not activated by cyclins. 66 Cdk5 is regulated instead through interactions with cofactors p35 and p39⁶. Although Cdk5 is expressed in a 67 broad number of tissues⁵, its activators are mostly restricted to neuronal cells⁷ where Cdk5 activity is 68

69	important for CNS development and cognitive processes such as learning and memory ⁸ . Cleavage of p35 and
70	p39 by calpain produces truncated activators, p25 and p29, respectively9. These cleavage products have
71	increased protein stability and mislocalize in cells due to removal of an N-terminal myristoylation site ¹⁰ . In
72	neurons, p25 aberrantly activates Cdk5 and has been linked to neurotoxicity, neuronal injury, and
73	neurodegeneration ⁶ .

74	Recent research suggests the aberrant activation of Cdk5 in non-neuronal cells can usurp signaling
75	components involved in the cell cycle to drive proliferation ¹¹ . Expression of Cdk5 and p35/p25 has been
76	shown for three types of neoplasms originating from neuroendocrine (NE) cells: medullary thyroid
77	carcinoma (MTC) ¹² , small cell lung cancer (SCLC) ¹³ , and pituitary adenomas ¹⁴ . In MTC, inhibition of Cdk5
78	activity decreases rates of cell growth ^{12,15} ; in SCLC and pituitary adenomas, it decreases migration and
79	invasion ^{16,17} . Expression of p25 in thyroid C-cells produces MTC in mice ¹² , in part through alteration of
80	traditional cell cycle regulatory components ¹⁸ . Here we show that Cdk5 and p35/p25 expression may be an
81	important driver of many types of NE cancer and that aberrant Cdk5 activity allows for a diagnostic-coupled
82	treatment strategy that targets this protein kinase.

83 Cdk5 in NE Neoplasms

To better understand the potential role of Cdk5 across multiple forms of NE malignancies, we assessed 84 expression of the kinase and its activating cofactors in different NE tumor and cancer types. Histological 85 analysis demonstrated that Cdk5 and p35/p25 are present throughout various human NE neoplasms including 86 MTC, pheochromocytoma (PHEO), pituitary adenoma, SCLC, pancreatic NE tumors, and gastrointestinal NE 87 tumors (Fig. 1a). Furthermore, these proteins are present in cell lines derived from multiple types of NE 88 neoplasms, including three human MTCs (TT, MTC-SK, and SIN-J), a human progenitor PHEO (hPheo1)¹⁹, a 89 human pancreatic carcinoid (BON), a rat insulinoma (INS), and two human SCLCs (H146 and H1184, Fig. 90 1b). Selective Cdk5 inhibition by Indolinone A (Indo A) blocked all human NE cancer cell growth more 91 92 potently than it affected normal human fibroblasts or rat INS cells (Fig. 1c and Ext. Data Fig. 1a-h). Interestingly, the aberrant Cdk5 activator, p25, was present in all human cell lines derived from naturally 93

occurring tumors but not the rat line generated using irradiation²⁰ (Fig. 1b). Cells treated with Cdk5 inhibitors 94 typically showed flattening and smoothing of cell body consistent with a less malignant phenotype (Fig. 1d). 95 Indo A inhibits Cdk5 activity with high affinity, but also affects Cdk4²¹. Importantly, the structurally 96 related Cdk4-specific inhibitor, Indo B, was 6.4-15.4 fold less potent at preventing human NE cell proliferation 97 (Fig. 1c and Ext Data Fig. 1a-h). Growth of multiple NE cancer cell lines was likewise blocked by the broad 98 spectrum Cdk inhibitors Roscovitine and Dinaciclib. CP681301, a selective inhibitor of both Cdk2 and Cdk5, 99 100 also blocked growth of NE cancer cells whereas the Cdk2 specific inhibitor CVT313 had a greatly reduced 101 effect (Ext. Data Fig. 1i-l). Thus, Cdk5 inhibition was necessary to robustly inhibit proliferation of cells derived 102 from multiple forms of NE neoplasms. These data indicate that Cdk5 and p35/25 expression characterize at 103 least a portion of all NE neoplasms and aberrant Cdk5 activity is a major contributor to the growth of NE cancer cells. 104

105 Downstream targets of Cdk5

106 To determine which pathways Cdk5 may target to drive NE cell proliferation, we used a unique bitransgenic mouse model of MTC (NSE-p25OE mice), developed in our laboratory, in which tumors arise at 107 the natural organ site in the presence of an intact immune system. These mice express an activator of Cdk5, 108 p25-GFP, in C-cells of the thyroid under the control of a doxycycline (dox) regulatable promotor (Fig. 2a)¹². 109 This system can be used to generate actively growing MTC tumors through expression of p25-GFP as well 110 as growth-arrested MTC tumors through initial expression and subsequent suppression of p25-GFP via re-111 administration of dox (Fig. 2b-c). As C-cells only comprise 3% of a normal thyroid, this system allows 112 generation of sufficient quantities of C-cells for direct comparison of the signaling state between dividing 113 and non-dividing populations. 114

Phosphoproteomic analysis of growing versus arrested MTC tumors, using PhosphoScan technology²², revealed global differences in the proline directed S/T phospho-signaling network including over 250 peptides with elevated phosphorylation levels in growing tumors (Fig. 2d and Ext. Data Table 1). From this

set of phosphorylation sites, those not conserved in humans or conforming to a stringent Cdk5

119	phosphorylation sequence (S/T-P-x-K/H/R) were eliminated. From the remaining proteins, 50 of the most
120	highly upregulated phosphorylation sites, with preference for those with established or suggested roles in
121	cancer, were selected for investigation as potential tumorigenic regulators (Ext. Data Table 2). Short
122	interfering peptides (SIPs) containing the phosphorylation site flanked by 8 amino acids on both the N- and
123	C-terminal sides were designed to selectively interfere with phosphorylation or function of the 50 targets. A
124	cell penetrating sequence (RQIKIWFQNRRMKWKK) from penetratin (PEN) was added to the N-terminus
125	of peptides to facilitate entry into cells. A high-throughput proliferation-based assay identified 15 SIPs that
126	inhibited growth of NE cancer cells but not normal primary fibroblasts (Fig. 2e-f and Ext. Data Table 2),
127	indicating that these novel sites were important for NE cancer cell growth.
128	We performed Ingenuity Pathway Analysis (IPA) to ascertain major signaling cascades and pathways
129	that are associated with these 15 proteins. Among the predicted 25 statistically enriched canonical pathways,

cell cycle regulation, DNA repair, and diverse cancer signaling pathways are a predominant feature (Fig. 2fand Ext. Data Table 3). Thus, the downstream targets identified here are associated with common cancer

132 mechanisms.

133 Biomarkers of Cdk5 activity

Phosphorylation state-specific antibodies were generated for detection of 6 novel sites (Ser608 ASXL2,
Thr143 FAM53C, Thr709 FLNB, Thr202 LARP6, Ser110 KNL2, and Ser988 RBL1) and two sites

previously identified as targets of Cdk2 (Ser17 H1B^{23,24} and Ser391 SUV39H1²⁵) (Ext. Data Fig. 2).

137 Phosphorylation of these sites, as well as the thoroughly established Ser807/Ser811 sites on $RB^{26,27}$, was

138 confirmed in mouse MTC tumors, in which growth was driven by expression of p25-GFP, and reduced in

139 arrested tumors (Fig. 3a). In agreement, phosphorylation levels of 6 of these sites were dose-dependently

- 140 decreased by the Cdk4/5 inhibitor Indo A in hPheo1 cells (Fig. 3b). Similar decreases in these
- 141 phosphorylation sites were observed in human MTC-SK, TT, and BON cells (Ext. Data Fig. 3). This effect
- 142 appeared Cdk5-specific as addition of the Cdk4 inhibitor Indo B to multiple NE cell lines had significantly
- less effect on the phosphorylation states of Thr143 FAM53C, Thr709 FLNB, Ser17 H1B, and Thr202

144	LARP6 compared to Indo A. In contrast, phosphorylation of Ser807/Ser811 RB, a known target of multiple
145	Cdks, was decreased upon treatment with both inhibitors. Interestingly, the phosphorylation of the RB family
146	member, RBL1, was more responsive to Indo A than Indo B in TT cells whereas phosphorylation of Ser391
147	SUV39H1 was more responsive to Indo A than Indo B in BON cells (Ext. Data Fig. 3). Overall, these data
148	demonstrate that phosphorylation of these 6 proteins is dependent upon Cdk5 activity and suggests that these
149	phosphorylation sites could serve as biomarkers of many types of Cdk5-driven NE tumors.
150	To determine if these Cdk5-dependent biomarkers occurred in human NE tumors, cohorts of MTC
151	patient tumors and normal human thyroid tissues were compared. Immunoblot analysis revealed that three of
152	the phosphorylation sites, Ser17 H1B, Thr202 LARP6, and Ser988 RBL1, were significantly elevated in the
153	total tumor population and exhibited a positive correlation with overall Cdk5 expression levels (Fig. 3c and
154	Ext. Data Fig. 4). The phosphorylation state of Ser391 SUV39H1 was only increased in a small portion of
155	tumor samples but retained a positive correlation with Cdk5 expression. Distribution of all four phospho-
156	sites varied across patients with phospho-LARP6 being the most commonly detected followed by
157	phosphorylation of H1B and RBL1, respectively (Fig. 3d). Although 73% of patient tumors exhibited
158	elevated Cdk5 levels, only 21% presented with elevation of all four biomarkers of Cdk5 pathway activity,
159	emphasizing the fact that presence of a protein does not correlate 100% with function of that protein and
160	highlighting the need for direct readouts of pathway activity such as phosphorylation of downstream
161	substrates. Thus, Cdk5-dependent tumorigenic signaling may be considered patient-specific. Furthermore,
162	detection of all four biomarkers in a patient could predict positive response to a Cdk5-targeted therapeutic
163	approach.

