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Abstract  14 

MicroRNAs play a key role in the regulation of gene expression. A majority of microRNA-mRNA 15 

interactions remain unidentified. Despite extensive research, our ability to predict human 16 

microRNA-mRNA interactions using computational algorithms remains limited by a complexity of 17 
the models for non-canonical interactions, and an abundance of false positive results.  18 

Here we present the landscape of microRNA-mRNA human interactions, which we derived from 19 

comprehensive analysis of datasets describing direct microRNA-mRNA interactions experimentally 20 

defined in HEK293 and Huh7.5 cell lines, along with other available microRNA and mRNA expression 21 
data. We have also established a collection of reliable microRNA binding regions that we 22 

systematically extracted in course of analysis of 79 CLIP datasets, which is available at 23 
http://score.generesearch.ru/services/mirna/. 24 

While only 1-2% of human genes interact with microRNAs, some RNAs display a substantial sponge 25 
effect, which is specific to the cell line of study. Some microRNAs are expressed at a very high level, 26 

while interacting with only a few mRNAs, thus, indeed, serving as specific gene expression 27 
regulators. Other miRNAs might be expressed at relatively low levels, and interact with many 28 

mRNAs. Some of the microRNAs might switch between these two classes, depending on cellular 29 

context. Results of our study provide an initial resolution into the complex patterns of human 30 
microRNA-mRNA interactions. 31 
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1 Introduction 32 

MicroRNAs are small noncoding RNAs that associate with Argonaute (AGO) protein to form a 33 

silencing complex, which then regulates a gene expression (Jonas and Izaurralde, 2015). MicroRNAs 34 

accomplish essential post-transcriptional regulatory step of gene expression regulation through 35 
ether the degradation of a transcript or the inhibition of translation, and are involved in key cellular 36 

processes, such as apoptosis, proliferation or differentiation (He and Hannon, 2004). Hence, the 37 
dysregulation of microRNAs could result in the development of a disease or in a malignant 38 

transformation (Weiss and Ito, 2017) . According to some estimates, nearly all mature sequences of 39 
coding transcripts contain potential sites for microRNA regulation (Bartel, 2004; Friedman et al., 40 

2009). 41 

Human genome encodes approximately 2600 mature microRNAs (miRBase v.22) and, according to 42 

GENCODE data (v.29), more than 200 thousands of transcripts, including isoforms with slight 43 
variations. A particular microRNA may target many different mRNAs (Selbach et al., 2008); a 44 

particular messenger RNA may bind to a variety of microRNAs, either simultaneously or in context-45 

dependent fashion (Uhlmann et al., 2012). Notably, within some messenger RNAs, the target 46 
regions for particular microRNAs cluster together, resulting in the cooperative repression effect 47 

(Grimson et al., 2007; Sætrom et al., 2007). The mapping of microRNA-mRNA interactions is far 48 
from being complete due to the recognized challenges of computational prediction of mRNA-49 

microRNA interactions. 50 

In our previous study, we showed that the outputs generated by commonly used microRNA-mRNA 51 

interactions predicting software differ from each other substantially, while failing correctly pinpoint 52 
microRNA-binding regions identified in wet lab experiments (Plotnikova and Skoblov, 2018). 53 

Nowadays, many tools for the prediction microRNA-mRNA interactions are in development, all with 54 

different underlying algorithms (Riffo-Campos et al., 2016; Gumienny and Zavolan, 2015; Lu and 55 
Leslie, 2016; Agarwal et al., 2015; ).  Among most advanced algorithms we should highlight the ones 56 

taking into account expression levels of both the microRNAs and their targets. Notably, the changes 57 
in expression of microRNA may also affect expression levels of other, non-target mRNAs, for 58 

example, due miRNA targeting of their upstream regulators. Consequently, newer, more 59 

comprehensive approaches, like miRImpact (Artcibasova et al., 2016), PanMiRa (Li and Zhang, 60 
2014), and ProMISe (Li et al., 2014), aim at explaining complex phenotypes by performing analysis 61 

of each microRNAs along with its direct and indirect targets. 62 

The experimental identification of direct microRNA targets remains a crucial step in attaining good 63 

prediction results. There are two main groups of the experimental approaches for a direct 64 
identification of microRNA-mRNA interactions. The first approach relies on a construction of 65 

reporter gene assays and one-by-one evaluation of possible interactions between the microRNA 66 
and its cognate mRNA region of interest through measuring the activity of the reporter (Steinkraus 67 

et al., 2016). Another group of techniques comprises involves a coupling of a cross-linking with 68 
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immunoprecipitation (CLIP); this group represented by variety of the protocols including PAR-CLIP, 69 

iCLIP, HITS-CLIP, and others (Steinkraus et al., 2016; Licatalosi et al., 2008). CLIP group of methods 70 
identifies the microRNA binding regions in target mRNAs only, while information about pairing of a 71 

particular microRNA with a particular mRNA region remains obscure.  72 

There are two modifications of AGO-CLIP based technology developed specifically for identifying 73 

microRNAs ligated to their endogenous mRNA targets as part of chimeric molecules. To date, 74 
evaluations of microRNA-mRNA interactomes by these two technologies utilized only two human 75 

cell lines. Helwak and colleagues applied so-called cross-linking ligation and sequencing of hybrids, 76 
or CLASH, to HEK293 cell line, retrieving more than 18,000 high-confidence microRNA-mRNA 77 

interactions (Helwak et al., 2013). Later, Moore and colleagues used another variety of AGO-CLIP 78 

termed CLEAR (covalent ligation of endogenous Argonaute-bound RNAs)-CLIP for the study of 79 
microRNA-interactome in Huh7.5 cell (Moore et al., 2015). CLASH and CLEAR-CLIP techniques 80 

closely resemble each other, with the only difference that CLASH protocol employs HEK293 cell line 81 
over-expressed AGO1, while CLEAR-CLIP targets endogenous AGO allowing experimenting with any 82 

cell line. Thus, CLEAR-CLIP does not require full denaturation of AGO and involves a single 83 

purification step. It is of note that both publications cited above concentrated on the development 84 
of the experimental protocol and subsequent evaluation of the technical aspects of analytic 85 

procedure, rather than on extracting biological insights from the data collected. 86 

