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ABSTRACT

OBJECTIVE. Temporal lobe epilepsy (TLE) is known to affect large-scale structural networks
and cognitive function in multiple domains. The study of complex relations between structural
network organization and cognition requires comprehensive analytical methods and a shift towards
multivariate techniques. The current work sought to identify multidimensional associations between
cognitive performance and structural network topology in TLE.
METHODS. We studied 34 drug-resistant TLE patients and 25 age- and sex-matched healthy controls.
All participants underwent a comprehensive neurocognitive battery and multimodal MRI, allowing for
large-scale connectomics, and morphological evaluation of subcortical and neocortical regions. Using
canonical correlation analysis, we identified a multivariate mode that links cognitive performance to
a brain structural network. Our approach was complemented by bootstrap-based clustering to derive
cognitive subtypes and associated patterns of macroscale connectome anomalies.
RESULTS. Both methodologies provided converging evidence for a close coupling between cognitive
impairments across multiple domains and large-scale structural network compromise. Cognitive
classes presented with an increasing gradient of abnormalities (increasing cortical and subcortical
atrophy and less efficient white matter connectome organization in patients with increasing degrees
of cognitive impairments). Notably, network topology characterized better the cognitive performance
than morphometric measures. Thus, connectome characteristics featured as important markers of
network reorganization and loss of inter-regional connectivity.
CONCLUSIONS. The multivariate approach emphasized the close interplay between cognitive
impairment and large-scale network anomalies in TLE. Our findings contribute to understand the
complexity of structural connectivity regulating the heterogeneous cognitive deficits found in epilepsy
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1 INTRODUCTION

Temporal lobe epilepsy (TLE) is the most common drug-resistant epilepsy in adults and traditionally

associated to mesiotemporal sclerosis, a lesion affecting the hippocampus and adjacent mesial

structures[1]]. In addition to seizures, patients suffer from cognitive impairments that severely

impact everyday functioning and wellbeing[2]]. In fact, TLE has traditionally been investigated

by cognitive neuroscience as an important model to understand human memory and language

dysfunction resulting from hippocampal damage[3].

Recent years have seen an evolution in our understanding of the cognitive landscape and structural

compromise in TLE, fostered by an increasing administration of comprehensive neurocognitive

phenotyping batteries and the advent of high-resolution and multimodal neuroimaging,[4, 5]. At

the level of cognitive function, TLE is now recognized to perturb multiple domains not limited to

memory and language processing[5, 6]. These findings are paralleled by mounting neuroimaging

evidence suggesting diffuse grey and white matter abnormalities beyond the mesial temporal lobe,

affecting a distributed network of cortical and subcortical structures as well as their connections[7–

9].

While some studies have shown compromise of both white and grey matter regions in TLE patients

relative to the degree of cognitive dysfunction[10–14], we lack a comprehensive understanding on

the association between the extent of network reorganization and overall cognitive performance.

Associations between brain structure and cognitive performance are likely complex, particularly

when multiple metrics are used for neuroanatomical profiling on the one hand, and cognitive

phenotyping on the other hand. Variable collinearities may furthermore challenge interpretability,

and variables could lose their weight when tested individually. Multivariate analysis solves this

problem by relating all measures in a single, compact mode[15]. Although converging evidence

suggest an association between network organization and cognitive impairments in TLE[16],

virtually no previous research leveraged multivariate techniques to identify salient brain cognition

associations in the condition. It remains unknown if there is a structural white matter network

pattern associated with the cognitive decline seen in patients. We hypothesize that whole brain

structural network abnormalities seen in TLE are closely associated with the heterogeneous cognitive

performance.
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We examined the interplay between multidimensional cognitive performance and structural network

compromise in TLE patients and healthy controls. All participants underwent state-of-the-art

multimodal magnetic resonance imaging (MRI) and neurocognitive assays. Multivariate Canonical

Correlation Analysis (CCA) evaluated associations between multi-domain cognitive impairment

and whole brain structural connectome reorganization. These models were complemented by

unsupervised clustering techniques to identify cognitive subtypes in the TLE cohort, for which we

identified morphological and network-based signatures. We leveraged bootstrap-based stability

assessments as well as cross-validation techniques to strengthen robustness and replicability of

discovered network substrates of cognitive impairment. Finally, we made all code and data related

to our study openly available.

