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Abstract 

A prominent model of pain as a predictive cue posits that anticipation shapes pain 

transmission and ultimately pain experience. Consistent with this model, the neural mechanisms 

underlying pain anticipation have the power to modulate pain experience thus understanding pain 

predictions, particularly during uncertainty, may allow us to ascertain measures indicative of 

intrinsic anticipation biases. Understanding such biases moves way to precision pain 

management, as it can guide the individualized treatment. To examine individual pain 

anticipation biases, we applied machine-learning-based neural decoding to functional magnetic 

resonance imaging (fMRI) data acquired during a pain-anticipation paradigm to identify 

individualized neural activation patterns differentiating two certain anticipatory conditions, 

which we then used to decode that individual’s uncertain anticipatory condition. We showed that 

neural patterns representative of the individualized response during certain anticipatory 

conditions were differentiable with high accuracy and, across individuals, most commonly 

involved neural activation patterns within anterior short gyrus of the insula and the nucleus 

accumbens. Using unsupervised clustering of individualized decodings of anticipatory responses 

during uncertain conditions, we identified three distinct response profiles representing subjects 

who, in uncertain situations, consistently anticipated high-pain (i.e., negative bias), subjects who 

consistently anticipated low-pain (i.e., positive bias), and subjects whose decoded anticipation 

responses were depended on the intensity of the preceding pain stimulus. The individualized 

decoded pain anticipation biases during uncertainty were independent of existence or type of 

diagnosed psychopathology, were stable over one year timespan and were related to underlying 

insula anatomy. Our results suggest that anticipation behaviors may be intrinsic, stable, and 
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specific to each individual. Understanding individual differences in the neurobiology of pain 

anticipation has the potential to greatly improve the clinical pain management. 

  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2019. ; https://doi.org/10.1101/675645doi: bioRxiv preprint 

https://doi.org/10.1101/675645
http://creativecommons.org/licenses/by-nd/4.0/


4 

Introduction  

Anticipation, an inherent component of emotional processing, shapes how humans 

respond to both rewarding and aversive stimuli. In the context of pain, how an individual 

anticipates the upcoming noxious stimuli modulates [1-4] how pain is experienced by engaging 

appropriate pain relief mechanisms [5,6]. Previous studies have shown that by changing an 

individual’s expectation or attentiveness, their perception of the pain is changed [3,4], as well as 

their brain response [7-13]. Positive expectancy cues (i.e., the expectation of analgesia) have 

been shown to reduce pain and result in placebo analgesia, while negative expectancy cues (i.e., 

expectation of worsening pain) can lead to an increase in reported pain and result in nocebo 

analgesia [4, 14-18]. Intrinsic differences in an individual’s anticipatory biases could be probed 

to identify and objectively classify individuals as adaptive, i.e., those with positive bias, who 

successfully regulate emotional responses to unpleasant stimuli [19, 20], or maladaptive 

responders, i.e., those with negative bias, who show heightened reactivity, behavioral and 

cognitive avoidance, and increased threat attention, among others [21-25]. The intrinsic 

differences in individuals’ anticipatory biases are particularly important when anticipatory cues 

become ambiguous, since real-life scenarios are often fraught with uncertainty. It has been 

suggested that uncertainty is a crucial aspect of decision-making as it can lead to prediction 

errors (incorrectly anticipating a given outcome) [13]. These errors allow individuals to 

reevaluate the cost-benefit relationship in a given scenario to inform future decisions [13]. In the 

motivation-decision model of pain, expectation effects are seen through decision-making 

processes mediated by top-down neural circuitries which either enhance or inhibit nociceptive 

transmission to drive behavioral responses [13].  This model emphasizes the effects anticipation 
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can have on pain perception, and points to the presence of individual variability in how pain is 

anticipated as a necessary decision.   

Here we assess to what extent individuals’ own neural activity patterns during pain 

anticipation could identify their positive or negative anticipatory response biases in ambiguous 

and uncertain situations. Using novel machine learning techniques and single-subject data 

analytics, our primary aims were to create a subject-specific voxel activation pattern 

distinguishing two levels of cued pain anticipation (i.e., anticipating “high” pain stimulus versus 

anticipating “low” pain stimulus) and use it to decode that individual’s intrinsic anticipation 

response patterns during uncertainty. Our secondary aim was to discover whether anticipation 

response patterns during uncertainty were influenced by demographics, psychopathology, or 

brain structure. To date, this is the first known study that used a single-subject machine learning 

approach to distinguish between high and low-pain anticipation patterns in a large heterogeneous 

cohort of men and women with and without psychopathology.    
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Results  

High Accuracy of Single-Subject LASSO Model to distinguish Low and High-pain Anticipation 

Neural Response Pattern 

            We conducted functional magnetic resonance imaging (fMRI) in one hundred and forty-

seven subjects (50 females; 28 ± 6.8 years old) while subjects performed a pain-anticipation 

paradigm including two anticipation conditions of certain pain intensity (visual cue indicating 

whether a high or low-pain stimulus will be delivered), and one anticipation condition of 

uncertain pain intensity (ambiguous cue indicating either high or low-pain could be 

experienced). Fifty-seven subjects (22 females) were healthy controls with no current or past 

history of mental illness or trauma, and ninety (28 females) were part of a “mixed psychiatric” 

test group (see Methods for details). Each subject received the pain-anticipation paradigm 

sequence (or run) twice with a randomized order of stimulation conditions within each run (see 