We aggregated various experimental data on human miRNA-mRNA interactions, and analyzed 87 

them. First, we investigate how expression levels of microRNAs and their cognate mRNAs correlate, 88 
and if the behavior of miRNA-mRNA pairs depends on a cell line context. In order to do this, we 89 

analyzed together (i) sequences and abundance of microRNA and their target mRNAs in CLASH 90 
dataset for HEK293 cell line and in CLEA-CLIP dataset for Huh7.5 cell line and (ii) expression level of 91 

microRNAs and RNAs in HEK293 and in Huh7.5 cell lines. Second, we attempted an identification of 92 

a credible, experimentally confirmed microRNA binding regions in CLASH/ CLEAR-CLIP datasets and 93 
in 79 additional CLIP datasets. 94 

 95 

2 Materials and Methods  96 

2.1 microRNA-mRNA interactions  97 

microRNA-mRNA interactome data were extracted from published CLASH (Helwak et al., 2013) and 98 

CLEAR-CLIP (Moore et al., 2015) studies. Using Ensemble API, the coordinates of microRNA – mRNA 99 
interacting regions were transformed into genome coordinates. In total, we revealed 18,478 100 

microRNA-mRNA interactions in 22,030 genome regions. For a total of 36 interactions, the 101 

transforming of their coordinates failed. We used LiftOver to transform CLEAR-CLIP interactome 102 
data from hg18 genome version into hg19. wAnnovar (Wang et al., 2010; Yang and Wang, 2015) 103 
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was used to annotate genomic regions (CDS, 3’UTR, 5’UTR, intronic, intergenic, etc). To estimate the 104 

expected overlap between CLASH and CLEAR-CLIP like datasets we used a custom python script.  105 

2.2 mRNA expression  106 

Publicly available RNA-seq datasets GSE68611 (Murakawa et al., 2015) and GSE64677  (Luna et al., 107 

2015) were used for extracting and examining gene sets expressed in HEK293 and Huh7.5 cell lines. 108 
Each of these datasets includes two biological replicates. Initial quality control of sequencing 109 

outputs was performed using FastQC. Next, we used kallisto (Bray et al., 2016)  to map raw reads to 110 
the human reference transcript sequences (GENCODE, 28 version).  111 

First, in each experiment, we calculated the gene expression levels as the sum of expression levels 112 
for individual gene transcripts. Second, we took the mean value for each gene between two 113 

processed datasets in each of the two cell lines. Finally, we kept only genes that had expression 114 
more or equal to 1 tpm as total value and that had expression level of at the level at least 1 tpm in 115 

one of the two experiments. 116 

To reveal an amount of interactions with microRNAs for genes, we used CLASH and CLEAR-CLIP 117 

datasets for HEK293 and Huh7.5 cell lines, respectively.  118 

Gene functions were interpreted using PANTHER toolkit Version 12.0 119 

(http://www.pantherdb.org/tools). We used InteractiVenn tool (Heberle et al., 2015) to create Venn 120 
diagrams in our analysis. 121 

2.3 microRNA expression 122 

We downloaded microRNA expression data from the GEO database: two experimental replicates for 123 
HEK293 cell line (GSE75136 (Wissink et al., 2016)) and three experimental replicates for Huh7.5 cell 124 

line (GSE74014 (Bandiera et al., 2016)). The correlations of experimental results obtained in two cell 125 
lines were calculated using the Spearman’s procedure.  We used the R package “DeSeq2” to 126 

normalize microRNA expression. MicroRNA was considered as expressed if it had expression more 127 

than 3 counts. 128 

CLASH and CLEAR-CLIP datasets were used to calculate the amount of interactions for each 129 
microRNAs. The correlation of the amounts of interactions formed by microRNAs and their 130 

expression levels were estimated using the Spearman correlation coefficient.   131 

In order to calculate a conservative phyloP score for all microRNAs we downloaded the coordinates 132 

of the mature microRNAs from miRBase (Kozomara and Griffiths-Jones, 2013) (release 22, 133 

coordinates corresponded to the GRCh38 human reference genome). Next, we used UCSC table 134 
browser (Karolchik et al., 2004) to obtain phyloP conservative values across 20 vertebrates for all 135 

mature microRNAs. For each group of microRNAs, the mean value between the phyloP scores was 136 
calculated.  137 
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2.4 CLIP-data  138 