2 MATERIALS AND METHODS

2.1 Participants

The Ethics Committee of the Neurobiology Institute of the Universidad Nacional Autónoma de

México approved this project (protocol code 019.H-RM) and written informed consent was obtained

from all participants in the study according to the Declarations of Helsinki.

We recruited 34 adult ambulatory patients with drug-resistant TLE (Age= 29.7± 11.1 years; 22

females) and 24 age- and sex-matched healthy controls (Age= 32.8 ± 12.7 years; 18 females).

Our cohort included 12 right TLE, 18 left TLE, and 4 bilateral TLE patients lateralized by seizure

history and semiology, inter-ictal EEG recordings, and neuroimaging. All participants were right-

handed native Spanish speakers. They did not have MRI contraindications nor other neurological

comorbidities. Clinical features were obtained through a questionnaire-oriented interview upon

referral (age at disease onset= 14.4± 9.3 years; seizure frequency per month= 4.2± 7.1, number

of anti-epileptic drugs= 1.6± 0.6, 35.2% had a history of febrile seizures).

2.2 Data acquisition

2.2.1 Cognition

All participants underwent a comprehensive battery of cognitive tests: Wechsler Adult Intelligence

Scale (WAIS-IV) and Wechsler Memory Scale (WMS-IV). We utilized the following index scores:

auditory memory (AMI), visual memory (VMI), visual working memory (VWM), immediate
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memory (IMI), delayed memory (DMI), verbal comprehension (VCI), working memory (WMI),

processing speed (PSI), and perceptual reasoning (PRI). All reported indices were normalized

relative to a Mexican population and adjusted by age and education level. Details of the cognitive

evaluation are described elsewhere[17].

2.2.2 Magnetic Resonance Imaging

Images were acquired with a 3 Tesla Philips Achieva TX scanner with a 32-channel head coil.

T1-weighted volumes (three-dimensional spoiled gradient echo) had a voxel resolution of 1x1x1

mm3, repetition time (TR) of 8.1 ms, echo time (TE) of 3.7 ms, flip angle of 8o, and field of

view (FOV) dimensions of 179x256x256 mm3. Diffusion weighted images (DWI) were acquired

with echo-planar imaging (EPI) and a 2x2x2 mm3 voxel resolution, TR=11.86 s and TE=64.3 ms,

and FOV=256x256x100 mm3. DWI were sensitized to 60 different diffusion gradient directions

(b=2000 s/mm2); one b=0 s/mm2 volume was also acquired. An additional b=0 s/mm2 volume

was obtained with reversed phase encoding polarity to account for geometric distortion corrections.

2.3 Image processing

2.3.1 Diffusion MRI processing

a) Diffusion weighted volumes (DWI) were denoised via data redundancy criteria from linear

dimensinality reduction, followed by non-uniform intensity normalization. Reverse phase encoding

from two b=0 s/mm2 volumes was used to estimate and correct for geometric distortions. DWI

volumes were linearly registered to the b=0 s/mm2 images for motion correction and diffusion

gradient vectors were rotated according to the transformation matrix.

b) Structural connectome parameterization. Using FreeSurfer v5.3.0, MRtrix 3.0, and FSL 5.0.6,

individual structural connectivity matrices were calculated based on the corrected DWI and

using Spherical-deconvolution Informed Filtering of Tractograms, SIFT[18] with anatomically

constrained tractography models ACT[19]. A total of 162 nodes were defined merging the cortical

parcellation from the Destrieux Atlas and volBrain’s subcortical segmentation (Supplementary

Table 1). Whole brain tractography was first calculated using ACT with 20 million streamlines

seeded on the gray-white matter interface, with maximum deviation angle of 22.5o, maximum

length of 250 mm, minimum length of 10 mm. Tractograms were filtered via SIFT to 2 million
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streamlines (Fig. 1 top left). Connection weights between nodes (NSIFT ) was defined as the

streamline counts following SIFT[20, 21], (Fig. 1 top right). This procedure has shown high

reproducibility in structural connectomics ([22]).

Connectivity matrices were analyzed using the igraph R package (igraph.org/r). We focused on

path length, clustering coefficient, and degree centrality, the most widely used graph-theoretical

parameters in the TLE literature ([23]), also given that these measurements offer a compact de-

scription of global network topology and local connectivity embedding ([24]). We computed the

clustering-coefficient (C) as a measure of segregation, which provides information about the level

of local connections in a network. Additionally, we measured the characteristic path length (L)

as a measure of network integration with short path lengths indicating globally efficient networks.

