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Significance   

There is significant clinical value to understanding how we reject or suppress making a 

choice, and the dorsomedial striatum (DMS) is a critical arbiter of this process. While optogenetic 

stimulation of DMS indirect pathway spiny projection neurons (iSPNs) can inhibit movement, it is 

unclear how iSPNs contribute to suppression of choices. A simple ‘no go’ function has been 

proposed for iSPNs, suggesting their activity enables choice suppression, but we found that 

chemogenetic activation of iSPNs impaired suppression of low value choices. This effect was 

explained by an algorithmic model in which the relative output of direct pathway (dSPNs) and 

iSPNs determines choice. Our findings have important implications for designing interventions to 

improve maladaptive decision-making in psychiatric disorders and addiction. 

 
Abstract  

The dorsomedial striatum (DMS) plays a key role in action selection, but little is known 

about how direct and indirect pathway spiny projection neurons (dSPNs and iSPNs) contribute to 

serial decision-making. A popular ‘select/suppress’ heuristic proposes that dSPNs encode 

selected actions while iSPNs encode the suppression of alternate actions. Here, we used 

pathway-specific chemogenetic manipulation during serial choice behavior to test predictions 

generated by the ‘select/suppress’ heuristic versus a network inspired OpAL (Opponent Actor 

Learning) model of basal ganglia function in which the relative balance of dSPN and iSPN output 

determines choice. In line with OpAL predictions, chemogenetic activation, not inhibition, of iSPNs 
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disrupted learned suppression of nonrewarded choices. These results cannot be explained by the 

classic view that choice suppression is an extension of iSPN stopping or ‘no go’ function. 

Together, our computational and empirical data challenge the ‘select/suppress’ interpretation of 

striatal function in the context of choice behavior and highlight the ability of iSPNs to modulate 

choice exploration.  

 

Keywords: striatum, decision-making, reinforcement learning 
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Introduction 
 

In everyday decision-making, we often select among options in a serial fashion, foregoing 

low value choices in order to arrive at a higher value choice. The inability to suppress poor choices 

is a core component of addiction, eating disorders, and obsessive-compulsive disorder (1-3). The 

mechanisms underlying choice suppression are therefore highly relevant to psychiatry and public 

health.  

The DMS (homologous to the primate caudate) is a key brain structure for goal-directed 

action selection (4-8), and striatal dysfunction is associated with maladaptive choice behavior (9-

13). However, it is still poorly understood how choice selection and suppression are implemented 

at the circuit level (14). Furthermore, much of the relevant functional data comes from two-

alternative forced choice (2AFC) tasks (15-19), in which it is difficult to dissociate the selection of 

one choice (e.g. turn left) from the suppression of another (e.g. do not turn right). Therefore, 

studying DMS function in the context of a serial task in which animals move freely and select 

among multiple options may reveal new insights into the circuit mechanisms that underlie choice 

selection and suppression. 

The DMS is primarily composed of D1 receptor expressing dSPNs and D2 receptor 

expressing iSPNs (20), whose activity reflect task features including movement, cues, and value 

(16, 21-26). Consistent with predictions from functional neuroanatomy (27-29) and theoretical 

work (30, 31), optogenetic stimulation of dSPNs promotes movement and reinforces actions (‘go’ 

functions) (32-34) whereas optogenetic stimulation of iSPNs inhibits movement and drives 

aversion (‘no go’ functions) (32-34). In a 2AFC task, dSPN stimulation promotes contraversive 

choices whereas iSPN stimulation promotes ipsiversive choices in a manner that is reward history 

dependent (18). While these data suggest that the function of dSPNs and iSPNs in decision-

making are dichotomous, it is important to note that they are co-active during goal-directed 

movement (23, 35, 36). It has been suggested that the two pathways work in concert such that 

dSPNs promote desired actions/choices whereas iSPNs suppress competing actions/choices 
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(27, 29, 35, 37), but this interpretation, which we refer to as the ‘select/suppress’ heuristic, has 

not been directly tested in the context of serial choice. 

Our current study aimed to overcome this knowledge gap by testing a hypothesis that 

follows from the ‘select/suppress’ heuristic, that increasing iSPN activity should aid in the 

suppression of a choice whereas blocking iSPN activity should lead to a failure to suppress 

choice. To this end, we trained mice in an odor-guided serial choice task in which they approach 

multiple options before making a choice selection. Through trial and error, mice learn that only 

one of four odors is rewarded and learn to suppress choice to nonrewarded odors. After learning, 

we chemogenetically manipulated DMS dSPNs or iSPNs and examined choice behavior. To 

interpret our behavioral data, we compared predictions made by the ‘select/suppress’ heuristic 

and surprisingly opposite predictions that emerge from an algorithmic model of basal ganglia 

function, the Opponent Actor Learning (OpAL) model.  
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Results 

In order to quantify selection and suppression of choices, we trained mice in an odor-

guided serial choice task in which mice approach multiple distinctly scented pots in a serial 

fashion, rejecting pots until they choose one by digging in the scented shavings it contains (38) 

(Fig. 1A). Only one odor is rewarded (O1, “anise”), and the odor-action-reward contingency is 

learned through trial and error during an Acquisition phase. At the start of Acquisition, mice 

consistently exhibit an initial preference for a nonrewarded odor (O4, “thyme”). Therefore, in 

addition to learning to choose O1, a large part of Acquisition training is learning to suppress choice 

to O4. Twenty-four hours later mice enter a recall Test phase where their ability to select the 

rewarded odor (O1) and suppress choice to the remaining three nonrewarded odors (O2-4) is 

assessed (Fig. 1a, and Online Methods).  

