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One Sentence Summary: A new method for capturing tumor-immune signaling in FFPE tissues 

explores how the PPARG signaling axis is associated with immune cell exclusion in bladder 

cancer. 

Abstract:  

Muscle-invasive bladder cancer (MIBC) is an aggressive disease with limited therapeutic 

options. PD-1 pathway targeting immunotherapies have been approved to treat advanced bladder 

cancer, but most patients exhibit primary resistance, suggesting that immune evasion 

mechanisms exist. The PPARγ pathway has been identified as a potential therapeutic target in 

MIBC that is associated with reduced CD8+ T-cell infiltration and increased resistance to 

immunotherapies. We comprehensively profiled the tumor microenvironment (TME) in 

formalin-fixed, paraffin-embedded (FFPE) tissues from a cohort of PPARγhigh (n=13) and 

PPRARγlow (n=12) MIBC, integrating bulk gene expression, targeted mutation sequencing, 

immunohistochemistry and multiplex spatial profiling of RNA and protein expression on the 

GeoMx™ Digital Spatial Profiling (DSP) platform. Molecular subtyping was consistent between 

traditional methods and GeoMx profiling, and, in this cohort, we observed little evidence of 

spatial heterogeneity in tumor subtyping. The previously characterized T-cell exclusion 

phenotype of PPARγhigh MIBC was recapitulated on the GeoMx platform and was further 

extended to show that this is a general phenomenon across immune cell types, supporting 

potential combination of PPARγ inhibition with ICIs. Furthermore, we found that while immune 

cells were excluded from PPARγhigh tumors, the stromal compartment from these tumors was not 

significantly different than those PPARγlow tumors. By preserving spatial relationships during the 

GeoMx analysis, we also identify a novel association between lower immune cell expression in 

the tumors and higher expression of β-catenin in the stroma, and differential expression of other 

WNT pathway members associated with PPARγ activity. 
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Introduction 

Muscle invasive bladder cancers (MIBCs) are biologically heterogenous and have widely 

variable clinical outcomes and responses to conventional chemotherapy(1-4) and immune 

checkpoint inhibitors(5). Although responses can be durable, only 20-30% of patients with 

MIBC will respond to immune checkpoint inhibitors (ICIs), arguing for the identification of 

novel drug targets and need for a deeper understanding of predictive biomarkers to enrich for 

responses to current standard of care therapies(6, 7).  Multiple studies have identified distinct 

RNA expression subtypes within MIBC termed “luminal” and “basal-like”(8), each of which has 

unique gene expression patterns which have important implications for disease management with 

conventional chemotherapy(9-11) and immunotherapies(12).  Response to immune checkpoint 

inhibitors in urothelial bladder cancer has been associated with several potential biomarkers 

including tumor mutation burden, tumor molecular subtype and PD-L1 expression on CD8+ 

tumor infiltrating lymphocytes (TILs) and other immune cells(7, 13-15). 

Patients with the luminal I subtype rarely respond to ICIs(14, 15), suggesting the 

existence of one or more immune escape mechanisms.  We previously reported that the 

PPARγ/RxRa pathway constitutes a tumor-intrinsic mechanism underlying immune evasion in 

MIBC (6, 16).  In tumors with high PPARγ pathway activity, CD8+ T-cell infiltration appears to 

be impaired through chemokine suppression, though additional mechanisms may also impact T-

cell infiltration. These findings suggest that pharmacological inhibition of PPARγ may induce 

sensitivity to immunotherapies.  To further our understanding of tumor-immune escape 

mechanisms in MIBC, analysis of both the tumor and the surrounding microenvironment is 

necessary.  Comprehensive interrogation of the interaction between these two compartments has 

proved challenging thus far because most of the foundational work in MIBC has relied on 

commonly available assays such as single-plex immunohistochemistry (IHC) assays or bulk 

RNA expression and mutation profiling. With limited availability of tumor tissues during clinical 

trials, highly multiplexed and quantitative platforms compatible with small formalin-fixed 

paraffin-embedded (FFPE) tissues are necessary to deliver a comprehensive understanding of the 

tumor-immune landscape. 

 Historically, protein assessments of the TME have been limited to PDL1 and CD8 single 

plex IHC staining, which is primarily driven by the observation that in urothelial carcinoma and 

other cancers, outcomes related to ICI treatment appear particularly favorable in patients with 

high PD-L1 expression(7, 13, 14, 17, 18). But these assays for PD-L1 have been developed for 

individual therapies, using varying antibody clones, staining protocols, scoring algorithms and 

cut-offs, which makes standardization across multiple studies difficult (19, 20). In addition, 

conventional IHC has significant limitations due to relatively low sensitivity for poorly antigenic 

or expressed targets, difficulty in colocalizing stains, and the subjective and semi-quantitative 

nature of pathologists’ interpretations. While significant progress has been made in multiplex 

IHC technologies, significant challenges remain for the field. Immunofluorescence (IF) 

platforms such as Ultiview, Multiomyx and Opal can provide quantitative analysis of multiple 

stains from a single slide, but the analysis is quite complex, time consuming and costly, and 

except for Multiomyx, most multiplex IHC technologies are limited to 4-7 analytes per slide, 

which is insufficient for fully characterizing the TME.  