Methods). Between two pain-anticipation paradigm sequences, each participants performed a 

total of seven low-pain anticipation conditions, seven high-pain anticipation conditions, and 

fourteen uncertain pain anticipation conditions. We first examined whether neural patterns 

representative of the anticipation of high-pain and low-pain were reliably distinguishable in 

every subject. Due to statistical power limitations of single-subject data analytics, we limited our 

inquiry (“feature selection”) to twenty-six brain regions, spanning across the insula, anterior 

cingulate, amygdalae, and dorsal and ventral striatum bilaterally, known to play prominent roles 

in pain prediction, processing, and relief [13, 26, 27]. The study flow is summarized in Figure 1. 

Using logistic regression analysis with least absolute shrinkage and selection operator (LASSO) 

regularization, the performance of individualized neural patterns in separating anticipation of 

high-pain versus anticipation of low-pain was 97.4 ± 7.9% accurate with 98.4 ± 5.9% sensitivity, 
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96.5 ± 13.1% specificity, and 97.4% area under the curve (AUC) across all subjects, as indicated 

by the receiver operating characteristic (ROC) curves in Figure 2.  High-pain and low-pain 

anticipatory neural patterns were separable in 145 of 147 subjects in our study based on a single-

subject accuracy threshold of 75% or greater. Across all subjects’ LASSO models, insular 

regions were the most frequently (96% of the subjects) included regional neural activity 

predictors of low-pain versus high-pain anticipation neural pattern separation, with anterior short 

gyrus being the most frequent (63%). Other highly contributing regions were nucleus accumbens 

(64%), substantia nigra (61%) and amygdala (60%) (see Supplementary Material 6 for details). 

 To verify that the single-subject approach to distinguish between the high-pain and low-

pain anticipatory neural patterns was the most effective method in this study, a population-based 

LASSO model was estimated based on population-wise activation maps averaged across all 

subjects and assessed to what extent population-based average pain-anticipatory neural patterns 

distinguished low-pain and high-pain anticipatory neural patterns on single-subject level. 

Population-based model performance was 59.4 ± 13.5% accurate across all subjects, with 

similarly low specificity, sensitivity, and AUC. Additionally, only twenty-two (15%) subjects’ 

high-pain and low-pain anticipatory neural patterns were separable at 75% accuracy level using 

the population-based LASSO model. This supports that population-based (or average) pain 

anticipation neural patterns are less reliable in distinguishing pain anticipatory neural patterns in 

every subject.  

 

Labeling each Uncertain Pain Anticipation Neural Response Pattern as Low-Pain or High-pain 

Anticipation in Every Subject 
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Once we confirmed that neural patterns of low pain and high pain anticipation are 

separable on individual level with high accuracy (see above and Figure 2), we then classified 

neural pattern during uncertainty into either high pain or low pain anticipation in each subject. 

The premise was that when presented with uncertainty, at each instance an individual would 

either anticipate the best-case scenario (i.e., positive bias, represented in this study by low-pain), 

or the worst-case scenario (i.e., negative bias, represented in this study by high-pain). Probed by 

each subject’s own individualized LASSO model for high-pain and low-pain anticipatory neural 

patterns separation, likelihood of low-pain versus high-pain anticipatory response was estimated 

for the subject’s brain activity patterns from each of the fourteen uncertain anticipatory trials, 

separately. Classifier decisions at each of the 14 anticipation periods during uncertainty were 

based on a continuous classifier evidence values (0-1) in that predictions ≥0.5 are classified as 

“high”, and predictions <0.5 as “low” (Figure 3). 

In order to ensure that we are classifying pain anticipation rather than the cue, we 

examined whether uncertain anticipation neural brain activity pattern differed from average 

certain anticipation neural brain activity pattern via a LASSO model. We found that certain (low-

pain and high-pain) versus uncertain anticipation trials were only distinguishable with 45.8% 

accuracy. This finding suggested that BOLD response patterns in uncertain anticipation trials 

more closely resembled that of certain pain anticipation trials, as opposed to a separate pattern 

distinct to the uncertainty cue condition. In other words, the anticipatory pattern during 

uncertainty was related to the stimulus that followed the cue rather than the cue itself in isolation.  