164 Cdk5 inhibitors as effective therapeutics in NE models.

To evaluate the efficacy of anti-Cdk5 therapy when administered systemically, multiple animal models of NE cancer were used. First, the transgenic model of MTC driven directly by activation of Cdk5, NSEp25OE, (Fig. 4a-b) was treated with vehicle or Indo A (10-30 mg/kg body weight, BW) once every three days for two weeks. Tumor growth was significantly reduced by 20 and 30 mg/kg of Indo A compared to

169	control animals. Plasma levels of CEA, a marker of MTC ²⁸ , were also reduced in treated animals, indicating
170	therapeutic efficacy (Fig. 4c). As a second model, TT cells derived from a familial case of human MTC were
171	used to generate xenograft tumors in nude mice. As with the transgenic model, Indo A attenuated TT cell
172	tumor progression (Fig. 4d-e). While CEA was not detected in the plasma of these animals, levels of
173	chromogranin A (ChA), another marker of MTC ²⁹ , were reduced (Fig. 4f). Thus, Cdk5 inhibition blocks the
174	growth of tumors in distinct models of MTC. The efficacy of Indo A was also assessed in a xenograft tumor
175	model generated from human pancreatic NE tumor derived BON cells (Ext. Data Fig. 5). Indo A was equally
176	effective in impeding the growth of these tumors, suggesting that targeted Cdk5 therapy could be effective
177	across multiple NE cancer types.

178 Biomarkers are predictive of response to anti-Cdk5 therapy

We hypothesized that the phosphorylation states of a newly identified set of proteins could serve as 179 biomarkers of Cdk5-driven tumors. If true, biomarker positive tumors should be responsive to Cdk5 inhibitor 180 therapy while biomarker negative tumors should be non-responsive. To test this, a cohort of tumors from 181 patient-derived xenograft (PDX) models of mixed origins was analyzed quantitatively for the presence of NE 182 markers, Cdk5 pathway components, and putative Cdk5-dependent biomarkers (Fig. 4g). A Large Cell NE 183 Carcinoma (LCNEC) model was identified that exhibited NE markers, expressed Cdk5 and high levels of its 184 activators, and the 4 biomarkers. In contrast, a Merkel cell model (Merkel 2) was identified that expressed 185 NE markers, but low Cdk5 pathway components, and low biomarker levels. Cohorts of these two disparate 186 PDX models were then treated with Indo A (20 mg/kg) and tumor progression was assessed (Fig. 4h-i). 187 Growth of the biomarker positive LCNEC model was significantly reduced whereas growth of the biomarker 188 189 negative Merkel 2 model was not. These data support the ability of these biomarkers to predict responsiveness to anti-Cdk5 therapy. 190

191 Enhanced drug delivery method

Although transgenic MTC mouse model animals responded favorably to Indo A treatments, tumor
regression was not observed. Efforts to test higher doses of Indo A for increased potency were not feasible as

194	cohorts receiving 30 mg/kg BW experienced 50% mortality while both 20 and 30 mg/kg treated cohorts
195	evidenced some level of liver or kidney toxicity (Fig. 4n-o). To deliver Indo A selectively to tumors and
196	thereby circumvent toxicity issues, we tested a biomimetic nanoparticle-based drug delivery system,
197	leukosomes (LKs), generated from a combination of synthetic phospholipids and leukocyte membrane
198	extracts ^{30,31} . Traditional nanoparticle delivery systems are dependent upon passive targeting through
199	enhanced permeability and retention (EPR) of unhealthy tumor vasculature ³² . Although still benefiting from
200	EPR, LKs actively target activated endothelium via mechanisms analogous to those utilized by white blood
201	cells ³³ . Importantly, LKs are successfully camouflaged by leukocyte membrane proteins leading to lower
202	total opsonization and avoidance of the rapid immune clearance observed with purely synthetic nanoparticle
203	platforms ³⁴⁻³⁶ .

As tumors are generally highly inflamed, we tested the ability of LKs to traffic to MTC tumors of NSEp25OE mice and to stabilize lower doses of Indo A. Using intravital microscopy, LKs were verified to exhibit increased tumor localization compared to control liposomes and to time-dependently spread from the vasculature into surrounding tumor tissue (Fig. 4j-k). Maximum encapsulation of Indo A into LKs had no deleterious effects on particle size or homogeneity (Ext. Data Fig. 6) and allowed a dosage of 5 mg/kg BW Indo A per retro-orbital injection. HPLC/MS analysis of blood plasma demonstrated a 6-fold stabilization of encapsulated drug compared to free drug at these lower dosage levels (Fig. 4l).

Indo A delivered at 10 mg/kg BW in the free form had no effect on tumor growth in transgenic MTC animals (Fig. 4b). In contrast, delivering only 5 mg/kg BW Indo A encapsulated in LKs had the same effect as delivering 20 mg/kg BW free drug (Figs. 4b and 4m). Thus, the LK delivery system generated an equivalent effect utilizing a 75% lower dosage. LKs also protected animals against hepatic and renal toxicity (Fig. 4n-o). While complete tumor arrest or shrinkage was not observed at 5 mg/kg BW, further modifications to allow higher encapsulation of drug could provide additional benefit for this unique delivery approach.

218 Discussion

The development of advanced sequencing techniques has led to an explosion of information pertaining 219 to the genomic landscape of cancer. In some cases, this information successfully progressed to the 220 development of personalized medicine. For example, mutations at Val600 in the serine/threonine kinase B-221 Raf are predictive of response to B-Raf inhibitors in patients with metastaic melanoma^{37,38}. However, the 222 majority of B-Raf mutant papillary thyroid cancer and colon cancer patients do not respond to B-Raf targeted 223 inhibitors³⁹, emphasizing the difficulty designing treatment options based on single gene mutations. 224 225 For NE neoplasms, mutations are prominent in genes encoding the scaffolding protein menin and the receptor tyrosine kinase RET. Menin mutations were initially identified over 20 years ago in patients with 226 multiple endocrine neoplasia (MEN) type 1 syndrome^{40,41}. Menin is a broadly expressed tumor suppressor in 227 which mutations typically cause protein truncation^{42,43}. Currently there are no therapeutics with the potential 228

to circumvent these mutations.

230 Mutations in the proto-oncogene RET were discovered over 20 years ago in patients with MEN2 syndrome⁴⁴⁻⁴⁶. The development of vandetanib and carbozantinib, tyrosine kinase inhibitors that target RET, 231 generated hope that patients possessing RET mutations could be successfully treated. Unfortunately, human 232 trials revealed no correlation between the presence of a RET mutation and patient response to therapy⁴⁷⁻⁴⁹. 233 As with all cancers, many mutations, in addition to RET, are present within each MTC cancer cell. 234 These additional mutations can alter the diverse input nodes of the signaling network that drive cancer cell 235 growth and survival. For these reasons, looking at the signaling network with a broader lens that includes 236 post-translational modifications could be beneficial and aid in the elimination of "false positive" non-237 responders that would be predicted responders from genomic or proteomic information alone. By assessing 238 signaling states across a network of pathways, such an approach might also allow for more accurate stage-239 dependent therapeutic assessments to be made for individual patients. The current study reveals that Cdk5 is 240 241 likely a contributor to at least a portion all NE tumor types. It also identifies a set of phosphorylation-based

- biomarkers which indicate that not only are Cdk5 pathway components present, but Cdk5 is actively
- 243 modulating the signaling network and regulating cancer physiology.

244	In addition to being biomarkers of Cdk5 pathway activity, the phosphoproteins identified in this study
245	are potentially directly involved in promotion of cell growth and/or survival. For example, RBL1 is a
246	member of the retinoblastoma (RB) family of proteins that includes the tumor suppressor RB and RBL2. The
247	RB family plays a major role in cell cycle regulation and is also involved in modulating senescence,
248	apoptosis, and chromosomal stability ²⁷ . Although functional compensation has been observed among the
249	family members, some differences exist. Unlike RB, RBL1 and RBL2 do not bind to activating transcription
250	factors E2F1-3. They interact instead with transcriptional repressors E2F4 and E2F5 ⁵⁰⁻⁵² . Remarkably, both
251	RBL1 and RBL2, but not RB, are members of the DREAM complex, a regulatory unit that mediates cell
252	entry into quiescence ^{53,54} .
253	Emerging information suggests Cdk5 may play a role in non-NE cancer as well ¹¹ . As the heterogeneity
254	between tumors of the same cancer type is becoming more apparent, the likelihood that treatment approaches
255	will evolve based on individual tumor signaling states instead of general tumor type classification is
256	increasing. The biomarkers identified in this study are not limited to use for NE cancer patients. Indeed, the
257	Ovarian and PDAC PDX models analyzed here, both non-NE, exhibit high levels of NE features as well as
258	biomarkers of Cdk5 pathway activation. A broader survey of PDX models for these novel biomarkers
250	coupled with pre-clinical Cdk5 inhibitor testing could delineate finite out offs for classification of multiple

- coupled with pre-clinical Cdk5 inhibitor testing could delineate finite cut-offs for classification of multiple
 forms of cancer as predicted responders for Cdk5-targeted therapy.
- 261

262 Methods

Animal Research. All animal work was performed in accordance with the guidelines of the Animal Welfare
Act and the Guide for the Care and Use of Laboratory Animals under approved protocols by UTSW, UAB,
and HMRI Institutional Animal Care and Use Committees.