Dijkstra algorithm was used to calculate the inverse distance matrix and infinite path lengths were

replaced with the maximum finite length. Finally, we calculated degree centrality (k) to characterize

the relevance of the individual nodes. We set the appropriate threshold for network metrics with

recursive thresholds from 0.1-0.9 until reaching convergence stability (Supplementary Fig.1). We set

the appropriate threshold for network metrics with recursive thresholds from 0.1-0.9 until reaching

convergence stability (Supplementary Fig. 1).

2.3.2 Structural MRI processing

a) Hippocampal volumetry. The T1-weighted volumes were processed using volBrain (vol-

brain.upv.es), which provides automated patch-based hippocampal and subcortical delineation

with high accuracy in controls and TLE patients. Hippocampi were individually inspected by a

trained rater, and hippocampal volumes were normalized by intracranial volume.

b) Cortical thickness analysis. Cortical thickness was measured for each participant using FreeSurfer

v5.3.0. T1 images were pre-processed through non-local-means denoising and N4 bias field

correction prior to FreeSurfer segmentation. After processing, pial and white matter surfaces

were visually inspected by a qualified trained rater and corrected if necessary. Individual surfaces

were registered to a surface template with 20,484 surface points (fsaverage5) and a surface-based

Gaussian diffusion filter with a full width at half maximum of 20mm was applied, similar to our

previous studies[25].
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2.4 Multivariate Analysis

2.4.1 Regularized canonical correlation analysis

Canonical correlation analysis (CCA) assessed multivariate associations between cognitive scores

and structural connectome measures (Fig. 1 bottom). Unlike principal components analysis (PCA)

that reduces the number of variables in one set to components that emphasize variation in the data,

CCA investigates the overall correlation between two multivariate datasets. CCA was recently

employed in a large cohort of healthy adults to identify associations between neuroimaging-based

connectivity measures on the one hand, and lifestyle, demographic, and psychometric measures on

the other hand[26].

First, we built a CCA to evaluate associations between connectome-derived parameters (k, C, and

L) of all brain regions, and cognitive performance. Network parameters were concatenated into

one row vector per subject, resulting in a matrix X (subjects x network parameters). We excluded

IQ because of its high correlation with all the remaining scores, resulting in a matrix Y (subjects

x cognitive scores). The main objective of CCA is to estimate canonical variates (U and V) that

maximize the correlation between network parameters-X and cognitive scores-Y (Fig. 1B bottom

and Supplementary Fig. 2A). Resulting canonical variates can be ordered (U1 −Un, and V1 − Vn),

with the first explaining the largest proportion of covariance among sets X-Y.

Additionally, canonical loadings represent the relationship between an original variable and a

canonical variate (Fig. 1E bottom). As the number of subjects was less than the number of

variables in both data sets, we included two regularization parameters, estimated via leave-one-out

cross-validation with recursive search (Supplementary Fig. 2B). These parameters were employed

to reduce overfitting due to the large number of variables[27]. Each CCA model was permuted and

bootstrapped 10,000 times to estimate confidence intervals and significance.

In addition to the main TLE-CCA model, we evaluated the following additional models to test for

specificity: one with morphological measures (i.e., volumetric of subcortical and cortical areas), one

including only controls, one controlling matrix X and Y for hippocampal volume and mean cortical

thickness, and a full model that included network parameters, clinical features and volumes. The

latter was performed in order to reveal the possible clinical contributions additional to the structural

parameters in the definition of cognitive profile.
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Figure 1: Connectome generation. Top left: Whole-brain connectomes were built using mrtrix, based on streamline
counts derived from anatomically constrained tractography and spherical deconvolution informed filtering of trac-
tograms (SIFT). Nodes were defined by merging the cortical segmentation of Destrieux Atlas and Volbrain’s subcortical
segmentation. Connection weight Wij was defined as the streamline count between two nodes ij following SIFT. Top
right: To study network topology, degree centrality, clustering coefficient, and characteristic path length were calculated
based on the adjacency matrices. Cluster coefficient was calculated using the Onnela algorithm.
Multivariate analysis: canonical correlations analysis. A. For each participant, the cognitive scores, excluding IQ
were combined into matrix Y . Similarly, the nodal network measurements associated with a brain region were con-
catenated to a matrix X (panel C). B. The canonical variates are synthetic predictors (V and U ) that maximize the
correlations between the cognitive scores and the network parameters. D. The correlation between the first canonical
variate U1 and V1 is referred as the first canonical correlation ρ1. E. The canonical loadings measure the linear
correlation between an original variable of the cognitive scores Yj or the network parameters Xj and a canonical
variate.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/675884doi: bioRxiv preprint 

https://doi.org/10.1101/675884
http://creativecommons.org/licenses/by-nc-nd/4.0/


COGNITIVE CONNECTOMICS IN TLE Rodriguez-Cruces et al.