The ‘select/suppress’ model predicts inhibition of the indirect pathway should induce 
failure to suppress nonrewarded choices 
 

If iSPNs are responsible for choice suppression as suggested by the ‘select/suppress’ 

heuristic model framework (Fig. 1B), then inhibition of iSPNs during the Test phase should lead 

to more errors, indicating a failure to suppress choice to nonrewarded pots (Fig. 1C). In this same 

framework, activation of iSPNs should facilitate suppression of nonrewarded choices and thus 

reduce errors and improve performance, or alternatively produce choice omission (Fig. 1D).  

Fig. 1: Odor-guided serial choice task and ‘select/suppress’ heuristic predictions for iSPN 
manipulation 

(a) 4 option odor-based serial choice task. (b) A ‘select/suppress’ model emphasizes the 
independent role of iSPNs in suppressing choices to nonnrewarded odor options. (c,d) The 
‘select/suppress’ heuristic predicts iSPN inhibition leads to failure to suppress low value choices 
while iSPN activation should enhance suppression of low value choices or increase omissions. 
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The OpAL model predicts that activation, not inhibition, of the indirect pathway should 
induce failure to suppress nonrewarded choices 
 

Alternate, network-inspired models of basal ganglia function (31) and recent in vivo data 

of dSPN and iSPN activity suggest that an independent division of labor does not properly account 

for how action and choice arise from the activity of dSPN and iSPN populations (24, 39-43). An 

alternate model that accounts for the opponent nature of the two pathways may generate different 

and more accurate predictions. Therefore, we turned to OpAL (Opponent Actor Learning), an 

algorithmic model of a biologically plausible basal ganglia network (Fig. 2A) in which choice is a 

function of the weighted difference between dSPN and iSPN population activity (Fig. 2B, Fig. S1; 

see Methods). OpAL predicted that decreasing iSPN activity would not alter the relative difference 

between choice weights, leaving discriminability among odors options high (Fig. 2C) but predicted 

that increasing iSPN activity would minimize the difference in choice weights between the 

rewarded odor and the nonrewarded odors, lowering discriminability (Fig. 2D). We simulated 

performance in the odor-guided serial choice task by adjusting iSPN population activity during the 

Test phase of the task via parameters that mimicked chemogenetic activation or inhibition (Fig. 

2E). OpAL simulations predicted that activation of iSPNs would increase Test phase errors (i.e. 

choices to nonrewarded odors) while inhibition of iSPNs should not affect performance (Fig. 

2F,G). The OpAL model therefore made predictions about iSPN function that were opposite to 

the predictions generated by the ‘select/suppress’ heuristic.  

Chemogenetic manipulation experiments confirm activation, not inhibition, of the indirect 
pathway induces failure to suppress nonrewarded choices 
 

To directly test the predictions made by the ‘select/suppress’ heuristic and OpAL model 

we turned to in vivo chemogenetic manipulation. D1-Cre or D2-Cre mice were injected bilaterally 

into the DMS with 0.5 µL of virus and 4-6 weeks later were trained in the 4 option odor-guided 

serial choice task (Fig. 2H). Mice that expressed Cre-inducible mCherry were used to control for 

any effects of surgery, AAV infection, and CNO administration on behavior. The efficacy of 
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activating and inhibitory DREADD manipulation was confirmed in slice electrophysiology 

experiments; CNO activation of hM4Di suppressed iSPN synaptic release and CNO activation of 

hM3Dq depolarized iSPNs (Fig. S2). Viral targeting was confirmed and mapped for all mice tested 

(Fig. S3). No differences in Acquisition learning, measured as trials to criterion (TTC), were 

observed across groups (Kruskal Wallis test, H=1.42, p= 0.70) (Fig. 2I). Twenty-four hours after 

Acquisition, mice were administered CNO (1.0 mg/kg, i.p.) and run in the recall Test phase, where 

we examined their selection of the rewarded scented pot (O1) and successful or unsuccessful 

suppression of the remaining three nonrewarded pot (O2-4) choices. In the Test phase, mCherry 

control and D2-Cre inhibitory DREADD (hM4Di) groups exhibited robust recall of the rewarded 

choice and successful suppression of the nonrewarded choices, with most mice reaching criterion 

in the minimum number of trials required (median TTC = 10, IQR = 0) (Fig. 2J). Meanwhile, mice 

expressing activating DREADD in iSPNs (D2-hM3Dq) and mice expressing inhibitory DREADD 

in dSPNs (D1-hM4Di) took significantly more trials to reach criterion compared to mCherry 

controls (Kruskal-Wallis test, H=12.4, p= 0.006; Dunn’s uncorrected post hoc test, **p<0.01 D2-

hM3Dq vs. mCherry, *p<0.05 D1-hM4Di vs. mCherry) (Fig. 2J). These data were consistent with 

the predictions made by the OpAL model (Fig. 2G).  
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Fig. 2: OpAL model and chemogenetic manipulation data show iSPN activation not 
inhibition impairs suppression of low value choices 

 
 