We collected 79 CLIP datasets (Supplementary Table 3) from the POSTAR database (Hu et al., 2016)  139 

that were initially preprocessed by unified procedures: PAR-CLIP datasets (N = 18) by PARalyzer 140 
(Corcoran et al., 2011) method and HITS-CLIP datasets (N = 61) by CIMS (Moore et al., 2014) 141 

method. We used python to analyze all microRNA binding regions from CLIP datasets together with 142 

microRNA-mRNA interactions from CLASH and CLEAR-CLIP. In total, all regions were merged in six 143 
million nucleotides and each position was characterized by the following parameters:  list of 144 

supported experiments (GEO GSM ID), their corresponding cell lines and list of interacted 145 
microRNAs (if accessible). We used wAnnovar to annotate genes and their parts (CDS, 3’UTR, 5’UTR, 146 

intronic, etc).  147 

2.5 microRNA binding regions 148 

Our analysis of CLIPs, CLASH, and CLEAR-CLIP revealed 156 thousand regions. We used a custom 149 

python script to select experimentally confirmed microRNA binding regions (Exp-MiBR). Exp-MiBR 150 

was defined as a region that had a subsequence of length L=10, whereas each nucleotide (position) 151 
in this subsequence had been supported by at least n=2 different datasets or chimeras. We 152 

estimated the amount of Exp-MiBRs for all combination of length and amount of supported 153 
datasets/chimeras in ranges: L=1-25 and n=1-10 (Supplementary Table 5).  154 

2.6 Exp-MiBRs application 155 

We characterized each Exp-MiBR (total amount = 46805) by the following parameters: gene 156 
information; amount and list of supported experiments (GEO GSM ID) and their corresponding cell 157 

lines; list of interacted microRNAs (if accessible).  158 

Besides that all the Exp-MiBRs with the corresponded information are available as Supplementary 159 

Table 4, we also provide an open-access web tool via http://score.generesearch.ru/services/mirna. 160 
As input, the tool requires any VCF file (v4.0 or 4.1), no more than 20MB or a single (point) genome 161 

coordinate. The file or coordinate could be recorded in human genome assembly version 38 or 19.  162 

2.7 Web tool for searching Exp-MiBRs 163 

All microRNA binding regions identified as experimentally confirmed (Exp-MiBR) and reported in 164 

this paper (Supplementary Table 4) may be searched by a web tool available online: 165 
http://score.generesearch.ru/services/mirna/.  166 

 167 

3 Results  168 

3.1 Comparison of high-throughput microRNA-mRNA interactions from CLASH and CLEAR-CLIP 169 

datasets 170 
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First, we compared the sets of microRNA-mRNA interactions retrieved in HEK293 and in Huh7.5 by 171 

CLASH (Helwak et al., 2013) and CLEAR-CLIP (Moore et al., 2015) protocol, respectively. Although 172 
CLASH and CLEAR-CLIP techniques are somewhat similar, CLEAR-CLIP study (N=32,170) revealed 173 

almost two times more interactions than CLASH study (N=18,478). One of the reasons for this may 174 
be due to the differences in the data processing procedures. While CLASH sequences were aligned 175 

to the mature transcriptome, CLEAR-CLIP data have been mapped to human genome. Because of 176 

that, CLEAR-CLIP technique was capable to highlight additional interaction sites located in the 177 
introns and the intergenic regions (~70% of all interactions).  178 

To enable the comparison, we focused our analysis on miRNA binding regions residing within the 179 

mature transcriptome. Because of that, CLEAR-CLIP dataset was limited to about one-third of its 180 

entries (n=10,032). Further analysis estimated that approximately 2-3% of the total length of all 181 
expressed protein-coding transcripts serve as a target for one or another microRNAs in either CLASH 182 

or CLEAR-CLIP datasets. In addition, in both datasets, the microRNA binding regions had similar 183 
distribution by mRNA regions (3’UTR, CDS, 5’UTR), and to the distribution of the mRNA parts 184 

present in GENCODE (Figure 1A). Thus, the datasets generated by CLASH and CLEAR-CLIP techniques 185 

are comparable. 186 

Comparison of these two studies revealed approximately one thousand common binding regions 187 
found both in a set of eighteen thousand interactions from CLASH and in a set of ten thousand 188 

interactions from CLEAR-CLIP. To evaluate if this overlap reflect biological phenomenon rather than 189 

statistical fluke, we performed computational simulation of CLASH and CLEAR-CLIP interactions in 190 
transcripts expressed in HEK293 (N = 7,299) and Huh7.5 (N = 4,977), respectively. For these cell 191 

lines, a common set of expressed mRNAs (n = 3,044) was reduced to a set of randomly selected 192 
nucleotide fragments with the size distribution matching that for nucleotide fragments of CLASH 193 

and CLEAR-CLIP, then we analyzed these sets of sequences for overlap. After five independent runs 194 

with randomly selected fragments of matching size distribution, we detected, on average, 7.4 +/- 195 
1.3 interactions with an average length of overlapped segments at 14 nt +/- 6.7 nt. Among these 196 

interactions, only a fraction had the length of overlap of more than 20 nt (5.0 +/- 2.5). In the 197 
experimentally obtained CLASH and CLEAR-CLIP datasets, we detected 1,153 common miRNA-198 

mRNA interactions, built upon combinations of 933 fragments interacting in CLASH and 944 199 
fragments interacting in CLEAR-CLIP. Average length of experimentally obtained interaction was at 200 

37.2 nt +/- 19.4 nt. Eight hundred and sixty seven interactions which were common for both 201 

datasets had the length of overlap of more than 20 nt, with an average length of 45.8 nt +/- 13.9 nt. 202 
Therefore, the characteristics of experimentally detected patterns of miRNA-mRNA interactions 203 

differ from that of interactions generated by simulation of random events (P < 0.0001). 204 