Given the limitations of IHC, gene expression profiling is an attractive alternative 

allowing simultaneous profiling of hundreds to thousands of transcripts from as little as 50 ng of 
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RNA. In high quality samples, this can be extracted from a single FFPE slide, although the RNA 

yield  varies drastically by tissue sample size, tumor type, and age of the slide.  RNAseq and 

NanoString® nCounter™ direct hybridization are two bulk gene expression methods that have 

routinely been used for studying the TME, resulting in identification and validation of gene 

signatures like the tumor inflammation signature (TIS)(21, 22) showing correlation with 

response to ICIs in other cancers(19, 23). The breadth and scale of gene expression analysis has 

been foundational in oncology, but these methods lack the information conferred by spatial 

resolution of the signal. Previous studies in colorectal cancer and melanoma have highlighted the 

critical role that the spatial localization of the immune compartment plays in patient outcome(23-

25), while the role of the spatial and temporal distribution of CD8 TILs and PD1 expression has 

been suggested to be predictive of response to ICIs (17, 18). Spatial resolution of RNA 

biomarkers can be retained with technologies such as RNAscope (in situ hybridization, ACD) 

but similar to multiplex IHC, only 1-3 analytes per FFPE section can be measured. A higher 

resolution and multiplexing can be afforded by a number of methods in fresh frozen tissues (26-

28), but these require specialized workflows not frequently compatible with clinical trials nor are 

such approaches applicable to archived FFPE tissues.  

In this report, we describe the application of multiple bulk analysis and spatial 

multiplexed technologies to characterize the TME in a cohort of MIBC FFPE tumor samples, 

using tissue stored in FFPE blocks previously used to characterize the CD8 immune-exclusion 

phenotype associated with PPARγ activity (6). For bulk profiling, we applied both RNA 

sequencing and NanoString PanCancer IO 360 gene expression readouts, as well as a targeted 

sequencing panel for common cancer-associated mutations. To resolve spatial interactions, we 

processed samples using the NanoString GeoMx platform using both multiplexed RNA in situ 

hybridization (ISH) and a multiplexed antibody cocktail, while using traditional single-plex IHC 

or ISH for validation purposes. This platform uses UV photocleavable oligonucleotide tags 

conjugated antibodies or RNA-ISH probes to interrogate targets expression in a tissue section. 

The oligonucleotides are released from specific regions of interest (ROIs) via exposure to UV 

light, in paths that are controlled by a digital micromirror array (29, 30). The goals of this study 

were to interrogate the molecular composition of the TME of MIBC across complementary 

technologies, and to characterize the ability of different platforms to profile clinical samples 

where tissue is limited. We also explore the role of tumor-stromal interactions within this cohort 

to expand our understanding of potential ICI resistance mechanisms and opportunities for 

therapeutic combinations in advanced bladder cancer.   

Results  

Bulk and spatial approaches for understanding tumor-stromal interaction in MIBC 

To investigate the interplay between tumor molecular subtype, PPARγ signaling, and the 

composition of the TME, we profiled a previously collected cohort of 25 samples from advanced 

stage MIBC for which PPARγ pathway activity and CD8 staining had been previously 

characterized (Table 1, Supplementary Table 1) (6). These samples had a higher proportion of 

male patients, a balance of samples with or without lymph node involvement, and with most 

samples being late stage, though 5 of the 13 PPARγhigh tumors were stage I-II. PPARγhigh 

samples had higher tumor cellularity on average whether estimated on either the original H&E (p 

= 0.04, Welch’s t-test, Supplementary Table 1) or IF channels from RNA (p < 0.008, Welch’s t-

test, Supplementary Table 1). The workflow used to characterize this cohort included a 

multifaceted approach of combining traditional bulk sequencing and expression assays with 
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spatial profiling by IHC/ISH assays and multiplexed protein and RNA quantification on the 

NanoString GeoMx platform (Figure 1A).  

For each sample, the GeoMx workflow involved selection of regions of interest (ROIs), 

which can be quantitated using downstream sequencing or nCounter readouts. In this study, we 

selected 5-6 ROIs per patient by focusing on areas of the slide with both tumor-rich and stomal 

areas within the same ROI using Pan-CK and CD3 IF staining to assess tumor and stromal 

content, avoiding regions of necrosis or tissue detachment (Supplementary Figure 1). Examples 

of multiplexed IF images used to guide UV illumination are shown based on PPARγ status in 

(Figure 1B). Custom UV illumination masks were designed to create areas of illumination 

(AOIs) that result in photocleavable tags being released specifically in either tumor (Pan-CK+) 

or stromal (Pan-CK-) compartments, a process called auto-segmentation (29, 30) (Figure 1A). 23 

samples of the cohort were profiled using multiplexed antibodies, collecting tags from 273 AOIs. 