(a) Schematic of cortico-basal ganglia network. The 4 odor options are represented as separate 
action channels in direct and indirect pathways. (b) OpAL model with example of choice among 
the 4 odor options in the serial choice task. Here, weights onto dSPNs and iSPNs for different 
odor stimuli reflect learned values updated by trial and error RL mechanism during the Acquisition 
phase. The weighted difference between dSPN activity and iSPN (Choice weights) are then 
transformed into choice probabilities using the softmax function. (c) OpAL predicts that iSPN 
inhibition increases choice weights across odor options but that the relative value difference 
(discriminability) between odor choice weights is maintained. (d) OpAL predicts that activation of 
iSPN minimizes the difference in choice weights across odor choices which would render choice 
exploratory. (e) OpAL simulated trial histories for the odor-guided serial choice task, with 
manipulation (control, inhibition, or activation) applied to dSPNs or iSPNs only during the Test 
phase of the task. (f) OpAL simulated trials to criterion during Acquisition phase (unmanipulated) 
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do not differ across groups (p>0.05, Kruskal Wallis test). (g) iSPN activation and dSPN inhibition 
during Test phase significantly increased trials to criterion in OpAL-simulated data compared to 
controls (***p<.0010, Kruskal Wallis test). OpAL simulation of iSPN inhibition during Test phase 
did not significantly affect performance (p= 0.11, Kruskal Wallis test). (h) Chemogenetic 
manipulation of DMS iSPNs or dSPNs in D2-Cre or D1-Cre mice. (i) All groups perform similarly 
in the Test phase (H=1.42, df=3, p=0.70, Kruskal Wallis test). (j) There was a significant effect of 
virus on performance during the Test phase (H=12.46, df=3, **p<0.01, Kruskal Wallis test), with 
D2-Cre mice expressing DIO-hM3Dq and D1-Cre mice expressing DIO-hM4Di taking significantly 
more trials to complete the Test phase (**p<0.001, mCherry vs. D2-hM3Dq, *p<0.05, mCherry vs. 
D1-hM4Di, post hoc uncorrected Dunn’s multiple comparison test).  
 
Acute chemogenetic manipulation alters choice strategy in a manner not explained by 
locomotor effects 
 

To better understand the nature of the chemogenetic effect we next analyzed more fine-

grained aspects of behavior in the serial choice task and other motor behaviors. During each trial 

of the odor-based serial choice task, mice were free to enter each of the 4 quadrants and sample 

the odors present in each pot, quantified as entries, before making a bi-manual dig to indicate 

their choice (Fig. 3A). Mice expressing activating DREADD in iSPNs (D2-hM3Dq) or inhibitory 

DREADD in dSPNs (D1-hM4Di) consistently made fewer entries during the Test phase compared 

to mCherry controls and mice expressing inhibitory DREADD in iSPNs (D2-hM4Di) (Fig. 3B). Both 

D2-hM3Dq and D1-hM4Di mice were more likely to choose the first odor they encountered 

(classified as single entry trials) compared to mCherry control and D2-hM4Di mice (Fig. 3C).  We 

next asked whether this increase in single entry trials could be explained by impulsivity, a change 

in motivation, or movement ability. We found that the rank odor of choice preferences in 

Acquisition was intact during the Test phase in all groups, indicating that even on single entry 

trials, mice used odor value information to guide choice, inconsistent with impulsivity (Fig. S4). In 

addition, overall choice latency (Fig. S4) and single entry trial latency did not differ across groups 

(Fig. 3D). D2-hM3Dq and D1-hM4Di mice completed more trials (indicated by greater trials to 

criterion) and had similar numbers of omission trials compared to mCherry controls (Fig. S5) 

suggesting that they remained motivated to perform the task. 

To examine if the reduction in entries during Test phase reflected changes in movement, 

we measured the effect of CNO on spontaneous locomotion and rotarod performance in all groups 
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at least one week after conclusion of the odor-guided serial choice task. CNO administration 

significantly reduced spontaneous locomotion in mice expressing activating DREADD in iSPNs 

(D2-hM3Dq) by ~50% compared to mCherry control mice (Fig. 3E). Mice expressing inhibitory 

DREADD in dSPNs (D1-hM4Di) showed a less dramatic reduction in distance traveled on CNO, 

whereas mice expressing inhibitory DREADD in iSPNs (D2-hM4Di) did not differ from mCherry 

control mice on CNO (Fig. 3E). However, the effect of CNO on spontaneous locomotion did not 

correlate with entries made during Test phase (Fig. 3G) suggesting that the influence of CNO on 

behavior in the Test phase is not simply motor-related. In addition, CNO did not alter rotarod 

performance in any groups tested (Fig. S6).  
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Fig. 3: Chemogenetic manipulation of direct and indirect pathway neurons alters odor 
option sampling in a manner dissociable from motor effects 

(a) Test phase quadrant entries. (b) D2-Cre mice expressing activating DREADD (D2-hM3Dq) or 
D1-Cre mice expressing inhibitory DREADD (D1-hM4Di) made fewer entries during Test phase 
on CNO compared to mCherry control mice on CNO (*p<0.05, **p<0.01 Kruskal Wallis ANOVA). 
(c) D2-hM3Dq and D1-hM4Di mice made significantly more choices to the odor in the first 
quadrant they entered, referred to as single entry trials (F(3,40.65)= 9.55, ***p< 0.0001 main effect 
of group Brown-Forsythe ANOVA; **p<0.01 unpaired t-test with Welch’s correction). (d) Latency 
of single entry trials did not differ across groups. (e) Spontaneous locomotion was significantly 
reduced in D2-hM3Dq mice on CNO (1 mg/kg) compared to saline (F(3,48)= 22.38, ***p<0.0001, 
one-way ANOVA, ***p<0.0001, uncorrected Fisher’s LSD) and D1-hM4Di mice to a lesser extent 
(*p<0.05, uncorrected Fisher’s LSD). (f) CNO administration significantly reduced the number of 
vertical rears made by D2-hM3Dq mice (F(3,48)= 21.87 ***p<0.0001, one-way ANOVA, 
***p<0.0001 mCherry vs. D2-hM3Dq uncorrected Fisher’s LSD). (g) Locomotor modulation on 
CNO did not correlate with the number of entries mice made on CNO during Test phase for any 
group.   
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/675850doi: bioRxiv preprint 

https://doi.org/10.1101/675850
http://creativecommons.org/licenses/by-nc-nd/4.0/


Trial-by-trial RL modeling suggests that enhancing iSPN activity alters Test phase 
performance by increasing choice stochasticity 
 

Finally, we compared multiple reinforcement learning (RL) models (44) fit to trial-by-trial 

changes in behavior of using a hierarchical fitting process to determine whether the pattern of 

odor selection we observed was due to a change in choice policy (Fig. 4A and Online Methods). 