Uncertain Pain Anticipation Pattern is Stable Across Time  

To further validate our findings, stability of each subject’s decoded anticipation biases 

during uncertainty over time was assessed in a test-retest cohort of thirty-two subjects who had 
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repeat fMRI data collected 12 ± 1 months apart. Each subject’s individualized LASSO modeling 

of certain anticipatory trials from the first imaging session (test) was applied to uncertain pain 

anticipation trials of the subject’s subsequent imaging session (retest). Twenty-one out of 32 

subjects (65.6%) presented with the same decoded anticipatory biases (i.e., average likelihood of 

anticipating low-pain or high-pain during uncertain trials, quantitatively measured as average of 

subject’s prediction probabilities for uncertain trials across one imaging session) during both test 

and retest imaging sessions. Since test-retest cohort included individuals (n=24) who met criteria 

for major depressive disorder (MDD) at the initial fMRI session, we explored whether MDD 

diagnosis or current depressive symptom severity influenced uncertain anticipatory biases in 

these subjects. Eleven of the depressed subjects remitted by their final imaging session. We 

found that among the MDD subjects anticipatory biases were not influenced by their current 

diagnosis (t=0.13, p=0.90, df=57) or depressive symptom severity (t=0.98, p=0.33, df=57). 

These results point that pain anticipation response biases during uncertainty as determined by 

neural activity patterns are trait characteristics of an individual.  

 

Subjects Cluster by Anticipation Biases During Uncertainty 

Our secondary aim was to discover whether anticipatory response biases during 

uncertainty may be influenced by psychopathology, as suggested by prior work using group-

level analyses [21, 24, 25, 30-34]. We applied a generalized linear mixed model (GLMM) with 

Markov Chain Monte Carlo (MCMC) methods [35, 36] to perform an unsupervised clustering of 

subjects with similar decoded high-pain versus low-pain anticipatory response patterns to 14 

uncertain trials. Effects accounted for in the GLMM included the fixed effect of trial time within 

the fMRI session and the random effect of the previous pain stimulation experienced (i.e., low-
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pain or high-pain). Previous pain was included as a random effect based on findings indicating 

that prior experiences can modulate the experience of painful stimulation [3, 4, 7-11].  

Three clusters of subjects were identified based on subjects’ decoded response patterns to 

uncertain trials as shown in Figure 4 (see Supplementary Material 5 for a cluster breakdown of 

demographic and neural activation factors). The first (“cluster 1”; blue) consisted of 55 subjects, 

all of whom had on average low-pain anticipatory response (i.e., positive bias) to uncertain trials. 

The second (“cluster 2”; red) had 47 subjects, all of whom had on average high-pain anticipatory 

response (i.e., negative bias) to uncertain trials. The remaining subjects (“unclassified”; gray) 

were unable to be classified into either of the two aforementioned clusters and all had an average 

low-versus-high likelihood of 0.25-0.75 across all uncertain trials, indicating that these subjects 

had highly variable anticipatory response patterns to uncertain trials over the course of the fMRI 

experiment. In accordance with this conclusion, there were statistically significant association 

between cluster and average prediction level (chi=98.8, p<0.01, df=2). Furthermore, as 

demonstrated in Figure 5, regardless of previous pain stimulation, cluster 1 subjects (blue) were 

significantly (chi=162.65, p<0.0001, df=1) more likely to anticipate low-pain (green), and cluster 

2 subjects (red) were significantly more likely to anticipate high-pain (red). The unclassified 

subjects (grey) anticipated low- and high-pain at approximately 50% after high-pain, while after 

low-pain the unclassified subjects anticipated high-pain more often than low-pain.  

Contrary to our hypothesis, subjects did not reliably cluster based on group (healthy vs. 

“mixed psychiatric”), clinical diagnosis (see Supplementary Material 7 for non-significant 

trends), age, or gender. Of note, due to the nature of the “mixed psychiatric” cohort, these 

individuals had many overlapping psychiatric symptoms rather than representing a “clean” 

DSM-IV diagnosis.  It may thus be possible to separate subjects based on their anticipatory bias 
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during uncertain trials in a larger number of subjects with a single psychiatric symptom. 

Nevertheless, we did not find any significant relationship between current depressive symptoms 

(t=0.51, p=0.61, df = 145; measured by BDI-2) or pain cognitions (t=0.37, p=0.71, df = 125; 

measured by pain catastrophizing scale, PCS; N=20 subjects (8 healthy controls and 12 “mixed 

psychiatric” did not complete PCS scale) and uncertain pain anticipation predictions. 

Anticipatory Response Biases during Uncertainty are Related to Brain Structure 

To assess to what extent the anatomic architecture was associated with the decoded 

anticipatory response biases during uncertainty, we first estimated gray matter tissue volume of 

each of the regions of interest for each subject using Advanced Normalization Tools (ANTs) 

[37]. To control for the total intracranial volume, each regional volume estimates was normalized 

per subject by the determinant of the affine transformation (i.e., the relative amount of global 

shape scaling required to transform a subject’s brain to the MNI template space). Out of twenty-

six regions-of-interest assessed in the study, only the volume of the anterior short insular gyrus 

on the right hemisphere was significantly and inversely associated with the average decoded 

anticipatory response bias during uncertain trials (Figure 7, Pearson correlation coefficient r=-

0.33, p=0.001, df=145), suggesting that those with the greatest right anterior short insular gyrus 

volume were more likely to anticipate low-pain during uncertainty (i.e., more likely to show 

“positive bias” and be classified within cluster 1). Consistent with this, the right anterior short 

insular gyrus volume significantly differed across three clusters (ANOVA, F=6.72, p=0.002, 

df=146).  