Two samples failed due to tissue detachment during processing. 19 samples were profiled with 

multiplexed RNA-ISH collecting tags from 222 AOIs, after 3 samples failed due to tissue 

detachment. The tag oligonucleotides were quantified using either the nCounter platform, for 

antibody tags, or with next generation sequencing (NGS), for RNA-ISH tags. GeoMx measured 

expression of 40 proteins or 157 RNA transcripts simultaneously, using a single five-micron 

FFPE slide for each type of analyte. Of the AOIs profiled by RNA-ISH, 13 were flagged as 

having high background and removed from analysis (Supplementary Table 2, Supplementary 

Figure 2). 29 out of 38 protein targets stained were detected above the expression of the two IgG 

control antibodies (Supplemental Figure 1, Supplementary Data File 1). Similarly, for RNA-ISH 

readout the negative control probes were on average expressed at the 12th percentile (±6%, σx) of 

all probes tested after excluding samples with high background (Supplementary Figure 2, 

Supplementary Data File 2).  

In addition to GeoMx analysis, sections were stained for CD8 and granzyme B by single-

plex IHC. IHC images of CD8 expression from the same block, though not serial section, are 

shown for comparison with the IF images used to guide ROI selection (Figure 1C). CD8A was 

confirmed to be higher in tumor AOIs that stained positive for the CD8 TILs presence (p = 

0.006, mixed effect model) and trended towards higher expression in stromal AOIs (p = 0.057, 

mixed effect model, Figure 1D). Since CD3 was not used to create UV illumination masks but 

rather to help guide ROI selection, CD8 expression within tumors AOIs was attributed to CD3+ 

cells present in tumor areas observed by IF in samples. Similarly, PPARG expression level 

detected by RNA-ISH GeoMx was highest in tumor AOIs from PPARG+ tumors identified by 

IHC (p < 0.05, mixed effect model, Figure 1E). Expression of markers associated with IF 

staining guide followed expected patterns based on IF images, with Pan-CK expression being 

significantly higher in tumor AOIs than stromal AOIs (p < 0.001, mixed effect model, Figure 

1F). Finally, CD3 expression was more complex, with detection at equivalent levels in stromal 

AOIs, but significantly lower expression in tumor AOIs specifically from PPARγhigh tumors. 

This is consistent with the previous described exclusion phenotype(6), as CD3 IF staining was 

not used during auto-segmentation. 

Tumor molecular subtyping and intrinsic signaling of PPARγ on GeoMx 

Since molecular subtype has been implicated in response to multiple therapies, it was 

important to understand the distribution of samples in this cohort and whether GeoMx profiling 

could classify the MIBC cohort into luminal or basal tumor intrinsic subtypes. To provide a 

baseline for analysis, we classified samples based on bulk RNA sequencing data into basal or 
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luminal genomic subtypes(10). 17 samples were classified as luminal (68%) and 8 as basal (32%, 

Table 1), with membership skewed based on PPARγ status as previously reported from analysis 

of TCGA(6). CD44, a basal MIBC marker, was the only subtype marker included in both protein 

and RNA-ISH assays. In the protein assays, we calculated the receiver-operating characteristic 

(ROC) curve and found that CD44 was more predictive in tumor AOIs (AUC = 0.89) than 

stromal AOIs (AUC = 0.66, Figure 2A). 

For RNA-ISH analysis, we first qualitatively explored the performance of probes to 

identify each subtype by unsupervised hierarchical clustering across the tumor AOIs. Subtype 

markers cluster tumor AOIs into basal and luminal tumors as classified by bulk RNA sequencing 

with AOIs within sample as well (Figure 2B). While the clustering was not completely resolved 

by subtype, the targeted panel for ISH only contained 12 subtyping markers previously 

described, and it is possible that profiling additional markers would provide better resolution. 

To quantify the predictive power of RNA-ISH profiling to classify samples, we 

calculated a ROC curve for each gene. We found that markers for subtype generally performed 

well individually in tumor AOIs (Figure 2C), though basal markers were more consistently 

predictive than luminal markers. Consistent with the protein analysis, these markers were less 

predictive in stromal AOIs, although some keratins remained highly predictive (Figure 2D). 

Testing of intratumor heterogeneity among subtyping markers revealed that the average variation 

in expression was always higher within a given subgroup than within a sample, and that variance 

was equivalent between tumor and stroma AOI (Figure 2E). This suggests that intra-tumoral 

heterogeneity in tumor-intrinsic signaling is not likely a major factor in the AOIs sampled in our 

cohort. 