To investigate whether the low degree of the overlap between miRNA-mRNA interactions 205 

registered in CLASH and CLEAR-CLIP datasets could be due to low degree of the overlap between 206 
HEK293 and Huh7.5 transcriptomes, expression data collected from these two cell lines were 207 

downloaded from GEO repository and analyzed. While about half of expressed microRNAs were 208 
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common for both these cell lines (Figure 1C), overall difference in expression patterns of HEK293 209 

and Huh7.5 cells (Figure 1B) was clearly evident. To find out if cell-specific differences in microRNA-210 
mRNA interactomes are due to cell-specific environment, the relationships between the levels of 211 

expression for individual miRNAs and their targets as well as the patterns of interactions for each 212 
mRNAs and miRNAs in the both cell lines were investigated in details. 213 

 214 

3.2 Expression analysis of microRNA-mRNA interactome 215 

3.2.1 mRNA expression analysis 216 

To investigate the degree to which cell-specific levels of transcripts depend on respective 217 

microRNAs, we compared expression levels of each gene in HEK293 and Huh7.5 cell lines, then 218 
cross-compared them to sets of experimentally detected microRNA interactions. HEK293 and 219 

Huh7.5 cell lines express a total of 15,8k and 14,5k genes, respectively. In each of these two cell 220 
lines, approximately 6.9k genes interacted with one or more microRNAs (Supplementary Fig. 1). Our 221 

analysis pinpointed 1-2% of mRNAs with confirmed interactions and no expression detected in the 222 

corresponding cell line. It is possible that these mRNAs have been detected as chimeric reads 223 
resulting from their protection by AGO protein from Ribonucleases. Below, we will describe a few 224 

microRNAs that were detected only as a part of chimeras. 225 

In each of these cell lines, a majority of expressed mRNAs (57-59%) did not interact with any 226 

microRNA (Figure 2AB). In CLASH and CLEAR-CLIP datasets, there were 215 and 333 high-227 
interacting mRNAs, respectively, with nine or more miRNA interactions for each.  228 

Cell line-specific pie charts built for the miRNA-mRNA interactions per mRNAs were similar. 229 

Nevertheless, comparison of the most regulated sets of genes with 9 or more interactions each 230 

revealed that these sets were cell-line-specific, with only 18 genes in common. These common 231 
eighteen genes formed in average of 15.7+/-3.2 and 14.1+/- 2.4 interactions with microRNAs in the 232 

HEK293 and Huh7.5 cell lines, respectively. Surprisingly, cell line-specific sets of microRNA 233 
regulators for each of these genes were completely different. By PANTHER analysis of the common 234 

set of genes, we detected enrichment in only one Gene Ontology (GO) category – a molecular 235 

function of RNA binding (Supplementary Table 1). 236 

Further, we identified a set of mRNAs capable of interaction with many different types of microRNA 237 
molecules, with no preference to a particular miRNA. Such behavior of ambigious interaction with 238 

many microRNAs is similar to “sponge” performance of circular RNAs and lncRNAs. Among “sponge-239 

like” mRNAs with 50 or more interactions detected for each were AGO1, EEF1A1 and HSPA1B in 240 
HEK293/CLASH. Peculiarly, in Huh7.5/ CLEAR-CLIP, same property attributed to different set of 241 

mRNA, namely, APOB, AFP, MALAT1 and XIST. In mRNAs with sponge-like property, microRNA 242 
interaction sites were located predominantly in the protein coding part (Figure 2C and 2D).  243 
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Remarkably, in HEK293 cells, the most interacting mRNA was the one for AGO1 protein, which had 244 

been overexpressed on purpose, as part of  CLASH protocol. In this cell line, AGO1-encoding mRNA 245 
has 88 interactions with a total of 50 different microRNAs. Mean expression levels for AGO1-binding 246 

miRNAs were similar to that for all other miRNAs, at 7,279.36 counts vs 7,183.92 counts, 247 
respectively. In addition to AGO1 mRNA, HEK293 cell line expressed two other mRNAs displaying 248 

non-specific sponge-like effect, HSPA1B with 77 interactions to 41 different microRNAs and EEF1A1 249 

with 50 interactions to 42 microRNAs. Similar to artificially over-expressed AGO1mRNA, EEF1A1 also 250 
highly expressed in HEK293 cell line (>19K tpm), while another “sponge-like” mRNA HSPA1B had 251 

expression level less than 1 tpm.  252 

A set of “sponge-like” mRNAs expressed in Huh7.5 cell line was entirely different. There were two 253 

protein-coding mRNAs, one for AFP - 47 interactions with 32 microRNAs and one for APOB - 47 254 
interactions with 32 microRNAs, and two long-noncoding mRNAs, MALAT1 with 47 interactions to 255 

27 microRNAs and XIST with 55 interactions to 31 microRNAs. In coherence to expression levels of 256 
“sponge-like” mRNAs in HEK293 cell line, we observed different expression level for these mRNAs: 257 

AFP – more than 19K, APOB – 358 tpm, XIST – 202 tpm and MALAT1 – 80 tpm, while the average 258 

expression level in Huh7.5 was – 69 tpm. 259 

3.2.2 Comparative analysis of microRNA expression levels and their mRNA interacting properties 260 

 To assess the role of microRNAs in the regulation of their target mRNAs, we studied two HEK293 261 
and three Huh7.5 miRNA profiles retrieved from RNAseq datasets deposited in GEO (GSE75136 and 262 

GSE74014). For each cell line, only high-quality datasets with very high correlation of miRNA-specific 263 

expression levels were selected (Pearson’s correlation r >>0.99). For each miRNA, we analysed their 264 
cell-line specific levels of expression by R package “DeSeq2” in order to normalize miRNA 265 

expression, and compared these levels to the sets of experimentally detected microRNA-mRNA 266 
interactions retrieved from HEK293/CLASH and Huh7.5/ CLEAR-CLIP datasets MicroRNA was 267 

considered as expressed if it had expression levels of more than 3 counts (see Methods). Less than a 268 
quarter (23.5%) of 989 detected miRNAs was present in both cell lines (Figure 2E, Supplementary 269 