266	Antibody production and purification. Phosphopeptides (SIT*SPNRTGC-ASXL2, CAPSKLW*TPIKH-
267	FAM53C, CSY*TPVKAIK-FLNB, CAPVEK*SPAK-H1B, CANYE*SPGKI-KNL2, CALA*TPQKNG-
268	LARP6, CSIYI*SPHKN-RBL1, CAGLPG*SPKK-SUV39H1; *indicates a phosphorylated residue) were
269	conjugated to Limulus polyphemus hemocyanin (Sigma H1757), emulsified with Freund's adjuvant (Sigma
270	F5881 or F5506), and injected subcutaneously into New Zealand White rabbits (Charles River Laboratories).
271	Rabbits were boosted once and blood collected twice over a 5 week period for 12 months. Blood was
272	allowed to clot at 4°C for 24 h, centrifuged at 1000 g, and plasma isolated and stored at -20°C.
273	Phosphorylation state-specific antibodies were purified from plasma using phosphopeptide affinity columns
274	by elution with 100 mM Glycine pH 2.5 into 1 M Tris pH 8.6 (11:1 volume ratio, final 80 mM Tris pH ~7.5).
275	Antibodies were dialyzed into 50 mM Tris pH 7.6 plus 150 mM NaCl and stored at -20°C.
276	Cell culture and assays. All cells were tested and verified to be free of mycoplasma contamination. Cell
277	lines were probed for NE markers to verify identity. Cells were cultured at 37°C and 5% CO ₂ in a humidified
278	incubator. Fibroblasts were cultured in DMEM with 10% FBS. TT, MTC-SK, and SIN-J cells were cultured
279	in Ham's F12:Medium 199 (1:1) with 10% FBS. hPheo1, H146, and H1184 cells were cultured in RPMI
280	with 10% FBS, 1 mM Na-pyruvate, and 10 mM HEPES. BON cells were cultured in DMEM: Ham's F12
281	(1:1) with 10% FBS. INS cells were cultured in RPMI with 10% FBS, 1 mM Na-pyruvate, 10 mM HEPES,
282	4.5 g/L glucose, and 50 μ M β -ME. TT-RLuc cells were cultured in RPMI with 20% FBS, 100 μ g/ml
283	penicillin, and 100 µg/ml streptomycin. Growth assays. Cells were seeded onto a black 96-well plates with a
284	clear optical bottom and allowed to recover overnight. Growth of hPheo1 cells was measured 2 days after
285	inhibitor treatment and growth of Fibro, TT, MTC-SK, BON, INS, and H146 cells was measured 6 days after
286	inhibitor treatment using Cyquant Direct Proliferation Assay (Invitrogen) and an Optima Fluostar plate
287	reader (BMG LabTech). For SIP experiments, cells received two SIP treatments per experiment. Growth of
288	BON and hPheo1 cells was measured 2 days after initial SIP treatment and growth of Fibro and MTC-SK
289	cells was measured 6 days after initial SIP treatment using procedures described above.

290	Immunoblot analysis. Cells were seeded onto 6 well dishes and allowed to recover overnight. Cells were
291	treated for 4 h with inhibitors and then lysed in 50 mM NaF and 1% SDS with brief sonication. Samples
292	were diluted to equivalent total protein concentrations in 1X Laemmli buffer and separated by SDS-PAGE.
293	Proteins were transferred onto nitrocellulose for immunoblotting utilizing in-house phosphorylation state-
294	specific antibodies, anti-Cdk5 (sc-173), anti-p35 (sc-820), anti-GAPDH (Sigma G8795), anti-actin (Abcam
295	ab6276), anti-ASXL2 (Abcam ab106540, Sigma sab1407639), anti-Fam53C (Abcam 105679), anti-FLNB
296	(Abnova PAB30702), anti-H1B (sc-247158), anti-KNL2 (sc-162587), anti- RBL (sc-318-G), anti-LARP6
297	(Sigma sab1407657), and anti-SUV39H1 (Sigma S8316). Anti-goat, -rabbit, and -mouse secondary
298	antibodies conjugated to either IRdye 680RD or IRdye 800CW (LiCor) were used for detection on a LiCor
299	Odessey CLx. Actin and GAPDH were used as sample processing controls. Other total proteins were probed
300	on the same membrane as phosphoproteins unless antibody conditions did not allow.
301	Human tissue analysis. Collection. Human tissues were collected with patient consent and in accordance
302	with institutional review board (IRB) regulations. Samples were collected under University of Wisconsin
303	Madison IRB 2011-0145, MD Anderson IRB PA11-0744, University of Texas Southwestern Medical Center
304	IRB STU102010-042 and STU102010-051, NICHD IRB 00-CH-0093, Louisiana State University IRB 5774,
305	and University of Sydney LNR/13/HAWKE/424 - 1312-417M.
306	Histology. Formalin-fixed, paraffin-embedded samples were cut into 5 µm sections, deparaffinized, and
307	subjected to microwave antigen retrieval (citrate buffer, pH 6.0). Sections were then stained using standard
308	protocols for H&E or immunostained with antibodies recognizing p35/p25 (sc-820, Santa Cruz
309	Biotechnology) or Cdk5 (308-Cdk5, PhosphoSolutions). For immunostaining, sections were permeabilized
310	with 0.3% Triton X-100, quenched free of endogenous peroxidases, and blocked with 2.5% normal goat
311	serum prior to overnight incubation with primary antibodies at 4°C. Bound primaries were detected by
312	sequential incubation with biotinylated-secondary antisera, streptavidin-peroxidase (Vector Laboratories),

and diaminobenzidine chromagen (DAKO) following the manufacturer's directions.

Immunoblot analysis. Tissues were crushed while frozen then lysed in 50 mM NaF and 1% SDS with brief sonication. Samples were diluted to equivalent total protein concentrations in 1X Laemmli buffer and separated by SDS-PAGE. Proteins were transferred onto nitrocellulose for immunoblotting as described

317 above.

Intravital Microscopy. IVM was performed using an upright Nikon A1R laser scanning confocal 318 microscope with a resonance scanner, motorized and heated stage, and Nikon long-working distance 4× and 319 320 20× dry plan-apochromat objectives housed within the IVM Core at the HMRI. For imaging, NSE-p25OE 321 mice were anesthetized with isoflurane and the ventral surface of the neck opened to expose the trachea, 322 salivary glands, and MTC tumors. Tumors were positioned in direct contact with the coverslip, visualized 323 using the GFP signal, and positions selected for imaging. After selection of positions, Cy5.5 labeled LKs and LPs were administered via retro-orbital injection and mice were imaged continuously for 2 hours using the 324 325 4x objective. Images were quantified using Nikon Elements. The tumor accumulation reported was 326 normalized by dividing the area occupied by LKs or LPs by the area occupied by the tumor within each

327 image.

LCMS2 Analysis of IndoA. Extraction. Sera (25 µL) were reconstituted in 25 µL of extraction solution 328 (25% acetonitrile/75% H₂0), vortexed for 1 min, diluted with 25 µL of 100% ACN, followed by two cycles 329 of vortexing for 1 min and incubating at room temperature (RT) for 10 min. Samples were then diluted with 330 200 µL of 100% ACN, vortexed for 1 min, then stored at -20°C overnight. Samples were thawed at RT for 331 ~10 min, centrifuged at 14,000 g for 10 min at 4°C to remove cell debris, then supernatants were transferred 332 to 2 mL tinted glass vials and dried down to ~5-10 µL under argon gas at 25°C for 25 min. Samples were 333 334 immediately reconstituted (adjusted to 210 µL) in 25% ACN/1% trifluoroacetic acid/74% H₂0 and centrifuged at 14,000 g for 10 min at 4°C to remove any residual debris. The supernatants were then 335 transferred to tinted vials prior to analysis. 336

337 *LC/MS*. Analysis was performed on a Dionex Ultimate 3000 UHPLC+ Focused Stack & Auto Sampler

338 (Thermo Fisher Scientific/Dionex) a using a RP C18 Hypersil Gold (100mm I.D. x 4.6mm, 5 mm 175Å pore

339	size; Thermo Fisher Scientific) in-line with an LTQXL mass spectrometer equipped with a heated
340	electrospray ionization source (Thermo Fisher Scientific), and all data were collected in selective reaction
341	monitoring (SRM) mode. The HPLC was configured with binary mobile phases that include solvent A $(0.1\%$
342	TFA/99.9% H ₂ O), and solvent B (0.1% TFA/15% H ₂ O/5% ACN). The gradient program steps were run in
343	linear mode as follows; 0-6 min at 75%-50% B (200 $\mu L/min$), 6-7 min at 50%-80% B (200 $\mu L/min$), 7-
344	11min at 80%-90% B (200 $\mu L/min$), 11-12min at 90%-25% B (500 $\mu L/min$), and finally 12-16min at 25% B
345	(200 μ L/min). SRM mode was optimized using a parent ion window of 453.2 +/- 1.0 <i>m/z</i> , 20% normalized
346	collision energy, activation energy at 0.240, activation time of 30 ms, with a daughter ion window of 306.5
347	+/- 1.5 m/z . The resultant Xcalibur RAW files were collected in profile mode and the SRM base peak values
348	processed and extracted using Xcalibur version 2.2 sp1.48.

Leukosome synthesis and characterization. LKs were developed as previously reported³¹. Briefly, 1.2-349

dipalmitoyl-*sn*-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl*sn*-glycero-3-phosphocholine (DOPC) 350

and cholesterol (Avanti Polar Lipids) (4:3:3 molar ratio) were dissolved in ethanol at a final lipid 351

concentration of 9 mM and mixed with membrane proteins, previously resuspended in aqueous buffer at 1:50 352

protein to-lipid concentrations, using the NanoAssemblr Benchtop platform (Precision NanoSystems, Inc.). 353

Passive loading of Indo A within LKs was obtained by dissolving the drug in the ethanol mixture containing 354 the lipids. Size and polydispersity index were determined through dynamic light scattering analysis using a 355 Nanosizer ZS (Malvern Instruments). Surface charge (Zeta potential) was measured using a ZetaSizer Nano 356

ZS (Malvern Instruments). 357

363

Magnetic Resonance Imaging. MRI conducted at UT Southwestern was performed using a 7-Tesla small 358 animal MRI system (Agilent Inc.) with a 40 mm (i.d.) radio frequency (RF) coil and a 400mT/m gradient 359 coil set. Animals were anesthetized by isoflurane and imaged in a supine position, head first with the thyroid 360 361 centered with respect to the center of a RF coil. Two-dimensional (2D) fast spin-echo (FSE) images on three orthogonal planes (transverse, coronal and sagittal) were firstly acquired to ensure the position and the 362 orientation of the thyroid tumors. For volume measurements of the thyroid tumors, the high resolution T₂-

weighted FSE axial images was acquired. Major imaging parameters were: TR/TE = 2500/40 msec, FOV = 25.6 x 25.6 mm, matrix size = 256 x 256, slice thickness = 1 mm, no gap, 8 averages, affording 100 μ m inplane resolution.