Bulk analysis masks expression in stromal compartments  

Based on the observation that subtyping genes were more predictive in the tumor AOIs, 

we explored the source of expression derived from bulk assays. Tumor purity, and its impact on 

expression profiling, has been studied in the context of the TCGA, and bladder cancers were 

found to have higher signal from the stroma than other many cancers (31). However, it’s unclear 

if these bulk studies reflect subtype-specific TME structural differences, or true stromal 

expression patterns. Therefore, we compared our RNA-ISH results to the bulk RNA profiling by 

the nCounter PanCancer IO 360 assay as these were the most similar in terms of probe design 

and analysis workflow. We tested whether either type of AOI, Pan-CK+ tumor or Pan-CK- 

stroma, was better correlated with bulk profiling and tested the impact of tumor cellularity on the 

correlation observed with either AOI type. We were able to profile 108 genes across both 

platforms. We found that tumor AOIs had significantly higher correlation with bulk expression 

within a given patient across all shared genes in the two platforms (p = 4.8e-4, Welch’s t-test, 

Figure 3A). Patients with higher tumor cellularity as estimated from the whole-slide IF showed a 

slight, though insignificant, increase in correlation between bulk tumor expression and tumor 

AOIs (p = 0.11, Welch’s t-test), and no appreciable difference within stromal AOIs (p = 0.26, 

Welch’s t-test).  

Similarly, we found that, on a gene level, expression was more highly correlated with 

bulk expression in tumor AOIs (mean ρ = 0.56, Spearman) than stromal AOIs (mean ρ = 0.20; p 

< 1e-16, Welch’s t-test, Figure 3B, Supplementary Figure 3). Higher average gene expression in 

tumor AOIs was also moderately associated with higher correlation with bulk expression(ρ = 

0.55, Supplemental Figure 3). When assessing genes from different pathways or gene sets, genes 
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that were part of tumor-intrinsic subtyping gene sets were the most highly correlated between 

tumor AOIs and bulk expression (Figure 3C, Supplementary Figure 3), though most gene sets 

followed the same pattern. Collectively, these data suggest that bulk profiling of bladder cancer 

more closely reflects the tumor compartment and under-represents expression from the 

surrounding stroma.  

Spatial organization of TILs in MIBC associates with PPARγ expression 

To further explore the biologic basis of  immune exclusion in our cohort, we performed 

Gene Set Enrichment Analysis (GSEA) on the RNA-sequencing data with cancer hallmark 

signatures (32). Immune related hallmarks, such as inflammatory response, IL6/JAK/STAT3 

signaling, IL3/STAT5 signaling and TNFA signaling are enriched in the PPARγlow group (Figure 

4A), while PPARγ signaling-related signature such as Oxidative Phosphorylation and Fatty Acid 

Metabolism were anticorrelated with this group (Supplementary Data File 3). In addition, results 

from IO 360 profiling of the TIS (17,20) found that TIS was anticorrelated with PPARG 

expression (ρ = -0.66, Spearman, Figure 4B). TIS expression was positively correlated with 

CD8+ TIL infiltration (ρ = 0.72, Spearman) and PD-L1 expression (ρ = 0.91, Spearman), while 

PPARG RNA expression was inversely associated with both (ρ = -0.43, -0.73 respectively, 

Spearman). In addition to TIS, nearly all immune-related signatures calculated from IO 360 were 

lower in PPARγhigh tumors (Supplementary Data File 3), suggesting this exclusion extends 

beyond the T-cell infiltration previously characterized (Figure 4C). 

To identify immune exclusion and differentiate this from the tissue being devoid of 

immune cells (i.e. an immune desert), we compared the expression of protein or RNA markers 

between tumor and stromal AOIs, while controlling for inter-patient variability in expression in 

either PPARγhigh or PPARγlow tumors. We found that PPARγhigh tumors, but not PPARγlow 

tumors, exhibited significant differential expression of immune cell markers. PPARγhigh samples 

had higher expression in the stromal AOIs after accounting for multiple testing (FDR < 0.05, 

Figure 4D, Supplementary Table 3). Markers enriched in the stromal compartment included 

numerous cell type markers, including lineage specific markers such as CD8A, CD56/NCAM1, 

ICAM1, CD14, CD68, and CSF1R. Furthermore, many immune signaling markers including 

cytokines and chemokines measured as part of the RNA-ISH DSP were found to be restricted to 

the stroma in PPARγhigh tumors, as anticipated since immune trafficking is impaired in these 

tumors. In contrast, while nominal differential expression was observed between tumor and 

stroma AOIs for PPARγlow tumors, no immune cell markers reached significance after adjusting 

for multiple testing (FDR < 0.05). 