Although not significantly correlated to average probabilistic decoding of the anticipatory 

response during uncertain trials, the anterior short insular gyrus on the left hemisphere (Pearson 

correlation coefficient r=-0.302, p=0.003, df=145), and the anterior cingulate cortex on the left 
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hemisphere (Pearson correlation coefficient r=-0.31, p=0.002, df=145), showed strong trends 

compared to anticipation biases during uncertainty.  

Discussion 

In this study, we employed innovative single-subject machine learning techniques to 

fMRI data from an evoked pain anticipation paradigm to study individual differences in pain 

anticipation behaviors. Our major findings are as follows: 1) Using a multivariate pattern 

analysis and a single-subject analytics it is possible to distinguish between neural activation 

patterns of the anticipation of high and low pain stimulation on single subject level with high 

accuracy, sensitivity and specificity. This is novel and to the best of our knowledge has not been 

demonstrated before. 2) There is high variability in functional neural activation patterns among 

subjects that contributed to pain anticipation classification emphasizing the need for single-

subject approach. 3) Based on a data-driven unsupervised clustering approach, individuals have 

intrinsic neural anticipatory patterns distinctly separating them as adaptive (i.e., positive bias) or 

maladaptive (i.e., negative bias) pain anticipators, a behavior that does not reliably map onto 

mental health status or other common demographics, but rather is more influenced by the 

underlying anatomical architecture. These findings add valuable information to the current 

models of pain processing and predictions. Our findings support that anticipation behavior is 

specific to each individual, stable over time, and potentially less dependent of subjective 

psychiatric diagnosis. 

This is the first study to demonstrate that there is a distinguishable subject level 

difference between neural activation patterns of differing levels of pain anticipation. Previous 

studies have used machine learning to discriminate between (1) painful heat and non-painful 

warmth stimuli based on subject ratings post-stimulus, and (2) pain anticipation and pain recall 
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[28], using group-wise analyses as opposed to the single-subject approach used here. 

Additionally, we show that activation patterns during uncertain anticipation more closely 

resemble that of certain possible outcomes, as opposed to a distinct uncertainty pattern. This 

asserts that following uncertain or ambiguous cues individuals rely on prior knowledge to predict 

the possible outcome and could in turn demonstrate a bias toward preparing for the worst case or 

hoping for the best case (i.e., expecting pain or looking forward to relief). This bias was also 

shown to be consistent within most individuals irrespective of the previous pain experience, 

which indicates stability within the experimental paradigm setup. Using multi-variate pattern 

analysis (MVPA) and LASSO machine learning techniques, these differences were seen at the 

level of the insula, anterior cingulate, amygdalae, and striatum. The regions-of-interest (ROIs) 

chosen for this study were previously implicated in multidimensional pain experience [1, 19, 21, 

25, 28-30] but we found that the predictive value of each region for low-versus-high pain 

anticipation varied widely across subjects. The most common variables predictive of low-versus-

high anticipatory responses included the insular regions, particularly the anterior short gyrus 

(functionally and structurally), and the nucleus accumbens (functionally only) with varying 

inclusion frequencies in the individualized LASSO models. This emphasizes the immense 

biological heterogeneity present within the study cohort, and ultimately the importance of single-

subject analytic approaches to capture this variability.  

The overlap between functional and structural underpinning of anticipatory response 

supports previous suggestions to integrate structural and functional data to fully understand 

neurological processes [38]. In doing so we can better develop a full picture of how a cortical 

region, like the insular anterior short gyrus, might be crucial to pain anticipation and processing 

[19]. Additionally, the frequent inclusion of the nucleus accumbens, which has previously been 
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implicated in the anticipation of pain relief [39] and in animal studies of pain-predictive cue-

influenced decision making [12], suggests that there is a synergistic relationship between the 

anticipation of pain and the expectation, or hope, of relief from such pain. We posit that in 

comparison to the high-pain, subjects feel a sense of pain relief when experiencing the low-pain 

which can motivate anticipation. Our finding that activation during uncertain- versus certain-

anticipations were not distinguishable indicates that humans will inherently make predictions 

about future events given their past experience or understanding of possible outcomes. It appears 

that the underlying mechanism of pain anticipation may actually be a tradeoff between the 

anticipation of a negative stimulus versus a positive outcome, which supports the motivation-

decision model of pain proposed by Fields [13]. 