Table 2). Notably, many microRNAs expressed in the HEK293 (N = 205) and Huh7.5 (N = 194) cell 270 

lines then failed experimental detection as mRNA interacting molecules in CLASH or CLEAR-CLIP, 271 
respectively.  272 

On the other hand, both CLASH and CLEAR-CLIP datasets included many mRNA-interacting 273 

microRNAs not detected in respective RNAseq datasets at all. On average, these microRNAs had 274 

relatively small amounts of interactions: 2.2+/-0.6 interacting partners for 197 microRNAs present 275 
in CLASH dataset, but absent in HEK293-based RNAseq, and 5.1+/-2.2 interacting partners for 168 276 

miRNAs present in CLEAR-CLIP dataset but absent in Huh7.5-based RNAseq. For comparison, mean 277 
amounts of detected interactions across all microRNAs were at 55.8 +/-12.7 for 398 miRNAs of 278 

HEK293/CLASH and at 143.5 +/- 28.5 for 542 miRNAs in Huh7.5/CLEAR-CLIP.  279 
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Next, for each of microRNAs we evaluated its cell-specific expression level and the amount of 280 

interactions in this cell line (Supplementary Figure 2). For each cell line, Spearman correlations 281 
levels were quite low, at 0.18 and 0.29 in HEK293 (N=335) and Huh7.5 (N=342), respectively. For 282 

each miRNA, we calculated the cell line-specific ratios (R) of its expression level to amount of 283 
detected interactions. The detailed analysis of this data allowed us to highlight two interesting types 284 

of miRNA. Type 1 comprised microRNAs with high expression level and relatively small amount of 285 

interactions with respective mRNAs. When the cut-offs for both R and expression levels were set as 286 
ranking at 90th percentile or higher, only 16 miRNAs for HEK293 (expression > 4418 and ratio > 252) 287 

and 12 miRNAs in Huh7.5 (expression > 6941 and ratio > 209) were classified as Type 1. Notably, 288 
eight Type 1 miRNAs were present in both cell lines examined.  289 

Type 2 microRNAs were characterized by a low R and many detected interactions with mRNAs. 290 
When the cut-off for R was set as ranking at 10th percentile or lower, and amounts of interactions 291 

at 90th percentile or higher, only 11 and 6 miRNAs for HEK293 (amount of interactions > 150 and 292 
ratio < 0.9) and Huh7.5 (amount of interactions > 165 and ratio < 2.5), were classified as Type 2, 293 

respectively. Unlike the Type 1 microRNAs, Type 2-specific sets from HEK293 and Huh7.5 did not 294 

overlap. 295 

In order to evaluate whether these types of microRNAs are evolutionarily constrained, for all 296 
mature microRNAs from miRBase we calculated the mean of the phyloP conservative values in 20 297 

vertebrates. The average cell line-specific phyloP scores for the Type 1 and Type 2 microRNAs were 298 

similar, at 0.99 and 0.95, respectively. Notably, these scores were higher than the average score 299 
value calculated for all known microRNAs (0.24) and the score values for all microRNAs that were 300 

identified as expressed or interacted in HEK293 or Huh7.5 cell lines (0.74 and 0.71, respectively). 301 
Notably, 80% of Top-100 miRbase microRNAs with the highest conservative phyloP scores were 302 

seen either as expressed or interacted (or both) in at least one of these two cell lines. On average, in 303 

HEK293 and Huh7.5 cells, these most conservative microRNAs had two times higher expression 304 
levels than less conservative expressed microRNAs (Supplementary Table 2). Overall, higher than 305 

average conservativeness of Type 1 and Type 2 microRNAs may point at the relative importance of 306 
their functions. 307 

3.2.3 Comparing cellular contexts for microRNA’s interactions  308 

As expected, a majority of microRNAs were concordant in two cell lines: their expression levels and 309 

amounts of mRNA interactions were similar in both cellular contexts (Supplementary Figure 3A). 310 

Nevertheless, some miRNAs have demonstrated remarkable cell specificity in their ratios R 311 
(Supplementary Figure 3BC). 312 

For 30 microRNAs, we detected high concordance between their expression level and amount of 313 

experimentally detected interactions. Eighteen of these miRNAs had higher expression and mRNA 314 

binding activity in Huh7.5 cell line, while for 12 remaining microRNA, both mRNA binding activity 315 
and expression level were higher in HEK293 cells (Supplementary Figure 3B). As an example, in 316 
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Huh7.5 cell line, expression levels of MAPK1-repressing hsa-miR-194-5p (Kong et al., 2018) were 89 317 

times higher than that in HEK293 cells; in Huh7.5 cells, this microRNA displayed 336 interactions, 318 
while in HEK293 it formed only 7 interactions. On the other hand, in HEK293, expression levels of 319 

lanosterol synthase suppressing hsa-miR-10a-5p (Kim et al., 2018) were 450 times higher than that 320 
in Huh7.5 cells; in HEK293 cells, this microRNA displayed 267 interactions, while in Huh7.5 it formed 321 

only 8 interactions. Such observations were expectable: microRNAs with higher expression level 322 

may be capable of the binding to a larger repertoire of targets. 323 

Peculiarly, a total of microRNAs have performed in exactly opposite way: in cells with higher 324 
expression levels, these microRNAs displayed lesser amounts of interactions with their mRNA 325 

targets (Supplementary Figure 3C). For example, in Huh7.5 cell line, expression levels of hsa-miR-326 