While the immune exclusion phenotype has been previously demonstrated, it was unclear 

whether the composition of immune cells in the stroma was different between the two subtypes 

of the disease. We examined this by comparing the expression of markers in the stromal 

compartments between PPARγhigh and PPARγlow tumors. Under this analysis, few markers 

reached significance after adjusting for multiple test correction in either the protein or RNA 

dataset, even while using a less stringent false discovery rate (Figure 4E, FDR < 0.1). We also 

ran unsupervised hierarchical clustering of antibodies related to immune cell types or signaling 

from stromal AOIs and compared the results to similar analysis of tumor AOIs (Figure 4F). 

Under this analysis we found that PPARγ groups cluster based on tumor AOIs expression, while 

stromal AOIs did not have a similar clustering structure. Moreover, under traditional IHC 

analysis we did not see significant differences in GZMB expression based on PPARγ expression 

(Supplemental Figure 4), suggesting no differential impact on the cytolytic potential in cells 
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neighboring the tumor. Taken together these results suggest that PPARγ expression does not 

drive changes in composition of the immune cells outside the tumor, though its expression is 

related to their exclusion. 

High tumor mutation burden found in PPARγhigh patient sample with high TIL presence 

Despite the immune-exclusion mechanisms associated with PPARγ expression, we 

identified one patient sample, 10182, expressing high PPARγ while also having high TIS and 

increased TIL presence by IF or IHC staining (Figure 5A-B). This was reproduced in GeoMx 

analysis, showing that CD3 protein expression was similar between tumor and stromal AOIs, and 

observed at levels similar to those of PPARγlow tumors (Supplemental Figure 5). One possible 

explanation for an inflamed TME is a high tumor mutation burden which others have shown may 

be an orthogonal metric for immune activation from general tumor infiltration and inflammatory 

signaling (23). As this would not be directly captured in any of the other assays run, we profiled 

samples on the TSO-500 targeted sequencing panel, comprising 500 commonly altered genes in 

cancer. From this assay, tumor mutational burden (TMB) was estimated based on the rate of 

nonsynonymous mutations observed in the panel targets. 

While we found that TMB was not significantly different based on PPARγ expression, 

we found that sample 10182 had the highest TMB within PPARγhigh tumors (Figure 5B-C). We 

also found that in addition to a high mutational load, there were also specific mutations in genes 

related to immune signaling pathways including PDCD1, STAT3, and SMAD4 (Figure 5D). Of 

particular note, the SMAD4 mutation, T338I, was found within the MH2 functional domain and 

was predicted to be oncogenic (0.92, Cscape score) (33). Signaling within the TGFβ pathway, 

which is may be impacted by this mutation, has been reported to impact TIL presence and 

response to ICIs (34). Together, both TMB and specific mutations may represent compensatory 

mechanisms allowing TIL invasion despite PPARγ signaling in this patient. 

Stromal β-catenin signaling inversely associated with TILs identified by spatial genomics 

approaches  

As TIL exclusion was related to tumor-intrinsic PPARγ, we wanted to further explore 

interactions between the tumor and stromal compartment that would be missed by bulk profiling 

or subgroup specific analysis. Because we profiled samples with matched tumor-stroma pairs of 

AOIs (n = 95, paired AOIs after QC), we designed a framework to test whether the tumor-stroma 

relationship between any sets of genes on the RNA-ISH panel was not observed in their native 

compartment and might be the result of paracrine or juxtacrine signaling (Figure 6A). 

Specifically, we calculated whether the tumor expression of a gene, T, was correlated with 

stromal expression another gene, S (|ρ(T,S)| > 0.5, Spearman), but not when comparing 

expression in the same compartment (|ρ(T,T; S,S)| < 0.2, Spearman). This allows us to detect 

potential interactions that subgroup-based analyses might miss. For example, we found that 

CTNNB1 (β-catenin) expression in stromal AOIs was anticorrelated with PTPRC (CD45) 

expression in the tumor AOIs (ρ = -0.56), but not in any other combination of AOI comparisons 

(Figure 6B). 

Across all genes on the panel, we found that 119 pairs of genes exhibited this type of 

tumor-stroma specific correlation. As these interactions could be driven by patient-specific 

expression, we followed this analysis with an additional regression accounting for the patient 

from which an ROI was collected. Of the identified gene interactions, 65 were significant after 

accounting for patient-specific expression and multiple testing (FDR < 0.05, linear mixed effect 
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model, Supplementary Table 3). The most frequently identified gene was CTNNB1 expression in 

stromal AOIs. CTNNB1 was anticorrelated with tumor expression of 28 other genes, most of 

which were noted to be immune cell markers or signaling molecules (Figure 6C). The next most 

common interaction partner identified was stromal expression of EPCAM, which had 12 

significant interactions. While the antibody panel contained β-catenin and several of the immune 

cell targets identified in this analysis, we were unable to validate this finding in the protein 

GeoMx data (Supplementary Table 3). We attribute this to the fact that β-catenin localization, 

reflective of β-catenin activity, is not captured during GeoMx analysis, confounding our 

interpretation of the antibody data. Furthermore, analysis of bulk expression showed that tumor 

expression of CTNNB1 was correlated with bulk profiling (ρ = 0.69), suggesting accurate 

measurement of the target since CTNNB1 was observed to have higher expression in the stroma 

than in tumor compartment, though this was not significant after adjusting for multiple testing 

and patient-specific expression (FDR = 0.15, mixed effect model, Figure 6D). 