We were interested in testing whether subjects’ predictions in the face of uncertainty 

would cluster according to their DSM-IV diagnoses or would be influenced by demographic 

variables such as gender and age, all of which have been reported to associate with response to 

uncertainty [21, 24, 25, 30-34] using group level analyses. Using unsupervised clustering 

methods, we found that our study subjects were grouped solely based on their anticipation bias 

patterns over the course of the entire pain-anticipation paradigm, rather than the presence of a 

mental illness as it has been defined by the DSM-IV. As for those subjects who were 

successfully clustered, cluster 1 represented the low-pain anticipation group, and cluster 2 the 

high-pain anticipation group. Most compelling were the differences between clusters in 

anticipatory behaviors following low- and high-pain stimulation. The two distinguishable 

clusters (cluster 1 and 2) were consistent in their anticipation of low- and high-pain, respectively, 

regardless of the previous stimulus level. The same was not true for the remaining subjects who 

could not be reliably classified into the low- or high-pain anticipator clusters. These subjects 
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showed equal anticipation of low- and high-pain following high-pain stimulation, yet a greater 

instance of high-pain anticipation following low-pain. These findings might suggest that there 

are individuals who are consistent in their anticipation patterns during uncertainty, and there are 

subjects whose anticipation is more clearly influenced by prior experiences. Since subjects were 

not clustered by group, gender, or DSM-IV diagnoses, further work should be completed to 

understand what differentiates these influenceable subjects from those whose anticipatory 

responses are more rigid.  

 While there was no significant difference in unsupervised cluster classification between 

the healthy controls and “mixed psychiatric” test group, analysis of the diagnostic subgroups 

within the test group had interesting observations that merit further study (see Supplementary 

Material 7). For instance, although limited by small sample sizes, it is still noticeable that within 

recovered anorexic females and combat-exposed males suffering from post-traumatic stress 

disorder (PTSD) and mild traumatic brain injury (mTBI), there is a propensity for subjects to 

anticipate low-pain or high-pain, respectively (Supplementary Figure 3). The criteria for these 

disorders, including low body mass index and a significant traumatic experience as result of 

brain injury, are both quantifiable and thus potentially limit the amount of heterogeneity within 

diagnostic groups. The same cannot be said for subjects diagnosed with MDD, whose diagnosis 

relies more on subjective measures, and thus highlights a pressing concern of high heterogeneity 

within the diagnostic label which necessitates methods for identifying these differences to more 

effectively treat all individuals. For MDD, and many other psychiatric disorders, common 

treatment calls for the use of cognitive behavioral therapy (CBT). The main aim of which is to 

identify, challenge, and change dysfunctional cognitions and behaviors, and to equip patients 

with effective coping strategies. Therefore, understanding how an individual perceives the world 
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objectively can allow for CBT treatments to be tailored on a patient-by-patient basis. Objective 

measures also remove limitations of patient self-report that are often limited in vulnerable 

populations (such as those with mental illness). Additionally, it has been shown that subjective 

self-report of pain is strongly influenced by relative experiences, such that a moderate pain 

stimulus may be rated as painful when paired with a neutral, non-painful, stimulus, but when 

contrasted with an intense pain stimulus the moderate pain may be rated as “pleasant” [3]. Using 

a pain-anticipation paradigm like the one employed in this study would be especially useful as it 

avoids issues of self-report, instead capturing implicit behavioral responses.  

After determining that we could classify subjects based on their anticipation biases during 

uncertainty, we wanted to know if these individualized classifications were stable over time. 

Findings from the test-retest group confirm our conclusion that anticipation is an innate trait as 

opposed to a state-based phenomenon. If stability of anticipation biases had only been seen in 

subjects whose mental health remained stable (healthy controls or MDD without entering 

remission or relapsing) then it would have indicated an important effect of current mental state 

on anticipation behaviors. Instead, the majority of subjects, regardless of initial diagnosis or 

current mental health state, remained stable in their average prediction over the course of two or 

three imaging sessions. It is recommended that future studies conduct follow-up imaging 

sessions with a larger cohort comprised on a greater variety of diagnoses.  

One limitation to this study is the difference in the proportion of males and females 

overall. The role that gender plays in anticipation and the perception of pain has been 

investigated previously, and it has been found that females tend to experience higher levels of 

psychological distress than males in response to painful stimulation [34, 40]. Although our 

results did not clearly separate anticipation patterns between genders, we found that females in 
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the “mixed psychiatric” test group on average tended to anticipate high-pain more frequently 

than healthy females (p=0.099). We believe that a larger cohort, with an equal number of 

participants from each gender, might be instrumental to better assess potential gender-

differentiated response patterns in which females, especially those with current or past 

psychopathology, anticipate high-pain more frequently than males.  

  

Conclusion 

The distinct anticipation bias clusters identified here represent the intrinsic proclivities 

specific to each individual to either see the world through an optimistic or pessimistic filter. With 

state-of-the-art machine learning techniques, this study demonstrated with high accuracy the 

ability to distinguish between neural activation patterns of low- and high-pain anticipation on a 

single-subject basis, and label uncertain anticipation neural activity accordingly. This ability was 

formed on the finding that when presented with an uncertain pain cue, humans inherently 

anticipate based on known possible outcomes. Further, it was shown that an individual’s 

neurobiological anticipation signature is unique to them, most often stable over time, and relates 

more strongly to the underlying anatomy than clinical diagnosis. This variation in anticipation 

behaviors and regional activation maps emphasizes the need for single-subject based machine 

learning analyses in order to avoid over-generalizations. It is our hope that techniques such as 

those presented in this study will eventually be applicable in clinical settings to ascertain 

objective measurements of intrinsic behaviors.  