331-3p and hsa-miR-100-5p were at 1030 and 916 counts, respectively, while in HEK293 these 327 
miRNAs had 65 and 41 expression counts, respectively. However, in both cases, amounts of 328 

interactions in Huh7.5 cell line were lesser than that in HEK293 cell line, 47 versus 342 partners for 329 
hsa-miR-331-3p, and 1 versus 30 partners for hsa-miR-100-5p. To investigate if this phenomenon is 330 

due to the difference in the cell-specific expression levels of target genes, we performed an analysis 331 

of all these targets. This was, as well, not the case. As an example, only 21 out of 318 individual 332 
miRNA targets of hsa-miR-331-3p, were active in HEK293 cell line, but not detected in Huh7.5.  333 

3.3 Analysis of expanded set of experimentally confirmed microRNA binding regions 334 

Experimentally identified microRNA binding regions form a promising basis for further queries into 335 
the basics of the gene expression regulation, and lead to uncovering novel disease-causing 336 

mechanisms. To enhance a set of microRNA-mRNA interactions retrieved from CLASH and CLEAR-337 
CLIP studies, we performed the database integration of the data collected in cross-linking with 338 

immunoprecipitation (CLIP) experiments that provide information about microRNA binding regions 339 

of target genes, but unable to identify mRNA-microRNAs pairings.  340 

For this purpose, we collected data from 79 CLIP experiments, comprising 61 HITS-CLIP and 18 PAR-341 
CLIP datasets covering 9 different cell lines, with a majority of these data obtained either in HEK293 342 

(N=34 datasets) or Huh7.5 (N=19 datasets) cell lines (Supplementary Table 3). After combining CLIP 343 

datasets with the data of previously mentioned CLASH and CLEAR-CLIP studies, approximately 344 
156,000 unique microRNA binding regions catalogued within mRNA targets.  345 

At the next stage, the set of microRNA binding regions was cleaned up to include only these 346 

satisfying following criteria: (i) every position in this microRNA-binding subsequence is supported by 347 

evidence from at least two different datasets or two different chimeric sequences and (ii) the length 348 
of at least 10nt (Figure 3A, Supplementary Table 4). MiRNA-binding subsequences of this kind (N = 349 

46,805) formed a dataset of experimentally confirmed microRNA binding regions (Exp-MiBR). In this 350 
dataset, each Exp-MiBR record includes following attributes: genomic coordinates, gene name, type 351 

of mRNA part, list of GEO GSM IDs for experiments which support this microRNA interaction, 352 
cellular context, and the list of interacting microRNAs (if accessible). The criteria for inclusion of 353 
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individual microRNA-binding regions in Exp-MiBR database are justified by analysis presented in 354 

Supplementary Table 5.  355 

Exp-MiBR subsequences (N = 46,805) were mapped to approximately 15,000 human genes. About 356 

one-half of Exp-MiBRs (48%) were located in 3’UTRs, 24% in a coding part, 10% in introns and 6% in 357 
intergenic parts. Remaining 10% of the Exp-MiBRs were mapped to non-coding RNAs, being 358 

matched to either exonic or intronic regions of these loci.  359 

Approximately 68% of Exp-MiBRs were 20-40 nt in size, closely matching the mean length (33 nt) for 360 

all input miRNA-binding regions from CLIPs, CLASH and CLEAR-CLIP data (Figure 3B). The second 361 
peak in size distribution of Exp-MiBRs was at 75 to 80 nt, being predominantly comprised (86%) of 362 

miRNA-interacting region extracted from CLEAR-CLIP dataset. While the sizes of 99% of the Exp-363 
MiBRs were smaller than 150nt, a few Exp-MiBRs were much longer than that, while remaining 364 

supported by many experiments. The longest Exp-MiBR of 631 nt was formed by the regions 365 
confirmed as microRNA-interacting in 54 different experiments in nine different cell lines. In 366 

addition, there were a few Exp-MiBRs located closely to each other. Such clusters of Exp-MiBRs with 367 

many interacting microRNAs do not display a tendency to any particular region of mRNA, as they 368 
may be present in CDS, 3’UTR, 5’UTR or intergenic regions. As an example, chromosome 2 contains 369 

a cluster of Exp-MiBRs covering an area of approximately 1.5 kb in size, which is located between 370 
the loci of RNA5-8SP5 and MIR663B genes. According to CLASH and CLEAR-CLIP studies, this cluster 371 

of Exp-MiBRs interacts with 52 different miRNAs (Supplementary Figure 4, Supplementary Table 6).  372 

3.4 Tissue-specific and housekeeping microRNA binding regions 373 

To characterize Exp-MiBRs further, we analyzed their tissue specificity. Most CLIP experiments were 374 

performed either in HEK293 (43%) or in Huh7.5 (24%) cells, while the rest of the CLIP data were 375 

collected in HeLa, HFF, BC-1, BC-3, EF3D, LCL35 or LCL cells. In HEK293 cells, we found 376 
approximately 9,900 unique MiBRs, while analysis of Huh7.5 cells yielded 690 tissue-specific 377 

interacting regions (Figure 3C). Larger amounts of Exp-MiBRs in HEK293 as compared to that Huh7.5 378 
cells may be explained either by better coverage of HEK293 transcriptome by various CLIPs 379 

(Supplementary Table3), or by intrinsic cell-specific features of miRNA interactomes. 380 

Interestingly, some Exp-MiBRs were observed a majority of studied cells, possibly reflecting a 381 

housekeeping function of these interactions. Approximately 1% of all Exp-MiBRs were found in 382 
seven or more cell lines. The functional roles of 351 ubiquitous Exp-MiBRs were investigated using 383 