2.4.2 Stable cluster analysis for cognitive phenotypes

Clustering techniques have been suggested to capture heterogeneity in different clinical cohorts,

and applied to cognitive variables in epileptic groups([4, 5]). We performed a classification based

in the cognitive scores of TLE patients to identify associations between our multivariate analysis

and cognitive performance. Robust cognitive phenotypes were identified via unsupervised and

bootstrap-supported analysis to identify maximally stable clusters (Fig. 2, [28]).

Figure 2: Unsupervised clustering. A) Cognitive features as z-scores with respect to controls are shown for each
patient (rows). B) Example of a bootstrap with replacements realization with Ward D2 hierarchical agglomerative
clustering. The optimal number of clusters (k) was determined from k=2-30 [29]. C) Adjacency matrix of the optimal
partition for each bootstrap Sboot, where Sbootij equals 1 if participants i and j belong to the same partition and 0
otherwise. D) After 10000 bootstraps, final stability matrix Sij that represents the percentage of times a subject i was
classified similarly to subject j. E) Hierarchical agglomerative clustering is performed over the stability matrix Sij

matrix, clustering converges on a three-subtype solution in our cohort.
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2.4.3 Class difference analysis

Feature data including hippocampal and subcortical volumes as well as cortical thickness, were

z-scored relative to controls and sorted into ipsilateral/contralateral with respect to the seizure focus

([30]).

a) Clinical variables were compared between classes using ANOVAs followed by Tukey’s post-hoc

correction for multiple comparisons.

b) Topological complex network. Each nodal parameter (k, C, L) was sorted into ipsilat-

eral/contralateral relative to hemispheric TLE lateralization and compared to controls for each

Class and represented as effect size (Cohen’s D). For statistical comparison a node-level (ROI) t-test

was performed for each TLE class compared to controls. Differences in nodal network parameters

were corrected for multiple comparisons at a two-tailed false discovery rate (FDR) of q=0.025.

c) Cortical thickness and subcortical volumes were compared to controls, and corrected with the

mean cortical thickness for each subject. Surface-based analysis was done using SurfStat[31]. Effect

size of the cortical thickness (Cohen’s D) between group differences was calculated for each Class,

and compared to controls at a vertex level using t-tests, and corrected for multiple comparisons with

FDR, q<0.025.

3 RESULTS

3.1 Multivariate association analyses

Canonical correlation analysis revealed one significant association between cognitive and structural

connectome features in TLE (permutation-test p<0.05; Fig. 3). Associated patterns of loadings

showed that reduced cognitive scores were related to reduced degree centrality and clustering,

together with increased path length. Network loadings encompassed measures from both cortical

and subcortical regions and were high in both ipsilateral and contralateral regions. Specifically,

longer path lengths were related to lower cognitive scores in TLE, indicating associations between

lower global efficiency and worse cognitive performance. Similarly, reduced degree centrality was

found in bilateral superior frontal lobes, and precentral gyrus. Finally, clustering coefficient in

ipsilateral parietal and middle frontal gyrus related to lower cognitive scores. When clinical and

volume features were added to the CCA, results were consistent with the original model, however
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negative loadings related years of study and volume of both hippocampi with lower cognitive scores

(Supplementary Fig. 3).