367 **Phosphoproteomics.** *Peptide preparation.* Mouse tumors were homogenized in 8 M urea lysis buffer (20

368 mM HEPES pH 8.0, 9 M urea, 1 mM sodium vanadate, 2.5 mM sodium pyrophosphate, 1 mM β-glycerol-

- phosphate), sonicated, then centrifuged for 15 min at 4°C at 20,000 g. Supernatants were reduced with 4.5
- mM DTT for 30 min at 55°C followed by alkylation with 10 mM iodoacetamide. The samples were then
- digested with trypsin overnight at room temperature. Digests were acidified with 1% TFA and peptides
- desalted and purified over Sep-Pak C18 columns (Waters, WAT051910) using 40% acetonitrile in 0.1%
- 373 TFA for elution. Elutes were lyophilized and stored at -80°C.
- 374 Immunoaffinity purification (IAP) of peptides. Lyophilized peptides were dissolved in IAP buffer (50 mM
- MOPS pH 7.2, 10 mM sodium phosphate, 50 mM NaCl), sonicated, and insoluble matter removed by
- centrifugation. CDK substrate motif antibody (Cell Signaling Technology #2324) and MAPK substrate motif
- antibody (Cell Signaling Technology #2325) was coupled to protein A beads (Roche). Immobilized antibody
- 378 was incubated with peptide mixtures, immunoprecipitation was carried out at 4°C overnight, then washed
- with IAP buffer, and eluted with 0.15% TFA. Eluates were further purified using C18 microtips (StageTips
- or Eppendorf C18 PerfectPure tips) with elution in 60% MeCN, 0.1% TFA then lyophilized.
- 381 *Analysis by LC-MS/MS.* Purified peptide mixtures were loaded onto a 10 cm x 75 µm PicoFrit capillary
- column (New Objective) packed with Magic C18 AQ reversed-phase resin (Michrom Bioresources) using a
- 383 Famos autosampler with an inert sample injection valve (Dionex). The column was developed with a 45-min
- 384 gradient of acetonitrile in 0.125 % formic acid (Ultimate pump, Dionex), and tandem mass spectra were
- 385 collected in a data-dependent manner with a Thermo Fisher Scientific LTQ ion trap mass spectrometer
- equipped with Electron Transfer Dissociation (ETD) module or with an Orbitrap mass spectrometer.

387	Assigning peptide sequences using Sequest. MS/MS spectra were evaluated using TurboSequest in the
388	Sequest Browser package supplied as part of BioWorks 3.3 (Thermo Fisher Scientific). Searches were
389	performed against the NCBI human protein database. Cysteine carboxamidomethylation was specified as a
390	static modification and phosphorylation was allowed as a variable modification on serine and threonine.
391	Preclinical Drug Testing. A bi-transgenic mouse model of MTC was generated as previously described by
392	crossing NSE-rTA and TetOp-p25GFP parental lines ¹² . Bi-transgenic litters were monitored by MRI.
393	Beginning at 10-40 mm ³ bilateral tumor volume, animals were treated once every 3 days by IP with vehicle
394	(0.7% DMSO, 3.4% EtOH, 7.4% PEG400, 3.4% PG, 3.4% Kolliphor EL, 1.1% Tween 80 in 1X PBS), 10
395	mg/kg, 20 mg/kg, or 30 mg/kg BW Indo A. Animals were monitored by MRI for 2 weeks then sacrificed 24
396	h post-final injection by CO ₂ euthanasia and cardiac perfusion with 0.1 mM Ammonium molybdate, 5 mM
397	EGTA, 50 mM NaF, 2 mM Na orthovanidate, 10 mM Na pyrophosphate, and protease inhibitors (Sigma
398	S8820) in PBS. Tissues were frozen or fixed in 4% PFA for 24 h and submitted for paraffin embedding.
399	Human BON and TT cell xenograft mouse models were generated by implanting 5e ⁶ BON or TT-RLuc cells
400	subcutaneously in the NU/NU Nude Mouse (Crl:NU-Foxn1 ^{nu}) strain from Jackson laboratories. Beginning at
401	tumor volumes of 100-450 mm ³ (average starting sizes between groups varied less than 40mm ³), animals
402	were treated as described above and monitored by caliper measurement for 2 weeks. Animals were sacrificed
403	and tissue processed as described above. All animals were randomly assigned to treatment groups but
404	blinding was not possible.
405	Scanning Electron Microscopy. Cells were fixed on coverslips with 2.5% (v/v) glutaraldehyde in 0.1 M

406 sodium cacodylate buffer overnight at 4°C. After three rinses in 0.1 M sodium cacodylate buffer, they were

post-fixed with 1% osmium tetroxide in 0.1 M sodium cacodylate buffer for 45 min. Cells were rinsed with
water and dehydrated with increasing concentration of ethanol, followed by increasing concentrations of
Hexamethyldisilazane in ethanol. Cells were air dried under the hood, mounted on SEM stubs and sputter

- 410 coated with gold palladium in a Cressington 108 auto sputter coater. Images were acquired on a Field-
- 411 Emission Scanning Electron Microscope (Zeiss Sigma) at 3.00 kV accelerating voltage.
- 412 Statistical Analysis. Pre-clinical drug testing in animal models and accumulation of nanoparticles were
- 413 analyzed by two-way ANOVA with repeated measures. All indications of significance are for the treatment
- group over the entire time period, not individual time points. Immunoblots containing >2 conditions, AST
- 415 assays and Urea assays were analyzed by one-way ANOVA. Correlations in human tumor data were
- 416 performed by Spearman rank-order analysis. Simple comparisons of two groups were performed using two-
- 417 tailed Student's *t*-test. Sample sizes are provided with figure legends or in results. (*p<0.05, **p<0.01,
- 418 ***p<0.005, ****p<0.001).
- 419 Toxicity Assays. Prior to cardiac perfusion, blood was collected from animal subjects via retro-orbital
- 420 bleeding. Blood was immediately mixed with EDTA (10 mM final) then centrifuged at 1000 g for 10 min at
- 421 4°C to allow isolation of plasma. AST assays (Sigma MAK055) and Urea assays (Sigma MAK006) were
- 422 performed on plasma per the manufacturer's instructions.

423 **References**

- 424 1 Malumbres, M. & Barbacid, M. Mammalian cyclin-dependent kinases. *Trends Biochem Sci* **30**, 630-641, 425 doi:10.1016/j.tibs.2005.09.005 (2005).
- 426 2 Vijayaraghavan, S., Moulder, S., Keyomarsi, K. & Layman, R. M. Inhibiting CDK in Cancer Therapy: Current
- 427 Evidence and Future Directions. *Target Oncol*, doi:10.1007/s11523-017-0541-2 (2017).
- Shapiro, G. I. Cyclin-dependent kinase pathways as targets for cancer treatment. *J Clin Oncol* 24, 1770-1783, doi:10.1200/JCO.2005.03.7689 (2006).
- 430 4 Asghar, U., Witkiewicz, A. K., Turner, N. C. & Knudsen, E. S. The history and future of targeting cyclin-431 dependent kinases in cancer therapy. *Nat Rev Drug Discov* **14**, 130-146, doi:10.1038/nrd4504 (2015).
- 432 5 Dhavan, R. & Tsai, L. H. A decade of CDK5. *Nat Rev Mol Cell Biol* **2**, 749-759, doi:10.1038/35096019 35096019 433 [pii] (2001).
- 434 6 Dhariwala, F. A. & Rajadhyaksha, M. S. An unusual member of the Cdk family: Cdk5. *Cell Mol Neurobiol* 28, 351-369, doi:10.1007/s10571-007-9242-1 (2008).
- 4367Tsai, L. H., Delalle, I., Caviness, V. S., Jr., Chae, T. & Harlow, E. p35 is a neural-specific regulatory subunit of437cyclin-dependent kinase 5. Nature **371**, 419-423, doi:10.1038/371419a0 (1994).
- Angelo, M., Plattner, F. & Giese, K. P. Cyclin-dependent kinase 5 in synaptic plasticity, learning and memory. *J Neurochem* 99, 353-370, doi:JNC4040 [pii] 10.1111/j.1471-4159.2006.04040.x (2006).
- 440 9 Lee, M. S. *et al.* Neurotoxicity induces cleavage of p35 to p25 by calpain. *Nature* **405**, 360-364,

doi:10.1038/35012636 (2000).

Patrick, G. N. *et al.* Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. *Nature* **402**, 615-622, doi:10.1038/45159 (1999).