Panther software. The GO analysis showed enrichment of genes participating in cellular process of 384 

cell cycle (FС 3.17; p-value 1e10-8) and in molecular function of nucleic acid binding (FC 1.75; p-385 
value 5e10-4).  386 

3.5 Mitochondrial regulation by microRNA  387 
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An analysis of Exp-MiBRs revealed that these microRNA interacting sequences cover 86% of the 388 

mitochondrial genome, including 35 out of 37 mitochondrial genes. Mitochondrial Exp-MiBRs (N = 389 
37) were found in all nine investigated cell lines, with each Exp-MiBR discovered, on average, in 11 390 

independent experiments. In total, we identified 182 miRNAs that bound various mitochondrial 391 
RNAs, with two mitochondrial regions binding 107 out of 182 miRNAs.  392 

 393 

4 Discussion  394 

Experimental identification of microRNA binding regions is an important prerequisite for querying 395 

into the basics of the gene expression regulation, and for uncovering novel disease-causing 396 
mechanisms. To date, only two sequencing-based experimental datasets describing full miRNA-397 

mRNA interactomes of human cells, CLASH and CLEAR-CLIP, are available. In both studies, the 398 

primary goal was to develop and optimize the experimental protocol itself, while identifying miRNA-399 
mRNA interactions in a particular cell line grown under different conditions. Although these 400 

techniques provide unique window into miRNA targeting, they are not free of limitations, which 401 
precludes determining of entire miRNA-mRNA interactome. Nevertheless, intersecting CLASH and 402 

CLEAR-CLIP datasets allowed us to detect much larger set of validated interactions than may be 403 

expected of two randomly-generated datasets.  404 

Typically, miRNA-mRNA interaction networks built in silico with an aid of one or another miRNA 405 
prediction tool include thousands of mRNA targets. In our study, we attempted to paint a holistic 406 

picture of human miRNA-mRNA interactome by comparing the entries from experimentally 407 

collected datasets describing miRNA binding activity to the data describing expression data. 408 
Interestingly, we found that more than half of mRNA transcripts do not bind to any miRNAs present 409 

in the same cellular environment, while 1-2% of human transcripts interact with nine or more 410 
miRNAs, thus, displaying a similar to sponge-like activity (Thomson and Dinger, 2016). Remarkably, 411 

miRNA-mRNA sponge-like interactions were cell-lines specific, with very little overlap identified. In 412 
HEK293 cells, the most prominent sponge-like activity resultant in 77 different miRNA interactions 413 

was detected for AGO1 mRNA, which had been initially overexpressed according to the CLASH 414 

protocol. Two other “sponge-like” mRNAs HSPA1B and EEF1A1 in HEK293 cell line formed 77 and 50 415 
interactions respectively. 416 

This amount of interactions is comparable to that of a well-known circular RNA with sponge 417 

properties, Cdr1as (74 predicted sites) (Xu et al., 2015). In Huh7.5 cells, the set of RNAs with 418 

“sponge-like” activities included many noncoding RNAs, including MALAT1 and XIST. It is peculiar 419 
that some Huh7.5–specific sponge-like RNAs, including these for alpha-fetoprotein (AFP) (Parpart et 420 

al., 2014) and APOB (Bi et al., 2014) were previously described as biomarkers of liver carcinoma, a 421 
tissue of origin for Huh7.5 cell line. 422 
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Some miRNAs expressed at relatively high levels were not among RNA interactors at all. About a 423 

hundred of such non-interacting miRNAs were present in both studied cell lines. There is a 424 
possibility that the natural targets for these microRNAs are either not expressed in studied cellular 425 

contexts, or that they have no targets at all. In total, only 232 microRNAs had at least one 426 
interaction in each of studied cell lines. 427 

For individual miRNAs, levels of their expression have no bearing on amounts of interactions they 428 
display, possibly reflecting difference in their functions depending on the cellular context. As an 429 

example, we revealed that, in Huh7.5 cell line, miR-423-3p is abundant but displays only a few 430 
interactions, while in HEK293 cell line the same miRNA forms more than two hundred interactions 431 

and expressed at the quite low level. These observations complement previous findings of 432 

Mullokandov and colleagues (Mullokandov et al., 2012), who have shown that the binding activity 433 
of some highly expressed miRNAs may be weakened by either high target-to-miRNA ratio or the 434 

relocation of this miRNA to the nucleus. Future studies are required for to investigate how RNA 435 
binding properties of individual miRNAs may change in response to regulation by context-436 

dependent extrinsic or intrinsic factors. 437 

Augmenting CLASH and CLEAR-CLIP datasets with additional 79 CLIP datasets provided us 438 

with information about microRNA footprints resulted in many thousands of experimentally 439 
confirmed microRNA binding regions (Exp-MiBR) present in both coding and noncoding regions of 440 

RNA loci. At least some Exp-MiBR are tissue-specifics, in agreement with Clark and colleagues, who 441 

revealed the differences in the microRNA targetomes across tissues (Clark et al., 2014).  442 

In addition to chromosomes, many Exp-MiBRs map to mitochondrial DNA, where they are quite 443 
abundant. Previous studies showed four mitochondrial regions with high degree of homology to 444 

microRNAs, namely, hsa-miR-4461 (chrM: 10690–10712), hsa-miR-4463 (chrM: 13050– 13068), hsa-445 

miR-4484 (chrM: 5749–5766) and hsa-miR-4485 (chrM: 2562–2582) (Sripada et al., 2012). Two of 446 
these regions, that encode mitochondrial ND4L and 16S rRNA genes, were also highly interacting 447 