The best fit model for our behavioral data included phase specific parameters for the learning rate 

a and the inverse temperature parameter b, which captures choice stochasticity (see Table 1 for 

alternate model comparison).  Focusing on D2-Cre mice, we found that Acquisition phase a and 

b parameters did not differ across groups (Fig. 4B), whereas the Test phase b parameter was 

significantly lower for mice expressing activating DREADD in iSPNs (D2-hM3Dq) compared to 

mCherry control and inhibitory DREADD (D2-hM4Di) (Fig. 4C). These data suggest that 

chemogenetic activation of iSPNs in the DMS makes choice policy more stochastic, and in the 

context of our task in which only one option is rewarded, a more exploratory choice policy leads 

to worse performance. Model fits of OpAL simulated trial histories converged on the same results, 

with iSPN activation associated with decreased Test phase b (Fig. S7). RL model fits to OpAL 

simulated data also suggested that inhibition of dSPNs reduce the Test phase b parameter, but 

RL fits to D1-hM4Di mice were not significantly different from D1-mCherry mice (Fig. S7).  

Fig. 4. iSPN activation increases choice stochasticity 

(a) Acquisition and Test phase trial history data from D2-Cre DREADD mice and controls were 
modeled using an RL model, and best fit parameters were inferred using hierarchical Bayesian 
model fitting. (b) Test phase alpha and b parameters did not significantly differ among 
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manipulation groups (p>0.05 Kruskal Wallis ANOVA). (c)  Test phase b was significantly lower in 
D2-hM3Dq group compared to mCherry control (*p<0.05 Kruskal Wallis ANOVA).  
 
Discussion 

In the present study, we found that manipulating iSPN activity had surprising effects on 

learned choice behavior that were not accounted for by the popular ‘select/suppress’ heuristic. 

We showed that chemogenetically inhibiting dSPNs or activating iSPNs impaired suppression of 

nonrewarded choices, whereas inhibiting iSPNs did not affect choice behavior. These behavioral 

results were predicted by the OpAL network model, in which choice is determined by the relative 

balance of direct and indirect pathway activity (31). RL model fits to OpAL simulated data and 

mouse behavioral data showed that activating iSPNs reduced the inverse temperature (b) 

parameter, consistent with more exploratory choice. In the context of our deterministic task, this 

manifested as an increase in the number of nonrewarded choices. Our computational and 

empirical data demonstrate that the combined output of direct and indirect pathways, and not the 

independent function of either, is critical for adaptive choice behavior.  

Previous studies provide clear evidence that optogenetic stimulation of DMS iSPNs can 

drive aversion and inhibit movement (32, 33, 45, 46), suggesting that choice suppression might 

be an extension of indirect pathway ‘no go’ function. However, recording data collected during 

decision-making has shown that dSPNs and iSPNs are simultaneously active when animals 

choose an action (23, 35, 36). The ‘select/suppress’ heuristic accounts for this coactivation by 

suggesting that dSPNs select specific actions while iSPNs simultaneously suppress alternate 

actions. However, it is problematic to infer in vivo function from optogenetic simulation effects that 

override endogenous activity patterns, especially if learning is stored in corticostriatal synaptic 

weights (6, 47, 48). Therefore, in the current study we chose to use chemogenetic manipulation 

tools in order to preserve aspects of endogenous activity that may have been altered during 

Acquisition phase learning.  

While many studies have focused on the role of the striatum in selecting rewarded actions 
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(16, 18, 25) and stimuli (49), fewer have studied its role in avoiding low-value actions (50-53) and 

stimuli (54). Here, our goal was to understand how activity in DMS dSPNs and iSPNs influences 

choice behavior, particularly the ability to suppress an initially encountered low-value choice in 

order to make a subsequent high-value choice. In our odor-guided serial choice task, as in many 

natural decision-making settings, the value of a given action/choice (here, dig) was contingent on 

available stimulus information plus choice and outcome history. RL model fits to odor choice trial 

histories enabled us to investigate how chemogenetic manipulation altered the relationship 

between odor value estimates and choice. The multiple choice task design enhanced our ability 

to interpret underlying choice processes. Also, the fact that the mice were freely moving and were 

never required to hold still, thus removing the potential confound between choice suppression 

and motor freezing. Lastly, this task was acquired in a single session without extensive training 

that is often found in rodent operant tasks. This should enhance relevance to DMS function, which 

is engaged in early flexible goal-directed learning (22, 55, 56). Collectively, these more ethological 

task features may have permitted novel observations about the role of the indirect pathway in 

choice suppression behavior (57).   

Our data support and add new circuit dimension to previously proposed dopaminergic 

mechanisms underlying choice exploration. We found that when iSPNs were activated (in 

chemogenetic manipulation data and OpAL simulations) choice became more 

stochastic/exploratory, meaning that mice were more likely to “explore” (i.e. choose) a lower value 

odor as opposed to “exploit” the highest value odor, as estimated by RL model fits. This was 

captured by a lower inverse temperature parameter, which tunes explore/exploit balance in the 

estimated odor value to choice conversion. This observation is consistent with a previous study 

that found D2R antagonism in the primate caudate reduced the inverse temperature parameter 

and increased exploratory choice (58). Our findings are also compatible with computational 

accounts that predict that lowering tonic dopamine, which facilitates iSPN activity and suppresses 

dSPN activity (59, 60), shifts explore/exploit balance towards exploration (61, 62), but see (63) 
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for an alternate model. Finally, if behavioral switching is viewed as exploring action space, our 

iSPN data may relate to recent studies that report iSPN activity increases in response to outcomes 

preceding switch trials (25, 64). 