444 445	11	Pozo, K. & Bibb, J. A. The Emerging Role of Cdk5 in Cancer. <i>Trends Cancer</i> 2 , 606-618, doi:10.1016/j.troopp.2016.00.001 (2016)
445 446	12	doi:10.1016/j.trecan.2016.09.001 (2016). Pozo, K. <i>et al.</i> The role of Cdk5 in neuroendocrine thyroid cancer. <i>Cancer cell</i> 24 , 499-511,
440 447	12	doi:10.1016/j.ccr.2013.08.027 (2013).
448	13	Wei, K. <i>et al.</i> An immunohistochemical study of cyclin-dependent kinase 5 (CDK5) expression in non-small cell
449	_0	lung cancer (NSCLC) and small cell lung cancer (SCLC): a possible prognostic biomarker. <i>World J Surg Oncol</i>
450		14 , 34, doi:10.1186/s12957-016-0787-7 (2016).
451	14	Xie, W. <i>et al.</i> CDK5 and its activator P35 in normal pituitary and in pituitary adenomas: relationship to VEGF
452		expression. Int J Biol Sci 10, 192-199, doi:10.7150/ijbs.7770 (2014).
453	15	Lin, H., Chen, M. C., Chiu, C. Y., Song, Y. M. & Lin, S. Y. Cdk5 regulates STAT3 activation and cell proliferation
454		in medullary thyroid carcinoma cells. <i>J Biol Chem</i> 282 , 2776-2784, doi:M607234200 [pii]
455		10.1074/jbc.M607234200 (2007).
456	16	Demelash, A. et al. Achaete-scute homologue-1 (ASH1) stimulates migration of lung cancer cells through
457		Cdk5/p35 pathway. Mol Biol Cell 23, 2856-2866, doi:10.1091/mbc.E10-12-1010 mbc.E10-12-1010 [pii] (2012).
458	17	Xie, W. et al. Phosphorylation of kinase insert domain receptor by cyclin-dependent kinase 5 at serine 229 is
459		associated with invasive behavior and poor prognosis in prolactin pituitary adenomas. Oncotarget 7, 50883-
460		50894, doi:10.18632/oncotarget.10550 (2016).
461	18	Pozo, K. et al. Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma
462		tumorigenesis. Oncotarget 6, 12080-12093, doi:10.18632/oncotarget.3813 (2015).
463	19	Ghayee, H. K. et al. Progenitor cell line (hPheo1) derived from a human pheochromocytoma tumor. PloS one
464		8 , e65624, doi:10.1371/journal.pone.0065624 (2013).
465	20	Asfari, M. et al. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines.
466		Endocrinology 130 , 167-178, doi:10.1210/endo.130.1.1370150 (1992).
467	21	Weishaupt, J. H. et al. Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell
468		death and prevents mitochondrial dysfunction. Mol Cell Neurosci 24, 489-502, doi:S1044743103002215 [pii]
469		(2003).
470	22	Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell
471		131 , 1190-1203, doi:10.1016/j.cell.2007.11.025 (2007).
472	23	Sarg, B., Helliger, W., Talasz, H., Forg, B. & Lindner, H. H. Histone H1 phosphorylation occurs site-specifically
473		during interphase and mitosis: identification of a novel phosphorylation site on histone H1. J Biol Chem 281,
474		6573-6580, doi:10.1074/jbc.M508957200 (2006).
475	24	Talasz, H., Sarg, B. & Lindner, H. H. Site-specifically phosphorylated forms of H1.5 and H1.2 localized at
476		distinct regions of the nucleus are related to different processes during the cell cycle. Chromosoma 118, 693-
477		709, doi:10.1007/s00412-009-0228-2 (2009).
478	25	Park, S. H., Yu, S. E., Chai, Y. G. & Jang, Y. K. CDK2-dependent phosphorylation of Suv39H1 is involved in
479		control of heterochromatin replication during cell cycle progression. Nucleic Acids Res 42, 6196-6207,
480		doi:10.1093/nar/gku263 (2014).
481	26	Rubin, S. M. Deciphering the retinoblastoma protein phosphorylation code. Trends Biochem Sci 38, 12-19,
482		doi:10.1016/j.tibs.2012.10.007 (2013).
483	27	Dick, F. A. & Rubin, S. M. Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol 14,
484		297-306, doi:10.1038/nrm3567 (2013).
485	28	Turkdogan, S. et al. Carcinoembryonic antigen levels correlated with advanced disease in medullary thyroid
486		cancer. J Otolaryngol Head Neck Surg 47, 55, doi:10.1186/s40463-018-0303-x (2018).
487	29	Nobels, F. R. et al. Chromogranin A as serum marker for neuroendocrine neoplasia: comparison with neuron-
488		specific enolase and the alpha-subunit of glycoprotein hormones. J Clin Endocrinol Metab 82, 2622-2628,
489	• -	doi:10.1210/jcem.82.8.4145 (1997).
490	30	Molinaro, R. <i>et al.</i> Biomimetic proteolipid vesicles for targeting inflamed tissues. <i>Nat Mater</i> 15 , 1037-1046,
491	21	doi:10.1038/nmat4644 (2016).
492 493	31	Molinaro, R. <i>et al.</i> Design and Development of Biomimetic Nanovesicles Using a Microfluidic Approach. <i>Adv</i> <i>Mater</i> 30 , e1702749, doi:10.1002/adma.201702749 (2018).

494 32 Kobayashi, H., Watanabe, R. & Choyke, P. L. Improving conventional enhanced permeability and retention 495 (EPR) effects; what is the appropriate target? Theranostics 4, 81-89, doi:10.7150/thno.7193 (2013). 496 33 Martinez, J. O. et al. Biomimetic nanoparticles with enhanced affinity towards activated endothelium as 497 versatile tools for theranostic drug delivery. Theranostics 8, 1131-1145, doi:10.7150/thno.22078 (2018). Corbo, C. et al. Effects of the protein corona on liposome-liposome and liposome-cell interactions. Int J 498 34 499 Nanomedicine 11, 3049-3063, doi:10.2147/IJN.S109059 (2016). Corbo, C. et al. Unveiling the in Vivo Protein Corona of Circulating Leukocyte-like Carriers. ACS Nano 11, 500 35 501 3262-3273, doi:10.1021/acsnano.7b00376 (2017). 502 Corbo, C. et al. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug 36 503 delivery. Nanomedicine 11, 81-100, doi:10.2217/nnm.15.188 (2016). 504 37 Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. 505 Nature 467, 596-599, doi:10.1038/nature09454 (2010). 506 Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363, 809-38 507 819, doi:10.1056/NEJMoa1002011 (2010). 508 39 Fiskus, W. & Mitsiades, N. B-Raf Inhibition in the Clinic: Present and Future. Annu Rev Med 67, 29-43, 509 doi:10.1146/annurev-med-090514-030732 (2016). 510 40 Chandrasekharappa, S. C. et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. 511 Science 276, 404-407 (1997). 512 Lemmens, I. et al. Identification of the multiple endocrine neoplasia type 1 (MEN1) gene. The European 41 513 Consortium on MEN1. Hum Mol Genet 6, 1177-1183 (1997). 514 Lemos, M. C. & Thakker, R. V. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations 42 515 reported in the first decade following identification of the gene. Hum Mutat 29, 22-32, 516 doi:10.1002/humu.20605 (2008). 517 Agarwal, S. K. et al. Menin molecular interactions: insights into normal functions and tumorigenesis. Horm 43 518 Metab Res 37, 369-374, doi:10.1055/s-2005-870139 (2005). Mulligan, L. M. et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 519 44 520 2A. Nature 363, 458-460, doi:10.1038/363458a0 (1993). 521 45 Donis-Keller, H. et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol 522 Genet 2, 851-856 (1993). 523 Hofstra, R. M. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 46 524 2B and sporadic medullary thyroid carcinoma. *Nature* **367**, 375-376, doi:10.1038/367375a0 (1994). 525 47 Wells, S. A., Jr. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a 526 randomized, double-blind phase III trial. J Clin Oncol 30, 134-141, doi:10.1200/JCO.2011.35.5040 (2012). 527 48 Kurzrock, R. et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with 528 medullary thyroid cancer. J Clin Oncol 29, 2660-2666, doi:10.1200/JCO.2010.32.4145 (2011). 529 49 Sherman, S. I. Lessons learned and questions unanswered from use of multitargeted kinase inhibitors in medullary thyroid cancer. Oral Oncol 49, 707-710, doi:10.1016/j.oraloncology.2013.03.442 (2013). 530 531 50 Beijersbergen, R. L. et al. E2F-4, a new member of the E2F gene family, has oncogenic activity and associates 532 with p107 in vivo. Genes Dev 8, 2680-2690 (1994). 533 Hijmans, E. M., Voorhoeve, P. M., Beijersbergen, R. L., van 't Veer, L. J. & Bernards, R. E2F-5, a new E2F family 51 534 member that interacts with p130 in vivo. Molecular and cellular biology 15, 3082-3089 (1995). 535 52 Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3, 11-20, 536 doi:10.1038/nrm714 (2002). 537 53 Litovchick, L. et al. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses 538 human cell cycle-dependent genes in quiescence. Mol Cell 26, 539-551, doi:10.1016/j.molcel.2007.04.015 539 (2007). 540 54 Sadasivam, S. & DeCaprio, J. A. The DREAM complex: master coordinator of cell cycle-dependent gene 541 expression. Nature reviews. Cancer 13, 585-595, doi:10.1038/nrc3556 (2013). 542

543	We thank Melanie Cobb, Joseph Goldstein, John Minna, Roswitha Pfragner, and Courtney Townsend for
544	cell lines and Eric Knudsen for primary fibroblast cultures. We thank Haydn Ball and the UTSW Protein
545	Technology Core for peptide synthesis, the UTSW Animal Resource Center for antigen injection and blood
546	collection, Robyn Leidel and Kate Luby-Phelps for help with SEM, Kelly Hartman for assistance with
547	leukosome preparation, John Totenhagen and Samuria Thomas and the UAB Small Animal Imaging Facility
548	for additional MRI, and HMRI Intravital Microscopy Core for IVM. We thank Champions Oncology for
549	PDX tissue and preclinical testing in PDX models, and Pfizer for CP681301.
550	
551	This work was supported by an American Cancer Society Postdoctoral Fellowship (A.M.C) and the Sackler

552 Foundation (A.M.C. and J.A.B.); NIH award S100D023552-01 (M.T.); an American Thyroid Association

553 Research Grant and the Dedman Family Scholar in Clinical Care Award (S.C.O.); an American Cancer

554 Society Institutional Research Grant Junior Faculty Development Award (S.R.) and the SDHB PHEO/Para

555 Coalition (S.R. and J.A.B.); the William Randolph Heart Foundation, the Robert J. Kleberg, Jr. and Helen C.

556 Kleberg Foundation, Cancer Prevention & Research Institute of Texas Award ID RP170466, and NCI and

the Office of Research on Women's Health Grant # 1R56CA213859 (E.T.); an American Cancer Society

558 Research Scholars Award, and NIH awards DA033485-01, MH083711-01, NS073855-01, and

559 R56MH116896 (J.A.B); and NCI awards 5P30CA142543 (UTSW Simmons Comprehensive Cancer Center)

and P30CA013148 (UAB O'Neal Comprehensive Cancer Center).