To better understand the potential role of the β-catenin signaling axis in these tumors, we 

returned to the expression of other genes on the RNA-ISH panel which were not specifically 

identified by the previous analysis. We noted that several genes in the WNT/β-Catenin signaling 

pathway were identified as significantly enriched in the stroma of PPARγhigh tumors (Figures 

3D). One of the members of this pathway, GSK3B, had similar patterns of expression across 

sample types as β-Catenin itself, and was specifically higher in PPARγhigh stroma (FDR = 6.4e-3, 

mixed effect model, Figure 6D). Of the 6 frizzled-family receptors on the RNA-ISH panel, all 

except FZD3 had higher median expression within the stroma of PPARγhigh tumors (Figure 6F). 

Additionally, other WNT/β-Catenin targets, such as CCND2/3, CREBBP, and APC were all 

similarly highest in stroma of PPARγhigh tumors, though expression was observed in PPARγlow 

stroma as well. The differential expression of these genes appears to be driven by very low 

expression within the tumor compartment. 

Discussion  

The study we report here follows the analysis of a cohort of advanced stage MIBC. In 

this setting, understanding the molecular underpinnings of a sample is critical to better predicting 

how they will respond to therapy(10), especially ICIs(12, 13). To better characterize the spatial 

arrangement of key molecular characteristics such as tumor-intrinsic subtype, TIL exclusion and 

composition, and tumor-stroma interaction we leveraged multiple traditional bulk and spatial 

platforms in conjunction highly multiplexed profiling by GeoMx within FFPE tissues. This 

allowed us to deeply explore signaling within and around the tumor, and also how it varied 

across the sample. 

Molecular subtyping has traditionally been performed using RNA expression profiling of 

bulk tissues from MIBC samples(8, 9, 16). When compared to matched bulk profiling by RNA 

sequencing, we were able to robustly measure MIBC subtype markers with high predictive 

power in either the RNA or protein GeoMx assays. This demonstrates that from a single slide, it 

may be possible to capture and classify samples into subtype. Contamination of surrounding 

tissue may impact robustness of molecular classification. In our GeoMx experiment, this is 

avoided directly using auto-segmentation, allowing the investigation of compartment specific 

expression without having to manipulate the tissue or rely on pathological identification of tumor 

boundaries. Indeed, we noticed that stromal AOIs had significantly worse predictive 

performance, and application of auto-segmentation or strategic ROI placement is necessary for 

robust classification. 
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Furthermore, we observed little evidence of intra-tumor heterogeneity in molecular 

subtype markers. This is in contrast to recently published work suggesting that some tumors 

exhibit a high degree of intra-tumoral heterogeneity(35, 36). However, we note this difference 

may be due to definitions of subtype applied, the profiling strategy of this and other studies, and 

the small numbers of samples tested in each study. As our study was limited to 25 samples, we 

focused on detecting the differences between luminal and basal type tumors, as we would not be 

powered for further stratifications of the disease. We did note enrichment of TP53 mutations in 

specific luminal samples, however, without additional markers on the RNA-ISH panel we were 

unable to more deeply stratify samples.  

In addition to subtype, the TME of MIBC is a critical component to patient outcome. We 

recapitulated the previously reported T-cell exclusion phenotype which was described in tumors 

expressing high levels of PPARγ(6). Specific exclusion of immune cell markers in the tumor 

compartment of PPARγhigh samples was observed across nearly all immune markers present on 

the panels in both the protein and ISH GeoMx studies. By directly measuring expression from 

stromal compartments, we were also able to assess whether the stromal immune composition of 

the PPARγhigh tumors were qualitatively different from PPARγlow tumors. We found little 

evidence of differential expression between tumor based on PPARγ status, and genes that we did 

find to be differentially expressed were not generally immune-cell related. This supports the 

potential to improve ICI response by targeting the PPARγ pathway in these tumors, as this may 

remove the barrier to immune cell invasion in these tumors.  

By spatially resolving the source of expression in a tissue, we were able to directly 

determine whether bulk profiling of tissues reflects a specific compartment within the sample, 

and identify novel interaction networks within and between tissue compartments. The bulk 

expression profiles were most similar to the tumor compartment, which may be due to the 

hyperproliferative nature of tumor cells. However, interrogation of other tissue types will be 

necessary to see if this results in a phenomenon that is broadly observed or specific to MIBC. In 

silico analysis of the TCGA suggest some tumor types may have more stromal signaling(31). 