  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2019. ; https://doi.org/10.1101/675645doi: bioRxiv preprint 

https://doi.org/10.1101/675645
http://creativecommons.org/licenses/by-nd/4.0/


18 

Methods  

Participants 

Data for one hundred and forty-seven subjects (50 females, mean ± SD age, 28 ± 6.8 

years) was used for the current study. Subjects were recruited using flyers at University of 

California San Diego (UCSD) clinics, internet sites (e.g., Craigslist), local papers, and word of 

mouth. The study was approved by the UCSD Human Research Protection Program and 

Veterans Affairs San Diego Healthcare System Research and Development Committee. Prior to 

participating all subjects gave their written informed content and underwent a Structured Clinical 

Interview administered by trained interviewers according to the Diagnostic and Statistical 

Manual for Mental Disorders (DSM)-IV [41] to establish current and past psychiatric diagnoses. 

Fifty-seven subjects (22 females) were healthy controls with no current or past history of mental 

illness or trauma, and ninety (28 females) were part of the test group (“mixed psychiatric”). 

Subjects completed behavioral questionnaires, including the Beck Depression Inventory (BDI)-2 

[42] for depressive symptom severity. Subjects were excluded from the study if they: (1) used 

psychotropic medication within the last 30 days; (2) fulfilled DSM-IV criteria for 

alcohol/substance abuse or dependence within 30 days of study participation; (3) fulfilled DSM-

IV criteria for lifetime bipolar or psychotic disorder; (4) has ever experienced a head injury; (5) 

had clinically significant comorbid medical conditions, such as cardiovascular and/or 

neurological abnormality, or any active serious medical problems requiring interventions or 

treatment; (6) had a history or current chronic pain disorder; (7) had irremovable ferromagnetic 

material; (8) were pregnant or claustrophobic; and (9) were left-handed. All female subjects were 

scanned during the first ten days of their menstrual cycle. A subset of these subjects (N=32) 

underwent the same pain-anticipation paradigm on at least two separate occasions. Each scan 
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was roughly 12 months (± 1 month) apart. Eleven completed three scanning sessions. This cohort 

will be referred to as the “test-retest” subjects. 

 

Neuroimaging Protocol  

            Two fMRI runs (412 brain volumes per run) sensitive to BOLD contrast were collected 

for each subject using a 3.0 Tesla GE Signa EXCITE scanner (GE Healthcare, Milwaukee, WI, 

USA) (T2*-weighted echo planar imaging, TR=1500ms, TE=30ms, flip angle=90, FOV=23cm, 

64 × 64 matrix, 30 2.6-mm 1.4-mm gap axial slices) while they performed the pain-anticipation 

paradigm described in Supplementary Material 1. Acquisitions were time-locked to the onset of 

the task. During the same experimental run, a high-resolution T1-weighted image (FSPGR, 

TR=8ms, TE=3ms, TI=450ms, flip angle=12, FOV=25cm, 172 sagittal slices, 256 x 256 matrix, 

1 x 0.97 x 0.97 mm3 voxels) was obtained for anatomical reference. The fMRI protocol was the 

same for the majority (N=125) of the subjects, but a small subset of subjects (11 female 

recovered anorexics and 11 female healthy controls) were scanned separately with a TR of 

2000ms for the T2*-weighted echo planar imaging. The change in timing was controlled for 

during preprocessing so that all following analyses were completed in unison. 

 

Pain-Anticipation fMRI Paradigm  

            The pain-anticipation paradigm used two predetermined and consistent temperatures, 

45.5°C and 47.5°C, across subjects to elicit mild (“low-pain, LP”) and moderate (“high-pain, 

HP”) sensations, respectively. Stimulation was delivered through a 9cm2 thermode (Medoc TSA-

II, Ramat-Yishai, Israel) on the participant’s left forearm, as described elsewhere [24]. Each trial 

began with a period of anticipation initiated by a visual cue (Figure 1a). The cue was always 
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followed by painful stimulation (either HP or LP), and a period of rest (jittered between 24-30s) 

before the next trial began. The schedule of stimuli differed between runs in a pseudorandom and 

counterbalanced order (see Supplementary Material 1). A single imaging session include 7 HP 

trials (HP cue followed by HP stimulation), 7 LP trials (LP cue followed by LP stimulation), and 

14 uncertain (UN) trials (nonspecific pain cue followed by either HP or LP stimulation at 50% 

probability). For a more detailed explanation of the pain-anticipation paradigm, see 

Supplementary Material 1.  