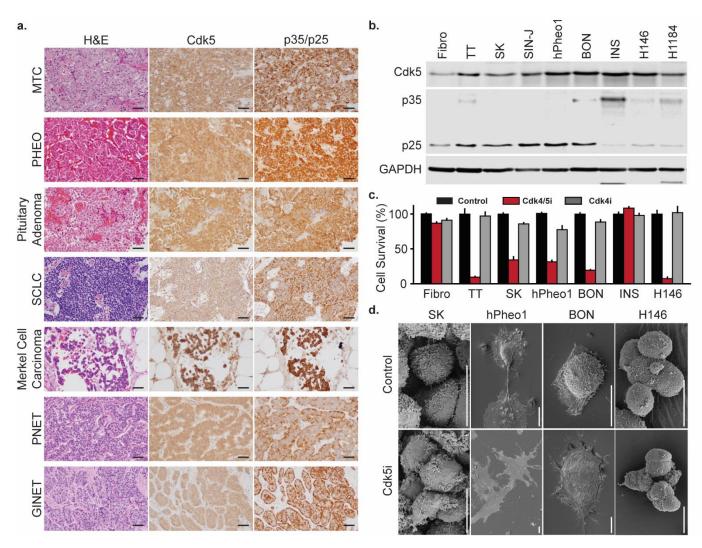
561

562 A.M.C. and J.A.B. conceptualized the study. A.M.C. performed cell culture assays, analysis of

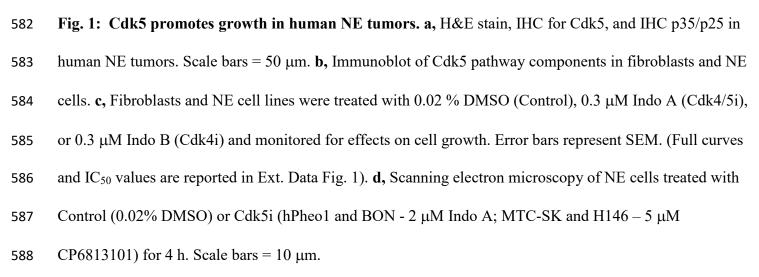
563 phosphoproteomic data, production of phosphorylation state-specific antibodies, immunoblotting, enzyme

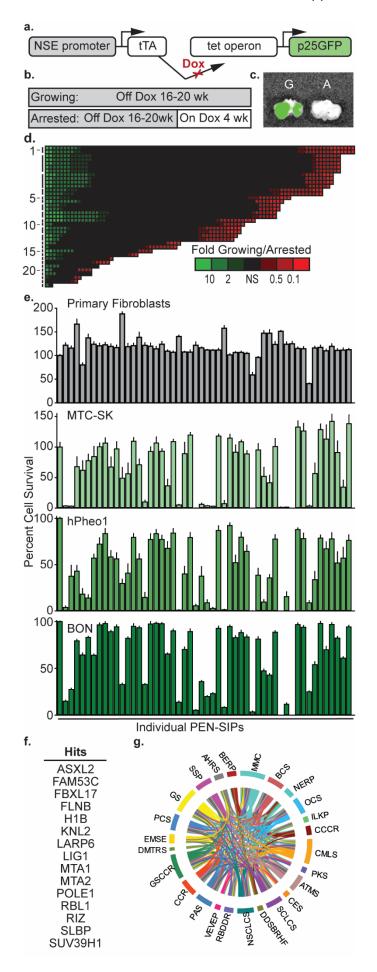
and urea assays, quantitation of MRI, IVIS imaging, and contributed to generation of mouse xenograft

565 models, drug treatments in mouse models, Indo A biodistribution analysis, and performed data analysis. C.T.

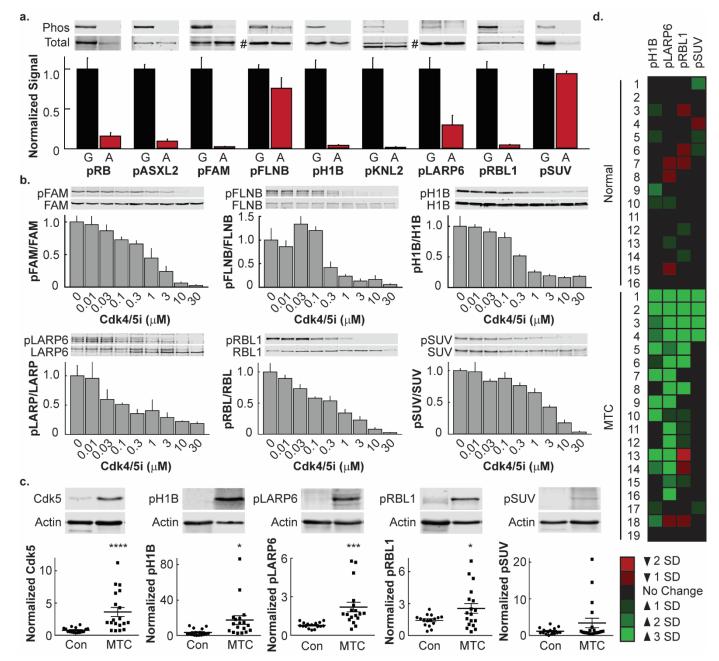

566 performed IHC. K. Pozo contributed to phosphoproteomics and SEM. R.T. contributed to work in mouse

567 models. R.M. designed, synthesized, and characterized leukosomes. A.G. and T.W. performed


- 568 phosphoproteomics. E.D.R. and J.O.M. performed IVM. S.Z. and M.T. performed small animal MRI. F.G.
- and Boehringer Ingelheim provided Indo A and Indo B. R.J. contributed to generation of xenograft mouse
- 570 models. J.A.M. performed LC-MS for Indo A biodistribution analysis. N.K. and M.S.M. performed IPA
- analysis. H.K.G. provided the hPheo1 cell line. S.C.O., F.E.N., and S.R. contributed financially. H.C.,
- 572 E.G.G., K.J.H., K. Pacak, A.J.G., B.R., and E.A.W. provided human biospecimens. J.A.B., E.T., and H.C.
- 573 supervised the study and data interpretation. A.M.C. and J.A.B. wrote the manuscript. All authors reviewed
- 574 and edited the manuscript.


- 576 Phosphoproteomic data are deposited in PhosphoSitePlus (www.phosphositeplus.org). Reprints and
- 577 permissions information is available at <u>www.nature.com/reprints</u>. The authors declare no competing
- 578 financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and
- 579 requests for materials should be addressed to J.A.B. (jbibb@uab.edu)

580 Figures



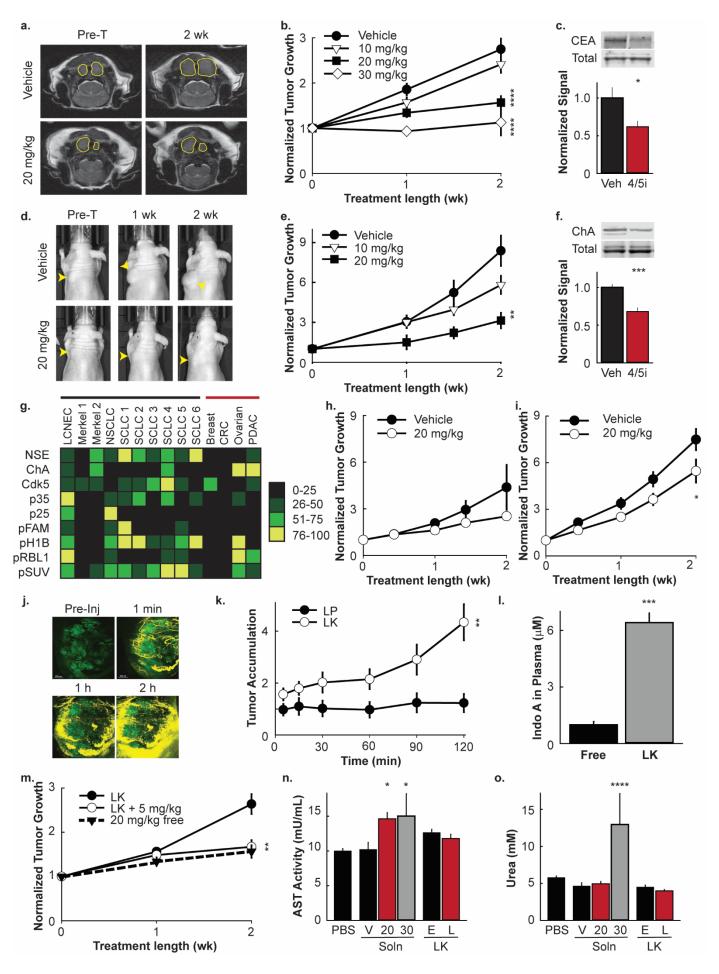
581

- 590 Fig. 2: Identification of potential tumorigenic phosphoprotein signaling pathways. a, Schematic of bi-
- transgenic system for regulated tissue specific expression of p25GFP. b, Diagram of induction paradigm for
- 592 generation of growing and arrested tumor tissue. c, Overlay of photograph and GFP fluorescence from IVIS
- analysis of resected trachea/esophagus with bilateral growing (G) and arrested (A) tumor tissue. d,
- 594 Phosphoproteome of mouse MTC tumors represented as a heat map of phosphopeptide levels in growing
- versus arrested tumors sorted by protein group as indicated in Ext. Data Table 1 (y axis) and fold change
- intensity (x axis). e, Growth/survival assay of NE cell lines treated with control (0.3 % DMSO) or the
- 597 PEN-SIPs (30 µM) indicated in Ext. Data Table 2. Error bars represent SEM. (n=7-8). f, Hits selected from
- 598 (e). g, Ingenuity Pathway Analysis of hits from e.

599

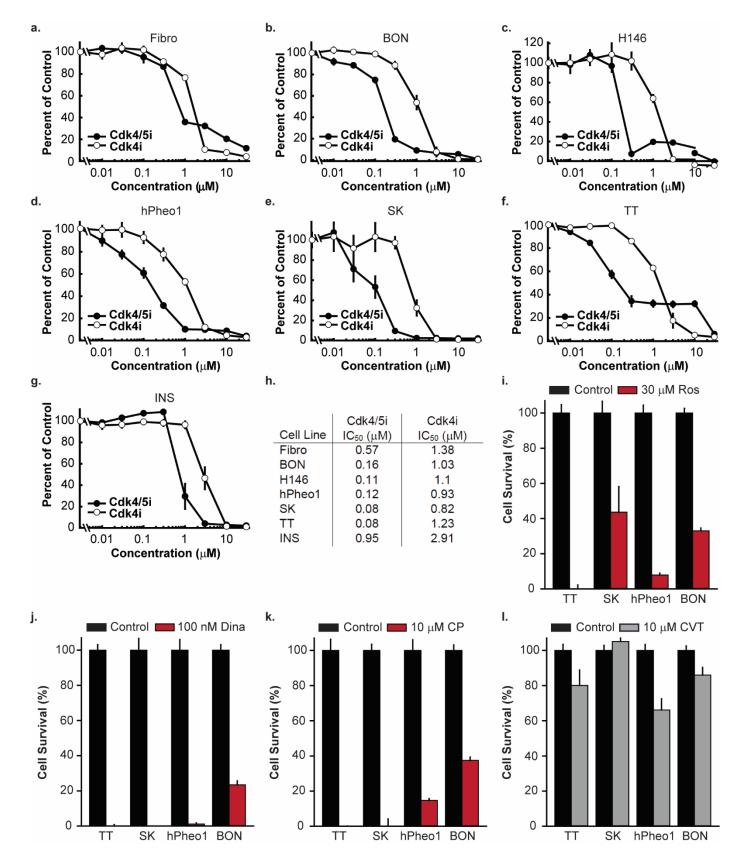
Fig. 3: Phosphoproteins are biomarkers of Cdk5 dependent NE tumors. a, Immunoblot analysis of
phosphoproteins in growing (G) and arrested (A) mouse MTC tumors. For pFLNB and pLARP6, total blot is

actin (#); all others are normalized to each specific protein. (n=3-4). **b**, Immunoblot analysis of