Exp-MiBRs, with 70 and 63 cognate miRNAs, respectively, all confirmed in nine different cell lines. In 448 
both cases, previously identified cognate miRNAs hsa-miR-4461 and hsa-miR-4485 were among 449 

confirmed interactors. Our study expands the coverage of mitochondrial genome by various miRNA-450 

interacting regions to 86% of its lengths. Altogether, these findings support the notion that miRNA–451 
mRNA interactions take place in a variety of cellular compartments, including mitochondria (Ni and 452 

Leng, 2015). 453 

Analysis of the landscape of microRNA-mRNA human interactions, which we derived from both 454 

direct microRNA-mRNA interactions experimentally defined in HEK293 and Huh7.5 cell lines, along 455 
with microRNA and mRNA expression data highlight complexity of human microRNA-mRNA 456 

interactome. For individual miRNAs, levels of their expression have no bearing on amounts of 457 
interactions they display, possibly reflecting difference in their functions depending on the cellular 458 

context. In this article, we found that while only 1-2% of human genes were the most regulated by 459 
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microRNAs, a few cell line specific RNAs display a similar to sponge effect: EEF1A1 and HSPA1B in 460 

HEK293 and AFP, APOB and MALAT1 genes in Huh7.5 cell lines. Some miRNAs might be expressed at 461 
relatively low levels, and interact with many mRNAs. On the other hand, there is a set of microRNAs 462 

expressed at a very high level and interacting with only a few mRNAs, thus, indeed, regulating 463 
expression of their targets in a specific manner. Notably, microRNAs are capable of switching 464 

between these two modes of action, depending on cellular context. The question of the biological 465 

significance of these two miRNA groups is still open. CLASH and/or CLEAR-CLIP coverage of 466 
additional cell lines is warranted. It is notable, however, that the presence of miRNA groups, one 467 

with a low expression level and a high number of interactions, and one with opposite 468 
characteristics, was detected in both cell lines profiled. 469 

We have also established a collection of reliable microRNA binding regions that we systematically 470 
extracted in course of analysis of 79 CLIP datasets, which is available at 471 

http://score.generesearch.ru/services/mirna/. The promise of microRNAs as potential means for 472 
diagnostics and therapy got expanded with a number of loss-of-function and, recently, the case of 473 

disease-causing gain-of-function mutation in particular microRNA (Grigelioniene et al., 2019). We 474 

believe that the results of our efforts in mapping the human miRNA-mRNA interactome may be 475 
useful in untangling molecular underpinnings of hereditary and acquired diseases that involve 476 

interactions. 477 
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AGO – Argonaute  491 

CDS - Coding DNA sequence  492 

CLASH – Crosslinking, ligation and sequencing of hybrids technique 493 

CLEAR-CLIP - covalent ligation of endogenous Argonaute-bound RNA-CLIP technique 494 

CLIP – UV crosslinking and immunoprecipitation technique 495 

Exp-MiBRs - experimentally confirmed microRNA binding regions  496 

HITS-CLIP – High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation  497 

iCLIP – individual-nucleotide resolution Cross-Linking and ImmunoPrecipitation 498 

PAR-CLIP – Photoactivatable-Ribonucleoside-Enhanced  Immunoprecipitation 499 

UTR - Untranslated region 500 
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 625 

11 Figure Caption 626 

Figure 1. A comparison of CLASH and CLEAR-CLIP datasets. (A) Distribution of the summarized 627 
lengths of 3’UTR, CDS or 5’UTR mRNA regions in CLEAR-CLIP, CLASH and GENCODE, respectively. (B) 628 

Venn diagram of HEK293- and Huh7.5-expressed genes as covered by CLASH and CLEAR-CLIP 629 

interactomes, respectively. (C) Venn diagram of HEK293- and Huh7.5-expressed miRNAs 630 
represented in CLASH and CLEAR-CLIP interactomes, respectively.  631 

Figure 2. microRNA and mRNA expression analysis in HEK293 and Huh7.5 cell lines. (A) and (B): 632 

Analysis of expressed genes according to amounts of their interactions with microRNAs in HEK293 633 

(A) and Huh7.5 (B) cell lines; (C) and (D): Locations of experimentally confirmed microRNA binding 634 
regions (Exp-MiBRs) in sponge-like RNAs expressed in HEK293/CLASH (C) and Huh7.5/ CLEAR-CLIP 635 

(D) datasets. After segmenting each of the presented RNAs into 50nt-pieces, the segments 636 
coinciding with Exp-MiBR were marked blue on the mRNA map. For each sponge RNA, name and 637 

length are above the gene schematics. Colored parts of RNAs are as follows: 5’UTR –yellow, coding 638 

region – violet, 3’UTR – green, noncoding region – grey. (E) The overlaps between expressed and 639 
interacting microRNAs in HEK293 and Huh7.5 cell lines. 640 

Figure 3. The detailed analysis of experimentally confirmed microRNA binding regions (Exp-641 

MiBRs). (A) Validation of the Exp-MiBR by their independent occurrence in two or more datasets, or 642 

in two or more chimeric sequences from one dataset. (B) Exp-MiBRs: distribution of the lengths. On 643 
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horizontal axis – the length of the Exp-MiBRs subsequence; on vertical axis – amounts of the 644 

detected Exp-MiBRs (N). (C) Venn diagram depicting tissue specificity of Exp-MiBRs detected in 645 
HEK293, Huh7.5 and all other cell lines (D). Venn diagram depicting Exp-MiBRs detected in 646 

experiments employing three different types of identification techniques.  647 

 648 
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