Unexpectedly, we observed that dSPN inhibition or iSPN activation increased the number 

of trials in which mice chose the first odor they encountered (Fig. 3). Several observations suggest 

that these single entry trials were separable from changes in locomotion and were not due to 

random impulsivity. Chemogenetic manipulation did not affect rotarod performance and the 

effects of manipulation on spontaneous locomotion in the open field did not correlate with entries 

in the serial choice task (Fig. 3). Regarding single entry trials, we reasoned that, if purely 

impulsive, the odors chosen on those trials would be random, i.e. independent of odor Q values. 

However, we found that single entry trial choices were significantly influenced by Test phase odor 

Q values (Figure S3). Therefore, we interpret the increase in single entry trials to be the result of 

a more exploratory choice process that occurs when chemogenetic inhibition of dSPNs or 

chemogenetic activation of iSPNs minimizes the difference in choice weights across odors. 

It is possible that there are latent variable(s) in our task that are not captured by OpAL or 

our current RL models. For example, reduced entries prior to choice could reflect changes in 

cost/accuracy tradeoff and share mechanistic overlap with individuals with Parkinson’s disease 

who are capable but choose not to exert the effort required to move rapidly in a motor 

speed/accuracy tradeoff task (65, 66), consistent with dissociable cognitive and motor 

impairments (67). Similarly, reduced entries may relate to the putative role of DMS in invigorating 

actions on the basis of net expected return and state value signals (68, 69). In addition, in our 

odor-guided serial choice task, reward contingency was 100%, and negative feedback was 

signaled by the absence of reward as opposed to punishment. OpAL predicts that inhibition of the 

indirect pathway more heavily influences choice behavior in environments in which animals 

balance reward and punishment or are rewarded in a probabilistic manner (31). Therefore, the 

deterministic nature of the task used here may have emphasized the contribution of the dSPNs 
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over iSPNs, potentially explaining why inhibiting iSPNs produced no detectable effects in this 

task. 

Overall, our data support existing models of basal ganglia function in which trial and error 

choice drives learning that is later stored or read out in the balance of activity emerging from DMS 

dSPNs and iSPNs (70). The fact that learned choice behavior is specifically disrupted by 

chemogenetic inhibition of dSPNs and activation of iSPNs (but not by inhibition of iSPNs) is 

consistent with these manipulations counteracting reported patterns of long term potentiation 

(LTP) onto dSPNs and long-term depression (LTD) onto iSPNs following goal-directed action 

learning (6). Further work will need to be done to inform how LTP and LTD are allocated to specific 

neural ensembles of dSPNs and iSPNs to sculpt choice.  

In summary, our findings suggest that the indirect pathway does not independently 

mediate choice suppression. Instead, choice appears to arise from the difference in dSPN and 

iSPN population activity, and conditions that reduce this difference increase choice 

stochasticity/exploration. Importantly, we demonstrate that manipulations that simply enhance 

activity in the indirect pathway do not facilitate adaptive choice suppression, and in fact can have 

the opposite effect. These data highlight the importance of using network concepts and models 

over simple heuristic accounts of circuit function to understand decision-making. We are hopeful 

that these findings will inform studies of addiction and other conditions in which enhancement of 

capacity for choice suppression is desirable. 

 

Acknowledgments 

We thank Yuting Zhang, Satya Vedula, Christopher Hall, and Nana Okada for assistance with 

behavior and histology. We thank Dr. Richard Ivry for manuscript feedback and Wilbrecht and 

Collins lab members for helpful discussion. This research was supported by a National Institute 

of Mental Health postdoctoral fellowship under Grant F32MH110184 to K.D. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/675850doi: bioRxiv preprint 

https://doi.org/10.1101/675850
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author contributions 

K.D., A.G.E.C., and L.W. designed the research. K.D. performed all experiments and analyzed 

data. A.G.E.C. contributed analytic tools, designed and performed OpAL simulation and RL model 

analysis to which B.H. contributed. K.D., A.G.E.C., and L.W. wrote the manuscript. 

Declaration of interests 

The authors declare that there are not conflicts of interest. 
 
 
Methods: 

Mice 

All mice were weaned on postnatal day (P)21 and group-housed on a 12:12hr reverse light:dark 

cycle (lights on at 10PM). C57BL/6 BAC transgenic mice expressing Cre recombinase under the 

regulatory elements for the D1 and D2 receptor (Drd1a-Cre and D2-Cre ER43) were obtained 

from Mutant Mouse Regional Resource and bred in our colony. Mice had ad lib access to food 

and water before food restriction in preparation for training. All procedures were approved by the 

Animal Care and Use Committee of the University of California, Berkeley and complied with the 

NIH guide for the use and care for laboratory animals. 

 

Viruses and tracers 

Adeno-associated viruses (AAVs) were produced by the Gene Therapy Center Vector Core at 

the University of North Carolina at Chapel Hill or by Addgene viral service and had titers of >1012 

genome copies per mL. For chemogenetic manipulations, mice were bilaterally injected with 0.5 

uL of rAAV8-hsyn-DIO-mCherry, rAAV8-hsyn-DIO-hM3Dq-mCherry, or rAAV8-hsyn-DIO-hM4Di-

mCherry. For in vitro electrophysiological validation experiments of rAAV8-hsyn-DIO-hM4Di-

mCherry, mice were bilaterally injected with 0.69 uL of a 2:1 mixture of rAAV8-hsyn-DIO-hM4Di-

mCherry and rAAV5-Ef1a-DIO-hChR2-EYFP.  
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Stereotaxic injections 

Male and female mice (6-8 weeks) were deeply anesthetized with 5% isoflurane (vol/vol) in 

oxygen and placed into a stereotactic frame (Kopf Instruments; Tujunga, CA) upon a heating pad. 