Multivariate CCA between morphological measures and cognitive characteristics did not yield

any significant associations in patients (Supplementary Fig. 4). Likewise, none of the canonical

correlations were significant in controls (Supplementary Fig. 5). Furthermore, the topological mea-

sures were independently associated with cognitive performance when controlling for hippocampal

atrophy and cortical thickness (Supplementary Fig. 6)

Figure 3: Regularized canonical correlation solution. A. Canonical correlations for each canonical variate, each
with confidence interval and significance (* and darker gray indicate statistical significance). B. Scatterplot of the
canonical weights assigned to the cognitive scores against the network parameter of the first canonical variate for each
TLE patient (U1 versus V1). Processing speed score (PS) is shown as size of the circles, and color represents cognitive
Class. C. Canonical cross-loadings of the first and second canonical variates for the cognitive scores and network
parameters. Loadings were obtained by correlating each of the variables directly with a canonical variate. C-Left panel
shows the correlation between each cognitive score and the first canonical variate. The lines represent the confidence
interval over the first canonical variate (x-axis). C-Middle panel shows the cognitive scores and network loadings on
the plane of the first and second canonical variates. Network loadings are represented by color: Purple for degree,
green for cluster coefficient and orange for characteristic path length. Cognitive loadings are represented in cyan: AMI-
Auditory memory, VMI-visual memory, VWM-visual working memory, IMI-immediate memory, DMI-delayed memory,
VCI-verbal comprehension, WMI-working memory, PS-processing speed and PR-perceptual reasoning. C-Right panel
shows the significant network loadings of the first canonical variate, projected to the surface space and split by network
measurement.
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3.2 Cognitive Classes

Bootstrap-based clustering of cognitive profiles converged on three cognitive classes in our TLE

cohort (Fig. 2.E, Fig. 4.A). Cognitive deficits showed an increasing gradient over the three Classes,

yet the pattern of these deficits was specific for each. Patients in Class 1 had cognitive scores

within normal range, those in Class 2 showed mild impairment in memory-specific domains, and

patients in Class 3 displayed pronounced impairment across all domains, with prominent reduction

of processing speed (Table 1).

Class 1 patients presented with older age of epilepsy onset, more years of education, and the shortest

disease duration. Despite of these clinical differences, overall findings were similar when controlling

for age, duration of epilepsy, and number of antiepileptic drugs. Hippocampal sclerosis was less

prevalent in Class 1 (33%) than Class 3 (80%, Table 1).

3.3 Connectome-level and morphological compromise across cognitive Classes

Gradual network organization abnormalities were observed across Classes with most marked

changes in Class 3, intermediate differences in Class 2, and only subtle changes in Class 1 (Fig. 4).

Class 1 presented restrained increases of degree centrality and clustering coefficient relative to

controls in (ipsilateral) cingulate and parietal cortices at uncorrected thresholds (Fig. 4.B). Class 2

showed significantly decreased clustering in the contralateral suborbital sulcus and inferior frontal

sulcus (pFDR < 0.025). At a connectome-wide level, Class 3 showed the most marked increases of

characteristic path length while Classes 1 and 2 were rather normal (pFDR < 0.025). In Class 3, path

length increases were most marked in the lateral and medial temporal lobes in both hemispheres,

the ipsilateral frontal and the contralateral occipital lobe.

Similar to the findings in network parameters, structural MRI markers showed an increasing gradient

of changes from Class 1 (the most similar to controls) to Class 3 (the most abnormal, Fig. 4.C).

Hippocampal volumes in Class 1 were within the control range, while Class 2 and 3 had and

increasing degrees of hippocampal atrophy. Cortical thinning was also most pronounced in Class 3,

particularly in parietal areas ipsilateral to the focus.
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Figure 4: Differences by cognitive class. A. Cognitive scores for TLE patients by cognitive Class. Each patient
is represented as a line indicating their normalized cognitive scores based on control, and the mean of each Class
represented as a thick line. B. Connectome measures. For each metric, effect size (Cohen’s D) of each Class compared
to controls is projected on cortical surfaces. Significant differences corrected for multiple comparisons are outlined in
cyan; white outlines represent uncorrected p<0.025. C. Morphological Measures. Hippocampal volumes were z-scored
relative to controls. Group differences in cortical thickness and subcortical volume shown as Cohen’s D effect sizes.
Thickness is relative to the mean vertex value of each Class, while volume is the mean volume of each subcortical
region.
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A final integrative qualitative analysis examined associations between the rCCA and clustering

solutions. This analysis revealed a tight relation between the first canonical variate (U1) with our

robust clustering solution for all cognitive scores (Fig. 5). When we controlled our CCA model

for hippocampal volume ipsilateral to the lesion and mean cortical thickness, the main canonical

loadings were preserved, but the canonical weights lost their hierarchical relation with the cognitive

metrics.