 

fMRI Image Processing  

            All fMRI data was preprocessed using a MatLab-based functional connectivity toolbox, 

CONN [43], to denoise and align the images for analysis. A detailed account of the 

preprocessing pipeline is given in Supplementary Material 2. Further analysis was conducted 

using the Analysis of Functional NeuroImages (AFNI) software package [44]. A multiple 

regression model corrected for autocorrelation consisting of twenty-eight anticipation-related 

regressors and twenty-eight stimulus-related regressors was applied to preprocessed time-series 

data for each individual. A separate regressor was calculated for each trial such that each event 

had its own estimated amplitude. The 28 anticipation-related regressors modeling the entire 

anticipation period consisted of: (1) anticipation of moderately painful heat stimulation (HP 

anticipation, N=7), (2) anticipation of mildly painful heat stimulation (LP anticipation, N=7), and 

(3) anticipation of uncertain painful heat stimulation (UN anticipation, N=14). All stimulation 

conditions (14 HP and 14 LP) were modeled as regressors of no interest. Six additional 

regressors were included in the model as nuisance regressors: one outlier regressor to account for 

physiological and scanner noise (that is, the ratio of brain voxels outside of 2 standard deviations 
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of the mean at each acquisition), three movement regressors to account for residual motion (in 

the roll, pitch, and yaw, directions) and regressors for baseline and linear trends to account for 

signal drifts. To reduce the false positives induced by cross-correlations, time-series data were fit 

using the AFNI [44] program 3dLSS [45]. 3dLSS applies a least-squares-sum model estimation 

to the resulting individually modulated time series data in order to deconvolve BOLD activation 

in the MVPA of task-based fMRI data [45]. This approach was chosen following previous 

findings that 3dLSS, as opposed to a general linear model (GLM) achieved higher classification 

accuracy with low variance [45]. 

 

Structural Analysis  

 Advanced Normalization Tools (ANTs) [37] were used to extract geometric 

measurements for each ROI per subject. Only the volume of each ROI was of interest in the 

current study. To extract volumes (measured in voxels), a combination of ANTs scripts 

(“antsRegistrationSynN” and “antsApplyTransforms”) [37, 46] were used. For volumetric 

analysis, the volume of each region was normalized per subject using the determinant of the 

affine transformation (i.e., the relative amount of distortion required to transform a subject’s 

brain to the MNI template space).  

 

Regional Activation Maps  

          Activation maps were created on a single-subject basis. Masks of selected ROIs were 

created in MNI space using AFNI and were applied to the functional activation maps using 

3dDeconvolve [26]. A total of twenty-six ROIs were chosen based on their prominent roles in 

pain prediction, processing and relief [13, 26, 27]. Twelve ROIs (6 on each side) were selected 
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within the insula: (1) posterior long gyrus, (2) anterior short gyrus, (3) middle short gyrus, (4) 

posterior short gyrus, (5) anterior inferior cortex, and (6) anterior long gyrus (Figure 1b). 

Additionally, fourteen functionally relevant bilateral ROIs (7 on each side) were selected: (1) 

anterior cingulate cortex, (2) amygdala, (3), nucleus accumbens, (4) caudate nucleus, (5) 

putamen, (6) pallidum, and (7) substantia nigra. The anterior cingulate and amygdala ROIs were 

chosen for their role in affective processing networks, the nucleus accumbens as representative 

of the ventral striatum, along with its common targets, the pallidum and substantia nigra, and 

lastly the caudate nucleus and putamen as representative of the dorsal striatum. Using a separate 

AFNI program, 3dROIstats [44], the mean activation was extracted as the beta coefficient from 

each region during each anticipation trial. The use of t-values, as opposed to beta-coefficients, 

has improved classification accuracy in previous studies [47]. T-statistics were thus calculated in 

each region such that the t-statistic is equal to the beta coefficient divided by the standard error 

[28].  

 

Functional Analysis of Regional Activation Maps 

           Average activation within each region underwent regression analysis by way of LASSO. 

The LASSO regression model was executed in R [48] using the glmnet package [48] for Lasso 

and Elastic-Net Regularized General Linear Models. LASSO was performed on a single-subject 

basis in which the training set was individuals’ neural activation (from 26 ROIs simultaneously 

as independent predictors) during 14 certain anticipation trials (HP and LP as dependent 

outcome), and the test set was neural activation during the 14 uncertain trials. Logistic regression 

methods such as LASSO are especially important in this case as they allow for a smaller number 

of predictors to be included in the model. In glmnet, two variables, alpha and lambda, must be 
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specified to control the fit and regularization of the LASSO model. Alpha represents the elastic-

net mixing parameter such that a value of 0 uses a ridge penalty, 1 uses a LASSO penalty, and an 

intermediate value uses a weighted combination of the two. Lambda is the regularization 

parameter. Per subject the values for alpha and lambda were optimized prior to regression. The 

optimal value of alpha for each subject was determined by testing values (0-1) at regular 

intervals of 0.1 and selecting that which resulted in the greatest subject-specific classification 

accuracy. Regression was then fit to the training set and, given the optimal alpha, lambda was 

optimized by cross-validating the model one hundred times, averaging the error curve, and 

selecting a lambda associated with the minimum of the error curve. This allowed for accurate 

and consistent discrimination between single-subject neurobiological patterns of low- and high-

pain anticipation.   

LASSO predictions were made on the test set at a probabilistic level, based on the 

correlation of the activation t statistic to the cross-validated glmnet model. The predicted 

anticipation of each of the fourteen uncertain trials was calculated based on regional activation 

and recorded separately for each participant.  