Anesthesia was maintained at 1-2% isoflurane during surgery. An incision was made along the 

midline of the scalp and small burr holes were drilled over each injection site. Virus or tracer was 

delivered via microinjection using a Nanoject II injector (Drummond Scientific Company; Broomall, 

PA). Injection coordinates for DMS were (in mm from bregma): 0.90 anterior, +/-1.4 lateral, and -

3.0 from surface of the brain. Injection coordinates for SNr were: 3.2 posterior, 1.2 lateral, and -

4.6 from the surface of the brain. Mice were given subcutaneous injections of meloxicam (10 

mg/kg) during surgery and 24 & 48 hours after surgery. Mice were group-housed before and after 

surgery and 4-6 weeks were allowed for viral expression before behavioral training or 

electrophysiology experiments.  

 

Drugs 

Clozapine-N-Oxide was generously provided by the NIMH Chemical Synthesis and Drug Supply 

Program (NIMH C-929). CNO was made fresh each day and dissolved in DMSO (0.5% final 

concentration) and diluted to 0.1 mg/mL in 0.9% saline USP. Tetrodotoxin (TTX), D-AP5, and 

NBQX disodium salt were purchased from Tocris Biosciences (Ellisville, MO).    

 

Electrophysiology 

Mice were deeply anesthetized with an overdose of ketamine/xylazine solution and perfused 

transcardially with ice-cold cutting solution containing (in mM): 110 choline-Cl, 2.5 KCl, 7 MgCl2, 

0.5 CaCl2, 25 NaHCO3, 11.6 Na-ascorbate, 3 Na-pyruvate, 1.25 NaH2PO4, and 25 D-glucose, 

and bubbled in 95% O2/ 5%CO2. 300 µm thick sections (sagittal for optogenetic stimulation 

experiment, coronal for all others) were cut in ice-cold cutting solution before being transferred to 

ACSF containing (in mM): 120 NaCl, 2.5 KCl, 1.3 MgCl2, 2.5 CaCl2, 26.2 NaHCO3, 1 NaH2PO4 
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and 11 Glucose. Slices were bubbled with 95% O2/ 5% CO2 in a 37°C bath for 30 min, and 

allowed to recover for 30 min at room temperature before recording.  All recordings were made 

using a Multiclamp 700B amplifier and were not corrected for liquid junction potential. The bath 

was heated to 32°C for all recordings. Data were digitized at 20 kHz and filtered at 1 or 3 kHz 

using a Digidata 1440 A system with pClamp 10.2 software (Molecular Devices, Sunnyvale, CA, 

USA). Only cells with access resistance of <25 MW were retained for analysis. Access resistance 

was not corrected. Cells were discarded if parameters changed more than 20%. Data were 

analyzed using pClamp or R (RStudio 0.99.879; R Foundation for Statistical Computing, Vienna, 

AT). 

Spontaneous spiking in GPe neurons was recorded in cell-attached configuration. To 

evoke synaptic transmission by activating ChR2, we used a single wavelength LED system (470 

nm; Thorlabs; Newtown, NJ) connected to the epifluorescence port of the Olympus BX51 

microscope. Light pulses of 1-10 ms triggered by a TTL (transistor-transistor logic) signal from the 

Clampex software (Molecular Devices; Sunnyvale, CA) were delivered through a 63x objective 

and used to evoke synaptic transmission. Blue light pulses were delivered once every 10 s, and 

a minimum of 30 trials were collected. Light-evoked IPSCs were recorded in whole-cell 

configuration at +10 mV holding potential in the presence of D-AP5 (50 µM) and NBQX disodium 

salt (33 µM) to block glutamatergic neurotransmission. Recording pipettes had 2.5-5.5 MW 

resistances and were filled with internal solution (in mM): 115 Cs-methanesulfonate, 10 HEPES, 

10 BAPTA, 10 Na2-phosphocreatine, 5 NaCl, 2 MgCl2, 4 Na-ATP, 0.3 Na-GTP.  

Whole-cell current clamp recordings were performed using a potassium gluconate-based 

intracellular solution (in mM): 140 K Gluconate, 5 KCl, 10 HEPES, 0.2 EGTA, 2 MgCl2, 4 MgATP, 

0.3 Na2GTP, and 10 Na2-Phosphocreatine. For current clamp recordings to validate CNO 

induced depolarization in Gq-DREADD- expressing Drd2+ neurons, ACSF contained 0.5 µM TTX 

and a stable baseline was collected for 3-5 minutes before ACSF containing 0.5 µM TTX + 10 µM 
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CNO was washed on. For all electrophysiology experiments, both male and female mice were 

used. 

 

Behavioral assays 

Adult male and female mice (6-10 weeks) were used in behavioral assays. Mice were first tested 

in 4 choice odor-guided serial choice task and then ³ 2 weeks later were tested in locomotor 

and/or rotarod tasks so that performance on CNO could be compared within animals across tasks. 

Prior to all behavior assays, mice were habituated to the testing room for 30 minutes, and all 

behavior testing began 30 min after CNO treatment. Importantly, all groups (including DIO-

mCherry) were administered CNO to control for potential off-target effect of the CNO metabolite 

clozapine (71). 