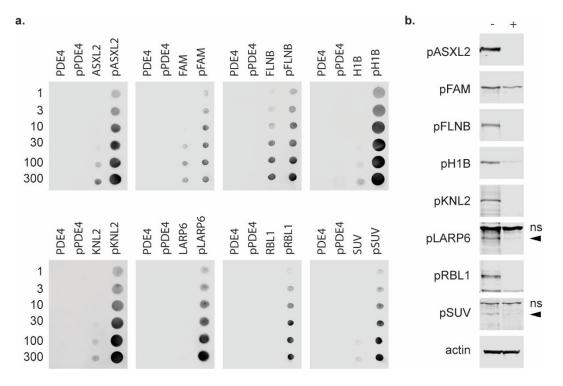

603 phosphoproteins in human hPheo1 cells treated with increasing concentrations of Indo A (Cdk4/5i) for 4

hours. (n=3-4 for all except 0.01, 1, and 30 μ M points of pLARP6 where n=2) **c**. Immunoblot analysis of

605 Cdk5 and phosphoproteins in normal human thyroid tissue and human MTC tumors. Due to sample size,

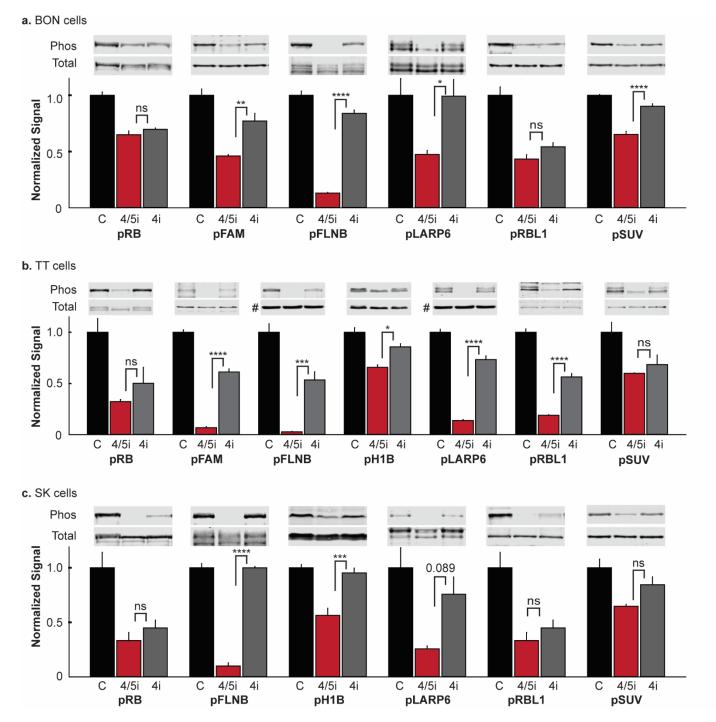

samples were processed on three gels, each containing a reference for normalization. **d**, Heat map

- 607 representation of immunoblot analysis of phosphoproteins from **c**, relative to the average and standard
- 608 deviation (SD) of the total normal thyroid population, grouped by individual patient sample. All error bars
- 609 represent SEM.

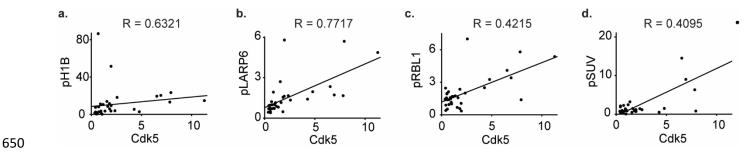


611	Fig. 4: Targeted Therapy. a, Representative MRIs of NSE-p25 MTC model mice prior to treatment (Pre-
612	T) or treated for 2 wk with vehicle or 20 mg/kg BW Indo A. Tumors outlined in yellow. b , Quantitation of
613	tumor growth over time from MRI of NSE-p25 MTC mice treated with vehicle (n=6) or 10 mg/kg (n=4), 20
614	mg/kg (n=6), or 30 mg/kg (n=3-4) BW Indo A. c, Immunoblot analysis of blood plasma in vehicle and 20-30
615	mg/kg BW Indo A animals from b . d , Representative images of TT cell xenograft MTC model mice treated
616	for 2 wk with vehicle or 20 mg/kg BW Indo A. Tumors marked by yellow arrowheads. e, Quantitation of
617	tumor growth over time from caliper measurements of TT cell xenograft MTC model mice treated with
618	vehicle or 10 mg/kg or 20 mg/kg BW Indo A (n=5-7). f, Immunoblot analysis of blood plasma in vehicle and
619	20 mg/kg BW Indo A animals from e. g, Heat map of phosphoprotein population percentile ranking from
620	immunoblot analysis of NE tumors (black bar) and non-NE tumors (red bar) from PDX model mice. h-i,
621	Quantitation of tumor growth over time from biomarker negative (h ; n=5-6) and biomarker positive (i ; n=8)
622	PDX model mice treated with vehicle or 20 mg/kg BW Indo A (20 mg/kg). j, Representative images of MTC
623	tumors from NSE-p25 mice injected with Cy5.5 labeled LKs and imaged in vivo over 2 h using IVM; green
624	– tumor cells, yellow – LKs. k, Quantitation of accumulation of Cy5.5 labeled LPs and LKs in MTC tumors
625	of NSE-p25 mice over time normalized by total tumor size (n=7-8). I, HPLC-MS analysis of Indo A in blood
626	plasma from NSE-p25 MTC mice treated with 5 mg/kg BW Indo A (Free) or 5 mg/kg BW Indo A
627	encapsulated in LKs (LK) (n=3) m , Quantitation of tumor growth over time from MRI of NSE-p25 MTC
628	mice treated with empty LKs or 5 mg/kg BW Indo A encapsulated in LKs (LK + 5 mg/kg) compared to 20
629	mg/kg BW free Indo A from b (n=5-6). n-o , Analysis of blood plasma for AST activity (m) and urea level
630	(n) in animals treated with PBS, Indo A in solution (V-vehicle alone, 20 mg/kg BW, or 30 mg/kg BW), or
631	Indo A encapsulated in LKs (E-empty LK, L-drug loaded LK). All error bars represent SEM.

632 Extended Data

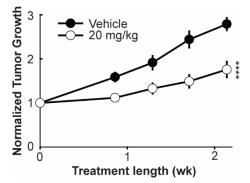


- 634 Extended Data Fig. 1: Cdk5 inhibition blocks growth of NE cancer cells. a-g, Cells were treated with
- 635 increasing concentrations of Indo A (Cdk4/5i; n=6-9) and Indo B (Cdk4i; n=6-9) and monitored for effects
- on cell growth. **h**, IC₅₀ values for each cell line and inhibitor were calculated by 4-parameter logistic
- regression. i-l, NE cell lines were treated with control or the Cdk inhibitor indicated; Roscovitine (Ros; n=4-
- 638 8), Dinacyclib (Dina; n=6-8), CP681301 (CP; n=4-8), or CVT313 (CVT; n=8-12).


639

Extended Data Fig. 2: Phosphorylation state-specific antibody validation. a, Dot blots of nitrocellulose
spotted with increasing pmol of PDE4 peptide, phospho-PDE4 (pPDE4) peptide, peptide of interest, or
phospho-peptide of interest and probed with affinity purified anti-sera. b, Immunoblot analysis of NSEp25OE tumor lysate, treated with (+) and without (-) lambda protein phosphatase, probed with affinity
purified anti-sera. Non-specific bands (ns), specific bands denoted by arrowheads where applicable.

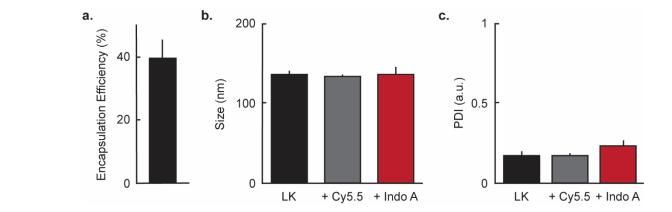
645


Extended Data Fig. 3: Phosphoproteins are dependent on Cdk5 activity. a-c, Immunoblot analysis of
phosphoproteins in BON cells (a), TT cells (b), and MTC-SK cells (c) treated with 0.3% DMSO (Control), 2
µM Indo A (Cdk4/5i), or 2 µM Indo B (Cdk4i) for 4 h. For b, pFLNB and pLARP are normalized to actin
(#); all others are normalized to each specific protein. Statistics by One-way ANOVA, n=3.

651 Extended Data Fig. 4: Phosphoprotein levels correlate with Cdk5 expression. Phosphoprotein level

versus Cdk5 expression in samples represented in Fig. 3c-d analyzed by Spearman rank-order analysis; rho

653 (R).



654

655 Extended Data Fig. 5: Inhibition of Cdk5 activity suppresses growth of pancreatic NE tumors.

656 Quantitation of tumor growth over time from caliper measurements of BON xenograft pancreatic NE tumor

model mice treated with vehicle or 20 mg/kg BW Indo A. (n=8-9).

659 Extended Data Fig. 6: Encapsulation of Indo A does not affect biophysical properties of LKs. a,

660 Entrapment efficiency of Indo A into LKs as determined by intrinsic Indo A fluorescence. **b-c**, Dynamic

- 661 light scattering analysis of LKs, Cy5.5 labeled LKs, and Indo A loaded LKs to determine size (**b**) and
- 662 polydispersity (c).