 

Cluster Analysis  

Cluster analysis was completed using the R-based package MixAK [35, 36]. Using 

MixAK we applied a generalized linear mixed model (GLMM) with Markov Chain Monte Carlo 

(MCMC) methods [35, 36] to cluster subjects based on the multidimensional (i.e., N=14 

uncertain trials separately) probabilistic predictions made for each UN trial obtained from the 

LASSO model. Effects accounted for in the GLMM included the fixed effect of time and the 

random effect of the previous pain stimulation experienced (HP or LP). Previous pain was 
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included as a random effect based on findings indicating that prior experiences can modulate the 

experience of painful stimulation [3, 4, 7-11]. The model used a normal mixture distribution of 

random effects. The maximum number of mixture components was set to four.  

  

Functional Analysis of Test-Retest Subjects 

            For the subset (N=32) of the cohort that underwent multiple scanning sessions, LASSO 

was completed with data from the follow-up sessions to assess the stability of the model and of 

prediction profiles over time. Setup for the LASSO model was consistent across all sessions per 

subject. The model used for prediction analysis was trained on the expected anticipation 

activation maps from session 1 for each subject and applied to all subsequent sessions.  

 

Statistical Analysis  

  To explore whether psychiatric and demographic variables influenced predictions, we 

performed chi-square tests on the LASSO prediction analysis results to compare predictions 

between the healthy controls and mixed psychiatric group, as well as males and females. Pearson 

correlation tests were performed to assess possible relationships between cluster classification 

and demographic variables (sex and age), as well as psychological variables (BDI, PCS, and 

comorbid diagnoses). For cluster analysis, chi-square tests, two-tailed t-tests, and an ANOVA, 

were also run.  
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Figures 

Figure 1: Illustration of applied methods. (a) Pain-anticipation paradigm; high pain (red, N=7), low 

pain (green, N=7), and uncertain pain (yellow, N=14) visual cues, followed by pain stimulation. (b) fMRI 

image pre-processing with CONN toolbox (www.nitrc.org/projects/conn, RRID:SCR_009550) and task-

based regression (including least squares-sum model) completed in AFNI. Activation maps extracted in 

26 a priori chosen ROIs depicted in glass brain on the right side only (c.f. Methods for more details) for 

each high and low pain anticipation event. (c) Each uncertain anticipation trial is compared to the certain 

activation maps and a probabilistic prediction is determined by LASSO. Predictions ≥0.5 are classified as 

“high”, and predictions <0.5 as “low”. Finally, predictions across all 14 uncertain trials for each subject 

are provided to mixAK cluster analysis in R, and each subject is clustered based on individual 

anticipation profile. 
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Figure 2: Receiver operating characteristic (ROC) curves of individual subject-specific 

LASSO models (dashed, light blue) in separating brain activity during anticipation of high-pain 

versus anticipation of low-pain and ROC curve of overall LASSO model performance within the 

entire study cohort (solid, blue). 
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Figure 3: Uncertain anticipation decoding output for representative subject #135. Based on unique 

brain patterns learned from the certain pain anticipation conditions, each uncertain anticipation event is 

decoded by subject’s own individualized LASSO model. Output includes continuous classifier evidence 

values (0-1, y-axis) for each uncertain anticipation event (total of 14 events, x-axis). Classifier evidence 

indicates how brain pattern during each uncertain anticipation event matches the trained brain pattern for 

low (if <0.5) or high (if ≥0.5) pain anticipation pattern.  
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Figure 4: Histograms depicting cluster classification versus average predictions. Across all groups, 

(a) full cohort, (b) healthy controls, and (c) “mixed psychiatric” test group, subjects with average 

anticipation probabilities for uncertain trials less than 0.5 were classified in cluster 1, greater than 0.5 

were classified in cluster 2, and close to 0.5 were unclassified. X-axis: average anticipation probabilistic 

prediction across 14 uncertain trials; y-axis: proportion of subjects in each cluster. 
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Figure 5: Uncertain pain anticipation predictions following low-pain and high-pain, separated by 

unsupervised cluster classification. Within reliable clusters the difference in predictions is not 

significant between two anticipation scenarios. Cluster 1 (low-pain anticipators, left) anticipate low-pain 

more frequently following both low- and high-pain stimulation. Cluster 2 (high-pain anticipators, middle) 

anticipate high-pain more frequently following both low- and high-pain stimulation. 
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Figure 6: Scatterplot comparison of average prediction per subject versus the volume of the insular 

anterior short gyrus on the right hemisphere. Subjects are separated by unsupervised cluster 

classification. Symbols: Blue triangle, cluster 1; red diamond, cluster 2; gray cross, unclassified. x-axis: 

average anticipation probabilistic prediction across 14 uncertain trials; y-axis: volume of insular anterior 

short gyrus on the right hemisphere in voxels (1 x 0.97 x 0.97 mm3). (Abbreviations: R, right cortical 

hemisphere.) 

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2019. ; https://doi.org/10.1101/675645doi: bioRxiv preprint 

https://doi.org/10.1101/675645
http://creativecommons.org/licenses/by-nd/4.0/