Figure 5: Cognitive convergence between the first canonical variate and cognitive scores Plot of the relation between
the first canonical variate (U1) and all the cognitive scores, colored by class. Y-axis represents the value of the first
canonical variate of the rCCA-TLE model for each subject, while on x axis we plot all the cognitive scores as z-score
based on controls. Each subject’s cognitive profile is shown as a horizontal line. The size of circles represents the score
for each cognitive test. Individual cognitive tests are not distinguishable in this plot.
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4 DISCUSSION

The current work targeted the complex interplay between structural connectome reorganization and

cognition in patients with drug-resistant temporal lobe epilepsy (TLE). Harnessing two complemen-

tary multivariate data science methodologies (i.e., canonical correlation analysis and data-driven

clustering) we observed converging evidence for a close link between the overall degree of white

matter network perturbations and multi-domain cognitive impairment in our patients. In particular,

we found less efficient network organizations in patients with more marked cognitive difficul-

ties. Notably, although complementary cortical thickness analysis revealed marked morphological

anomalies in the same patient cohort, these measures were less closely associated to cognitive

dysfunction than white matter connectome metrics. Furthermore, associations were less marked in

healthy controls, suggesting disease specificity. Overall, these findings provide novel and robust

evidence for a close and specific coupling of cognitive phenotypes and white matter connectome

topology in patients with temporal lobe epilepsy, suggesting a network level pattern underlying

broad variations in cognitive function seen in these patients.

Core to our data acquisition was a multidomain cognitive phenotyping together with a whole-brain

neuroimaging and connectomics paradigm. The use of a broad neuropsychological battery instead of

restricted psychometric testing was motivated by prior observations suggesting that TLE impacts not

only language and memory, but rather a diverse set of cognitive domains also including attentional

and executive functioning[4, 5]. Similarly, we employed hippocampal volumetry, cortical thickness

analyses, as well as diffusion MRI connectomics to assess macroscale brain anomalies in both grey

and white matter compartments. Prior histopathological and morphological studies have indeed

suggested that although TLE is generally associated to mesiotemporal anomalies[1], it is rarely

associated to a confined focal pathological substrate[32, 33]. Instead, an increasing number of

MRI-based cortical thickness assessments and subcortical shape analyses have indicated a rather

distributed structural compromise, often characterized by bilateral temporo-limbic as well as fronto-

central atrophy ([7, 9, 25]). Similarly, a growing body of white matter tractographic analyses and

network neuroscience work leveraging graph theoretical formalisms of structural connectomes

suggested atypical white matter organization and microstructure not limited to the temporal lobe,

but in a rather widespread topographic distribution radiating outwards from the mesiotemporal

epicenter[10, 14, 34, 35]. Although these distributed abnormalities have been hypothesized to affect

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/675884doi: bioRxiv preprint 

https://doi.org/10.1101/675884
http://creativecommons.org/licenses/by-nc-nd/4.0/


COGNITIVE CONNECTOMICS IN TLE Rodriguez-Cruces et al.

cognitive function[2], there are so far only sporadic systematic attempts to relate imaging measures

to multidomain cognitive phenotypes in TLE. In fact, among those studies associating structural

anomalies and cognitive performance in TLE[11–14, 17, 36], the majority has been rather selective,

focusing on the relation between specific brain measures on the one hand, and specific cognitive

domains on the other hand.

We harnessed multivariate associative techniques as well as bootstrap-based clustering to integrate

the broad panorama of cognitive phenotypes in TLE with a comprehensive array of structural

neuroimaging measures. The former class of models[15], in our case a regularized canonical

correlation analysis (CCA), provides a set of sparse components capturing complex covariation

patterns between network parameters and cognitive profiles. A recent study leveraged CCA to

identify gradual associations between functional connectome configurations and a wide array of

factors related to lifestyle, demographics and psychometric function in a large cohort of young

healthy adults, describing a positive-negative mode of co-variation between observable behavior

and self-report measures and functional connectome organization[26]. In our TLE cohort, CCA

revealed a consistent pattern of associations characterized by distributed increases in connectome

path length related to reduced cognitive performance. Previous reports have shown similar increases

of characteristic path length in this condition compared to controls, suggesting overall reduced

global network efficiency[8, 16, 37, 38]. Further elements of the brain-behavior covariation mode en-

compassed low frontal lobe clustering coefficient together with reduced parietal hubness in patients

with reduced cognitive functions, potentially indicating a breakdown of frontal and parietal network

segregation that may ultimately reflect network level consequences secondary to microstructural

anomalies previously reported in these systems, potentially indicative of axonal damage, myelin