Our findings suggest that even in indications with a high stromal content measured by bulk 

profiling, these studies may underestimate the role that the TME plays in tumor development by 

underrepresenting expression from the stroma itself. The observation in TCGA analysis that 

bladder cancers had lower tumor purity than many tumor types likely reflect the highly infiltrated 

phenotype of PPARγlow tumors. In contrast, by directly measuring the stroma, we can begin to 

understand interactions between the compartments within that tissue. It is currently unknown if 

stromal signaling within MIBC may be related to tumor evolution and how to best target these 

tumors with therapeutics. The correlation analysis we employed suggests stromal expression of 

β-catenin may also be related to exclusion of immune cells in addition to tumor intrinsic PPARγ 

expression. While the functional role of β-catenin expression the stroma is unclear, these 

findings are reminiscent of work demonstrating the role of this pathway in immune cell 

exclusion in melanoma (37).  

Beyond the key findings within MIBC, this study demonstrates the technical feasibility of 

using two sections of FFPE tissue per sample to obtain a highly nuanced view into the tumor-

immune landscape. While this study was performed on archival tissue blocks, it provides a proof 

of principle that this technology can be applied to FFPE samples with limited material. Other 

technologies which address both location and multiplexing of analytes have distinct limitations 

in their ability to impact translational applications to clinically relevant samples such as 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/675926doi: bioRxiv preprint 

https://doi.org/10.1101/675926
http://creativecommons.org/licenses/by-nd/4.0/


degradation of signal during multiplexing, technical variability, and cumbersome downstream 

data analysis. Moreover, multiplexing of RNA probes in FFPE tissues has been a hurdle which 

few technologies have overcome. Technologies which offer the potential of higher multiplexing 

are limited to fresh-frozen tissues (25-27), and previously only low plex ISH approaches were 

compatible with the FFPE tissue which are most commonly available from the clinic. GeoMx 

RNA-ISH profiling offers a solution for high plex exploratory research on FFPE tissue that could 

be translated to low plex clinical assays on a diagnostic platform.  

As GeoMx represents a complimentary approach for single-plex or multiplexed IHC and 

ISH, there are some differences between this platform and conventional profiling platforms that 

should be taken into consideration during experimental design. First, GeoMx profiling measures 

target abundance in an IF defined areas, which enables profiling of cell populations rather than 

individual cells. Second, as target quantification is mediated by direct probe hybridization, the 

platform is not capable of measuring somatic mutation, and assays capturing oncogenic 

mutations and TMB remain a complementary approach. This was demonstrated in our study, as 

one PPARγhigh sample, 10182, had higher TMB and a specific SMAD4 mutation (T338I) that 

may explain the immune infiltration observed in this tumor, given the known impact of TGFβ 

signaling in immune infiltration and ICI response(34). Finally, GeoMx profiling does not require 

cycling to achieve high plex, where stripping and re-probing with new antibodies tends to 

degrade signal over time. Rather the quantification of all targets is performed simultaneously and 

maintains their relative abundance. 

While this study highlights several key advantages of performing GeoMx on clinically 

relevant samples, we note that there are several limitations to our study. As we only tested 157 

genes in the RNA-ISH and 40 antibodies, there are a significant number of pathways or targets 

of interest that were not measured. Also, while this manuscript presents some preliminary 

strategies to capture the cell-type diversity and interactions between tumor and stromal 

compartments, statistical methodologies will need to be adapted for the unique characteristics of 

the data being generated on this platform. For example, methodologies aimed at cell-type 

deconvolution, including CIBERSORT (38, 39), TIMeR (40), and MuSIC (41), have been shown 

to capture the cellular composition of bulk-profiled samples. These algorithms may need to be 

adapted for spatial profiling by incorporating AOI-specific information such as AOI size or 

number of cells. Other spatially resolved platforms have started to propose modification to 

differential expression analysis to leverage the spatial data captured(42). Due to the sparse 

collection strategy employed such methods may need to include additional caveats to be applied 

to GeoMx profiling data. 

With rapid advances in the ability to profile tissues in a spatially resolved manner, we 

have found that GeoMx provides a robust, targeted platform for profiling tissues that is readily 

geared towards exploratory studies. Incorporating it with multiple platforms in this study allowed 

us to extend beyond previous foundational studies, and deeply profile the tumor-stroma 

interaction in MIBC. Such profiling strategies have a clear benefit for translational researchers 

allowing spatial profiling while maintaining high-plex quantification of FFPE samples. 

Materials and Methods 

Tissue Procurement 

25 formalin-fixed, paraffin-embedded (FFPE) samples from bladder cancer patients were 

purchased from Proteogenex and banked at Eisai (Andover, MA). Informed consent was 
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obtained from all patients by the Russian Oncological Research Center n.a. N.N. Blokhin Rams 

Ethics Committee.  