# in Fig. 2A	Group	Percent of Total	Percent of Upregulated
1	Autophapy	8.6	6.9
2	Development and differentiation	20.5	21.5
3	Kinase (non-protein)	15.9	18.3
4	Other	7.7	5.9
5	Tumor Suppressor	3.4	2.4
6	Translation	3.3	3.5
7	Lipid binding	6.5	3.8
*8	Apoptosis	6.5	12.1
*9	Protease	2.9	5.9
10	Ub conjugation	2.8	0.7
11	Phosphatase	5.4	4.5
12	Intracellular structures	5.3	3.1
13	Protein Kinase signaling	1.9	1.0
14	Receptor/channel/surface protein	1.8	0.3
*15	Adhesion/ECM	1.5	2.8
16	Cell Cycle regulator	1.3	1.7
*17	DNA binding	0.9	1.7
18	Adaptor Scaffold	0.9	0.0
*19	Miscellaneous Enzyme	0.7	1.4
20	G-protein or regulator	0.6	0.7
*21	RNA processing	0.6	1.0
22	Transcriptional regulator	0.5	0.3
23	Unknown	0.4	0.0
*24	Cytoskeletal	0.1	0.3

663 Extended Data Table 1: Protein groups of peptides identified in LC-MS/MS of MTC mouse tumors.

* - enriched in upregulated (levels in growing/arrested tumors ≥ 2) vs. total population of peptides.

665 Extended Data Table 2: Growth inhibition by individual SIPs represented in Fig. 2b.

#	SIP Target	Percent Growth ± SEM						
		Fibro	SK	PHEO	BON			
1	Control 1 (HBSS)	100 ± 2.4	100 ± 2.7	100 ± 1.2	100 ± 0.7			
*2	LIG1	122 ± 5.0	4 ± 0.6	4 ± 1.5	15 ± 1.2			
*3	POLE	116 ± 4.7	3 ± 0.4	38 ± 11.8	28 ± 1.3			
4	LIN9a	166 ± 10.5	68 ± 16.2	43 ± 6.2	79 ± 1.7			
5	POLA1	80 ± 4.5	62 ± 15.6	18 ± 6.0	64 ± 2.2			
*6	RBL1	137 ± 7.9	78 ± 10.6	14 ± 3.6	83 ± 1.2			
7	INADL	124 ± 5.5	84 ± 16.5	57 ± 4.3	64 ± 1.3			
8	NCL	121 ± 5.4	100 ± 6.2	72 ± 6.7	96 ± 2.1			
9	STMN1	123 ± 5.1	106 ± 8.4	84 ± 5.3	98 ± 2.0			
10	WHSC2	119 ± 5.2	67 ± 16.6	58 ± 6.8	89 ± 1.6			
11	SCAPER	117 ± 5.7	97 ± 11.8	56 ± 6.4	94 ± 2.1			
12	SCC112	188 ± 4.4	49 ± 17.6	30 ± 4.7	33 ± 1.4			
*13	H1B	119 ± 6.9	56 ± 17.5	41 ± 9.9	82 ± 1.5			
14	APRIN	121 ± 5.3	109 ± 6.0	79 ± 4.0	95 ± 2.7			
15	NUMA1	138 ± 11.0	71 ± 9.6	56 ± 5.7	93 ± 1.7			
*16	LARP6	122 ± 5.6	10 ± 3.2	15 ± 5.4	33 ± 1.0			
17	MYBBP61A	120 ± 6.5	93 ± 7.7	77 ± 6.2	97 ± 2.6			
18	WHSC1	114 ± 5.3	107 ± 9.7	83 ± 4.4	98 ± 1.4			
19	MGC4707	124 ± 5.7	93 ± 4.2	77 ± 4.5	98 ± 1.3			
20	ALDH2	109 ± 2.7	36 ± 10.6	68 ± 7.3	65 ± 1.1			
21	LIG1b	107 ± 2.7	109 ± 3.7	84 ± 5.1	90 ± 1.9			
*22	MTA2	140 ± 3.1	5 ± 0.9	1 ± 0.4	14 ± 1.3			
23	GTF3C1	107 ± 1.4	89 ± 19.0	40 ± 8.2	70 ± 2.7			
24	SPT5	107 ± 4.9	120 ± 4.3	79 ± 5.5	89 ± 2.9			
*25	FLNB	122 ± 7.0	0 ± 0.2	6 ± 1.8	5 ± 0.7			
26	IQCE	116 ± 1.8	6 ± 1.9	38 ± 10.3	36 ± 1.2			
*27	ASXL2	112 ± 1.2	4 ± 0.4	9 ± 3.3	20 ± 1.0			
*28	SUV39H1	111 ± 1.5	3 ± 0.3	3 ± 1.1	23 ± 1.1			
29	SNXL3	112 ± 3.7	118 ± 3.0	87 ± 5.1	93 ± 2.3			
*30	KNL2	158 ± 5.5	7 ± 5.0	1 ± 0.5	8 ± 1.0			
31	CASZ1	101 ± 2.9	114 ± 6.2	92 ± 3	95 ± 1.6			
32	SH3BP4	106 ± 2	91 ± 12	52 ± 8	83 ± 2.1			
33	HPCAL	107 ± 2.5	109 ± 2.8	80 ± 5.5	88 ± 2.5			
34	ACSL4	105 ± 2.1	89 ± 5.4	64 ± 6.8	83 ± 2.3			
35	elF3ep	59 ± 5	0 ± 0.4	0 ± 0.3	3 ± 1			
36	EPLIN	96 ± 1.9	95 ± 10.5	39 ± 7.4	81 ± 2.6			
*37	MTA1	147 ± 5.5	52 ± 15.1	10 ± 2.7	47 ± 2.1			
38	Rb1a	147 ± 7.4	41 ± 12.4	36 ± 3.5	43 ± 1.6			
39	USP24	123 ± 6.3	101 ± 13.4	78 ± 4.9	89 ± 1.7			
*40	FBXL17	151 ± 2.1	1 ± 1	0 ± 0.1	0 ± 0.1			

667 Ex	ended Data Table	2 continued: (Growth inhibition I	by individual SIPs	represented in Fig. 2b.
--------	------------------	----------------	---------------------	--------------------	-------------------------

#	SIP Target	Percent Growth ± SEM						
		Fibro	SK	PHEO	BON			
*41	SLBP	124 ± 4.8	2 ± 0.2	16 ± 5.1	12 ± 1.4			
*42	RIZ	125 ± 5.3	0 ± 0.2	0 ± 0.1	0 ± 0.1			
43	RbBP6	115 ± 3.4	133 ± 10.3	88 ± 1.8	97 ± 1.7			
44	USP14	114 ± 4.4	126 ± 12.4	78 ± 6	94 ± 1.7			
45	elF3eta	41 ± 2	3 ± 1.4	9 ± 2.4	25 ± 1.2			
46	Rb1b	116 ± 3.7	57 ± 17.3	34 ± 8.9	54 ± 3.3			
47	GPATCH8	117 ± 4.8	129 ± 9.1	79 ± 3.3	98 ± 2.2			
48	ELAVL1	110 ± 3.7	113 ± 23.3	67 ± 7.6	70 ± 3.8			
49	LIN9b	119 ± 5.4	142 ± 11.8	78 ± 6.6	97 ± 1.9			
50	ABI1	111 ± 3.8	91 ± 19	52 ± 12	82 ± 1.7			
*51	FAM53C	112 ± 4.7	34 ± 11.3	57 ± 12	61 ± 1.5			
52	Control 2 (PEN tag)	112 ± 2.9	138 ± 14.3	76 ± 5.9	94 ± 1.6			
selected as a hit								

669 Extended Data Table 3: Pathway Enrichment Analysis on 15 selected hits.

_

Abbreviation Ingenuity Canonical Pathways		-log(p-value)	Molecules	Color
AHRS	Aryl Hydrocarbon Receptor Signaling	1.08	RBL1	Gray
ATMS	ATM Signaling	1.23	SUV39H1	rosybrown
BCS	Bladder Cancer Signaling	1.23	SUV39H1	indianred
BERP	BER pathway	4.61	POLE,LIG1	firebrick
CCCR	Cell Cycle Control of Chromosomal Replication	3.3	POLE,LIG1	darkred
CCR	Cyclins and Cell Cycle Regulation	1.31	SUV39H1	orangered
CES	Caveolar-mediated Endocytosis Signaling	1.36	FLNB	darkorange
CMLS	Chronic Myeloid Leukemia Signaling	2.63	SUV39H1,RBL1	orange
DDSBRHR	DNA Double-Strand Break Repair by Homologous Recombination	2.05	LIG1	olive
DMTRS	DNA Methylation and Transcriptional Repression Signaling	3.68	MTA2,MTA1	olivedrab
EMSE	Estrogen-mediated S-phase Entry	1.78	RBL1	gold
GS	Glioma Signaling	2.56	SUV39H1,RBL1	yellow
GSCCR	Cell Cycle: G1/S Checkpoint Regulation	3.13	SUV39H1,RBL1	seagreen
ILKP	ILK Signaling	0.928	FLNB	springgreen
MMC	Molecular Mechanisms of Cancer	1.61	SUV39H1,RBL1	turquoise
NERP	NER Pathway	2.75	POLE,LIG1	mediumturquoise
NSCLCS	Non-Small Cell Lung Cancer Signaling	1.26	SUV39H1	teal
OCS	Ovarian Cancer Signaling	1.03	SUV39H1	deepskyblue
PAS	Pancreatic Adenocarcinoma Signaling	1.12	SUV39H1	steelblue
PCS	Prostate Cancer Signaling	1.18	SUV39H1	dodgerblue
PKS	Protein Kinase A Signaling	0.666	FLNB	slateblue
RBDDR	Role of BRCA1 in DNA Damage Response	1.3	RBL1	mediumslateblue
SCLCS	Small Cell Lung Cancer Signaling	1.27	SUV39H1	darkorchid
SSP	Sirtuin Signaling Pathway	0.799	SUV39H1	fuchsia
VEVEP	Virus Entry via Endocytic Pathways	1.15	FLNB	deeppink

671 Extended Data Table 4: Index Scores for characteristics of PDX models of cancer.

	PDX Models													
Group	LCNEC	Merkel 1	Merkel 2	NSCLC	SCLC 1	SCLC 2	SCLC 3	SCLC 4	SCLC 5	SCLC 6	Breast	CRC	Ovarian	PDAC
NE markers	2	0	4	1	3	2	1	4	1	3	0	0	3	4
Cdk5 pathway	6	1	1	4	2	3	2	5	1	1	2	0	1	1
Biomarkers	8	0	1	6	8	4	3	5	7	4	0	0	8	3
Total	16	1	6	11	13	9	6	14	9	8	2	0	12	8

672

673 Models initially classified as NE are shown in white. Models initially classified as non-NE are shown in

674 grey.