alteration, as well as reactive astrogliosis[39]. As multivariate associative techniques like CCA can

overfit, we incorporated several additional elements to ensure specificity and robustness. Firstly,

we verified consistency via cross-validation techniques, dispelling potential hyper-optimization

of within-sample associations at the expense to out-of-sample generalization. Secondly, we did

not observe similar associations in controls, suggesting specificity to TLE. Finally, associations

were more marked at the level of white matter connectomes than for grey matter morphometry,

confirming overall a close association between white matter connectome architecture and cognitive

phenotypes in the condition.
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Further support for the consistency of the brain-behavior association in our patients was provided

by data-driven clustering of the cognitive profiles, additionally supported in the current work using

bootstrap based stability maximization[28]. Subtyping of epileptic patients based on cognitive

profiles has previously been employed to identify a spectrum of cognitive function[4, 5, 17, 36]. The

applied method converged on a three-class solution with gradual cognitive impairments and overall

corresponding degrees of brain anomalies, assuring that cognitive impairment in TLE is indeed

related to an increased load of white matter connectome reorganization, together with hippocampal

and cortical grey matter atrophy. Integrative analyses confirmed that these discovered cognitive

classes provide a different viewpoint on the dimensional multivariate mode of covariation seen via

CCA (Fig. 5). Of note, the prevalence of hippocampal atrophy increased across the three cognitive

classes, with the class showing the most marked cognitive dysfunction and connectome anomalies

(i.e., Class 3) also presenting the highest degree of hippocampal volume loss. Conversely, TLE

laterality was similarly distributed across classes, potentially due to the broader range of domains

evaluated in the current study than in work focusing on language and/or memory, which generally

support more marked impairment in left compared to right TLE[40].

In addition to the novel use of advanced multivariate techniques and state-of-the-art connectomics

and cognitive phenotyping, our findings are well anchored in overarching assumptions on the link

between brain structure and function in healthy and diseased brains. Our findings encourage the

use of multivariate methods and contribute to understand the complexity of structural connectivity

regulating the heterogeneous cognitive deficits found in epilepsy.
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10 TABLE

Table 1: Clinical data by Class

Class 1 Class 2 Class 3
Number 9 20 5

HS % presence 0.33* 0.45* 0.80*
Gender % female 0.56 0.75 0.40

Age years 28.7 (10.8) 30.9 (12.2) 26.4 (7)
Education years 14.3 (2.9) 12.3 (2.7) 8.4 (1.3) *1,2

Age at onset years 19.2 (12.2) 13.8 (7.3) 8 (7.1)
Duration years 9.4 (8.7) 17.1 (14.7) 18.4 (8.3)

AED 1.3 (0.5) 1.7 (0.7) 1.6 (0.6)

Global network parameters
Degree centrality 93.6 (3.6) 89.3 (5.6) 87.1 (4.3)

Path length ×10−4 31.2 (2.8) 31.3 (3.2) 38.6 (11.6)*1,2
Cluster coefficient 0.72 (0.01) 0.71 (0.01) 0.71 (0.01)

Cognitive performance
Intelligence quotient 101.0 (13.7) 82.8 (7.6)*1 63.6 (14.7)*1,2

Verbal comprehension 100.7 (20.6) 84.4 (7.8)*1 64.6 (13.1)*1,2
Working memory 100.2 (11.6) 82.3 (9.4)*1 63.6 (8.8)*1,2

Perceptual reasoning 103.9 (8.9) 86.5 (8.7)*1 65.2 (7.8)*1,2
Processing speed 101.9 (10.4) 90.4 (10.3)*1 66.2 (9.6)*1,2
Auditory memory 97.1 (18.4) 78.2 (11.0)*1 49.2 (2.6)*1,2

Visual working memory 101.9 (7.7) 76.3 (13.5)*1 52.0 (7.3)*1,2
Immediate memory 99.1 (15.1) 75.5 (11.6)*1 44.6 (4.6)*1,2

Delayed memory 96.4 (16.6) 73.7 (12.7)*1 49.2 (3.3)*1,2

AED: number of antiepileptic drugs, HS, hippocampal sclerosis. Age, education, onset, duration, AEDs, degree centrality, path
length, and cluster coefficient shown as mean (standard deviation).* Significant difference compared to controls (padjusted < 0.05).
Superscripts indicate significant difference with respect to the Class indicated by the number (padjusted < 0.05).
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