 

4 choice odor-guided serial choice task: 

The odor-guided serial choice task used has previously been described in detail (38, 72). In this 

task only the odor cue is predictive, and spatial or egocentric information are irrelevant. This 

behavior is also ethologically relevant because mice use odor information to locate food sources 

(73). Briefly, mice were food restricted to ~85 % bodyweight prior to training. On day 1, mice were 

habituated to the testing arena, on day 2 were taught to dig for cheerio reward in a pot filled with 

unscented wood shavings, on day 3 underwent a 4-choice odor discrimination in which they 

acquire the rule that 1 of 4 presented odors is rewarded, and finally on day 4 were tested for recall 

of the previously learned odor-reward association (Figure 2A). During the Test phase of the task, 

mice learned to discriminate among four pots with different scented wood shavings (anise, clove, 

litsea and thyme). All 4 pots were sham-baited with cheerio (under wire mesh at bottom) but only 

one pot was rewarded (anise). The pots of scented shavings were placed in each corner of an 

acrylic arena (12”, 12”, 9”) divided into 4 quadrants. Mice were placed in a cylinder in the center 

of the arena, and a trial started when the cylinder was lifted. Mice were then free to explore the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/675850doi: bioRxiv preprint 

https://doi.org/10.1101/675850
http://creativecommons.org/licenses/by-nc-nd/4.0/


arena until a choice was signaled by a dig to the wood shavings. The cylinder was lowered as 

soon as a choice was made. If the choice was incorrect, the trial was terminated and the mouse 

was gently encouraged back into the start cylinder. Trials in which no choice was made within 3 

minutes were considered omissions. If mice omitted for 2 consecutive trials, they received a 

reminder: a baited pot of unscented wood shavings was placed in the center cylinder and mice 

dug for the “free” reward. Mice were disqualified if they committed 4 pairs of omissions. The 

location of the 4 odors was shuffled on each trial, and criterion was met when the mouse 

completed 8 out of 10 consecutive trials correctly. 24-hours after completing the Test phase, mice 

underwent a recall Test of the initial odor-reward rule to criterion.  For chemogenetic manipulation 

experiments, mice were injected with saline 30 minutes prior to discrimination training and injected 

with CNO (1.0 mg/kg) 30 minutes prior to testing in recall. During Acquisition and Test phase, 

experimenters (blind to group) manually scored entries into each quadrant, latency to dig, and 

odor choices. Importantly, in all behavioral assays mice expressing mCherry control virus were 

also administered CNO.  

 

OpAL model 

To simulate the effect of DREADD manipulation on the cortico-basal-ganglia network, we used 

the OpAL model, which is an approximation of a biologically realistic neural network model that 

includes direct and indirect pathways. Extended details of the OpAL model can be found in (31). 

Briefly, the model is an actor-critic-like RL algorithm which assumes two sets of weights are being 

tracked, D and I (corresponding to the direct pathway and indirect pathways, respectively; 

initialized at 1.5 for the preferred odor D weight, 1 for all other weights), in addition to a classic 

critic value V (initialized at 0.25 as the initial expected value of each option). Critic values are 

updated according to the classic RL equation: 

Vt+1 ßVt + alphaC * deltat; deltat = r-Vt (r=1/0). 
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D and I weights are updated with a three factor, non-linear learning rule that emphasizes gains 

and losses, respectively: 

- Dt+1 = Dt + [alphaD*Dt] * deltat 

- It+1 = It + [alphaI*It] * [-deltat] 

- To simplify the modeling of excitatory DREADD effects, we enforce an upper limit L to the 

D and I weights.  

- The final choice is a softmax probability based on combined weights Wt = betaD * Dt – 

betaI * It, supposed to represent the output of the cortico-basal ganglia loops. 

Chemogenetic tools modulate activity in dSPNs and iSPNs neurons, and we model their effects 

in the D and I weights respectively. We assume that inhibitory DREADD multiplicatively decrease 

the corresponding pathway’s activity:  

- Wt =  betaD * DREADDI* Dt - betaI * It in the case of dSPN DREADD  

- Wt =  betaD * Dt - betaI * DREADDI * It in the case of iSPN DREADD 

For the simulations, the inhibitory DREADDI parameter is fixed at 0.5. 

For excitatory DREADD, we assume that the tool promotes firing in neurons whose activity would 

otherwise be subthreshold, thus increasing low weights more than high weights. Specifically, we 

model W activity as: 

- Wt =  betaD * Dt - betaI * (It+DREADDE* (L-It))  in the case of iSPN DREADD 

Where L is the activity limit. For all simulations, L is fixed at 2, and the excitatory DREADDE 

parameter is fixed at 0.8. 

The choice between different odor options is given as a softmax choice policy on the linear 

combination of the choice weights. Therefore, when the choice weight for a candidate odor is 

much higher compared to the other odors, the policy is more exploitative. If choice weights across 

candidate odors are similar in value, the resulting policy is more exploratory. Because choice 

weights are the weighted difference between D and I weights, we can more simply state that 

choice policy is modulated by asymmetry between direct and indirect pathway activity.    
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To investigate the effects of chemogenetic manipulation on behavior, we simulated 100 times with 

parameters set to alphaC=alphaD=alphaI=0.1, randomly chosen parameters 1<betaD<3, and 

1<betaI<1.6, reflecting greater influence of the direct than indirect pathway on the final choice. 

We analyzed TTC as a function of DREADD condition, and show that it reproduces behavioral 

effects. 

To interpret the model fit to the real data, we also fit the behavior of the BG model with the RL 

model fit to the mice (Figure 4A), using a similar – but non-hierarchical, standard fitting procedure 

(44). We find that the biologically realistic modeling of DREADD activity via the DREADD 

parameter predicts fit parameters with increased or decreased recall phase softmax b, as 

observed in the iSPN data. 

 

Locomotor assay: 

On day 1, mice underwent a habituation session in which they were placed in a clear acrylic box 

(225 x 225 mm) inside a sound attenuated chamber (Med Associates; Fairfax, VT) with lights off. 

Locomotion was monitored for 15 minutes using infrared beam breaks (Versamax, AccuScan 

Instruments, Columbus, OH). On days 2 and 3 mice received injections of saline or CNO 

(counterbalanced across mice) 30 minutes before their locomotion was monitored for 15 minutes. 

The chamber was cleaned with 70% ethanol between mice.    

 

Rotarod test: 

Females and males were run during separate sessions. On day 1, mice underwent a habituation 

trial in which they were placed individually in a clean holding cage for 5 mins. The rotarod (47650 

Rota-Rod NG Ugo Basile; Monvalle VA, Italy) was then set at 5 rpm constant speed and each 

mouse was placed on the rod for 1 minute. The mice were then returned to the holding cage for 

another 5 mins before initiating the first trial. Each session consisted of 5 trials in which the rotarod 

constantly accelerated from 5-40 rpm over a period of 300 secs, and the latency at which mice 
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fell off the or held onto the rod for a full rotation was recorded. Mice rested for 5 mins in the holding 

cage between trials. Asymptotic performance was reached by day 3 of training (Supplementary 

Figure 5). On day 4, DIO-DREADD and DIO-mCherry mice were administered CNO (1 mg/kg, 

i.p.) 30 minutes before rotarod testing began. On day 5 mice were tested drug-free in rotarod 

performance. The rotarod apparatus was cleaned between mouse cohorts with 3% hydrogen 

peroxide (for plastic components) and 70% ethanol (for metal troughs).  

 

Histology 

Mice were transcardially perfused with PBS followed by 4% PFA in PBS. Following 24h 

postfixation, coronal brain slices (75 µm) were sectioned using a vibratome (VT100S Leica 

Biosystems; Buffalo Grove, IL). To confirm viral targeting, we performed a standard 

immunohistochemical procedure using a primary antibody against red fluorescence protein (RFP) 

(rabbit, Rockland 600-401-379; 1:1000) to enhance the mCherry signal expressed in mice 

transduced with rAAV8-hSyn-DIO-DREADD-mCherry or rAAV8-hSyn-DIO-mCherry. Sections 

were counterstained with DAPI (Life Technologies; Carlsbad, CA). Images were acquired with a 

Zeiss Axio Scan.Z1 epifluorescence microscope (Molecular Imaging Center, UC Berkeley) at 10x 

magnification and viewed using FIJI (ImageJ). For colocalization experiments, mCherry signal 

was enhanced as previously described, and images were acquired using a Zeiss LSM 710 

confocal microscope (Biological Imaging Facility, UC Berkeley). Anatomical regions were 

identified according to the Mouse Brain in Stereotaxic Coordinates by Franklin and Paxinos and 

the Allen Institute Mouse Brain Atlas. 

 

RL model 

We modeled Acquisition and Test phase behavior using a reinforcement learning model driven 

by an iterative error-based rule (74, 75). The model uses a prediction error (d) to update the value 

(V) of each odor stimulus. The prediction error is the difference between the experienced 
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feedback (l) and the current expected value, where l is 100 for rewarded choices and is 0 for 

incorrect choices. The prediction error is scaled by a learning rate parameter (a), with 0<a<1. 

Because mice exhibit innate preferences for odors, we set initial odor values to fixed parameters 

[v1,v2,v3,v4] for all 75 mice tested. Odors were selected so that the rewarded odor (O1, anise) 

was not the initially preferred odor. We confirmed that the choice distributions for each 

experimental group (mCherry, D2-hM4Di, D2-hM3Dq, and D1-hM4Di) did not significantly differ 

from the pooled average using a Chi-square test (data not shown).  

To model trial-by-trial choice probabilities, the stimulus values were transformed using a softmax 

function to compute the relative probability of each choice. The inverse temperature parameter 

(b) determined the stochasticity of the choices. We used hierarchical Bayesian model fitting to 

infer the best fitting parameters, using the package STAN in Matlab (76). We assumed that odor 

values were shared by all animals, and that other parameters (a and b for each phase) were 

drawn from group level distributions defined by the experimental manipulation. We performed 

statistical tests on the distribution of samples obtained for the group-level hyperparameters. We 

compared the alternative models using the WAIC (77, 78), beginning with the simplest model 

(single a and b parameters shared across Acquisition and recall Test phases). We evaluated 

alternative models that included a phase decay parameter that allowed learned Q-values to decay 

to their initial values between the Acquisition and Test phases. In addition, we tested a model in 

which the Test phase a was set to =0, consistent with Q values not being updated during Test 

phase. We found that the best fit model included phase specific (non-zero) a and b parameters; 

all RL model comparisons are presented in Supplementary Table 1.  We validated the models’ 

parameter recovery and model comparison procedures on surrogate, simulated data. To validate 

the models and test how successfully each model captured the behavior of each mouse, we ran 

100 task simulations for each mouse using the fit parameters. We then compared actual 

measures (e.g. trials to criterion) to the simulated average. 
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Statistics 

Statistical tests were performed with GraphPad Prism 7.0 (San Diego, CA) and the R 

programming environment. For serial choice and locomotor behavioral data, groups were 

compared using one-way ANOVA if data were normally distributed or Kruskal Wallis test if data 

were not normally distributed. When the ANOVA or Kruskall Wallis test yielded significant results 

(p< 0.05), a post-hoc LSD or Dunn’s test was used to compare DREADD manipulation groups to 

the mCherry control group. Because our experiments were designed to compare the behavior of 

DREADD manipulation groups to that of mCherry controls (planned comparisons), we did not 

correct for multiple comparisons. 
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