Bulk RNA profiling by IO 360 and RNA sequencing 

For each sample, 5 of slides were processed using the Qiagen RNeasy FFPE Kit to 

extract total RNA from 10 µM FFPE tissue sections. RNA was profiled using the NanoString 

nCounter IO 360 panel, using 100 ng of RNA per sample profiled using the nCounter Max 

Profiler. Expression of all probes was normalized based on the housekeeping probes included in 

the panel such that the geometric mean of expression of the housekeeping genes for a sample 

was centered at a constant value of 7 in log2 expression space for all samples. 100 ng RNA was 

also profiled using TruSeq RNA access Library Prep Kit on an Illumina Nextseq to a depth of 

200 million reads with a minimum of 10 million reads. RNA-sequencing reads were mapped 

using the STAR aligner (43) and quantified using Kallisto (44). 

Immunohistochemistry and In Situ hybridization 

Immunohistochemistry Primary antibodies include granzyme B clone 11F1 (Leica 

Biosystems), PPARγ clone C26H12 (Cell Signaling Technology), CD8 clone SP57 (Ventana 

Medical Systems) and PD-L1 clone 22C3 (Agilent Technologies). The CD8 assay was 

performed on the Ventana automated immunostainer BenchMark ULTRA. The PDL1 assay was 

performed using EnVision FLEX HRP visualization system on DAKO Autostainer Link 48 

platform. PDL1 staining was scored by a board-certified MD-pathologist at Cancer Genetics Inc. 

PPARg RNA-ISH was performed using the RNAscope technology in the service lab at 

Advanced Cell Diagnostics. CD8 IHC, granzyme B IHC and PPARG RNA-ISH staining was 

quantified using the digital pathology software Halo (Indica Labs).    Scanned images, 

pathologist scores and interpretations were available to H3 Biomedicine Inc., for review and data 

analysis.  

Mutation profiling and TMB detection 

 DNA was extracted from a single FFPE slide per sample and 40 ng of DNA was used as 

input for sequencing on the TruSight Oncology 500 (TSO-500) Illumina targeted mutation 

profiling panel. Estimation of tumor mutational burden (TMB) was performed based on the 

number of estimated somatic mutations for either non-synonymous variants or all somatic 

alterations detected. Potential oncogenic impact of specific mutations was inferred using Cscape 

(33). 

GeoMx profiling of Antibody & RNA-ISH expression 

 Slides were prepared by incubating with a cocktail of either antibodies or ISH probes 

conjugated to photocleavage reporter tags. After incubation with reporter reagents, slides were 

incubated with IF-conjugated Pan-CK and CD3 probes, as well as a DNA stain. Samples were 

imaged on the GeoMx digital spatial profiler platform, wherein an IF microscope was used to 

guide live image selection of regions of interest placement. AOIs were created from ROI images 

using PanCK IF staining, creating PanCK+ and PanCK- segments. UV light was shown onto the 

tissue based on the segments defined by PanCK staining using a digital micromirror array, and 

tag oligos were collected for downstream quantification. Antibody conjugated tags were profiled 

using the nCounter Flex system, while the RNA-ISH probes were quantified using an Illumina 

NextSeq. Sample preparations, AOI mask creation, and quantification is described in detail in the 

supplementary Methods. 
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Bioinformatics and Statistical Analysis 

For RNA-sequencing data, expression analysis was performed using Limma-voom(45) 

and pathway analysis was performed using Gene Set Enrichment Analysis(32). Reference gene 

sets were obtained from the Molecular Signatures Databases (MSigDB) (32), and fisher’s exact 

test was used to test for the significance of the difference between the enriched genes and all the 

genes in the ISH panel for each of the signatures evaluated. 

We defined the molecular subtype of “basal” vs “luminal” from the RNA-sequencing 

data using a previously published signature(9).  Samples were classified into PPARγlow and 

PPARγhigh groups based on the median mRNA expression of PPARγ based on NanoString 

counts, after normalization. After normalization of the IO360 expression data, previously 

described signatures(21, 22, 46)  were calculated across all samples. Briefly, expression 

signatures were calculated for each sample the using a linear model such that: 

 

Where the signature score, S, for sample, i, is the sum of the expression of each gene for a 

sample, Egi, multiplied by predefined weights for each signature gene, βg, and a constant for each 

signature, cS. Scores were calculated and reported in log2 transformed expression space.  

Correlation between analytes were calculated using either Spearman correlation 

coefficient (ρ) or the Pearson correlation coefficient (R2) as appropriate. Unsupervised 

hierarchical clustering was performed using complete linkage and Euclidean distance for 

clustering Z-scores of expressions of a given probe or analyte. 

Differential protein expression from GeoMx data between phenotypes of interest was 

calculated using a mixed effect model allowing for random intercepts and slopes described as: 

 

 
 

Where the protein expression of a probe, Esi, is tested against a phenotype, Pi (e.g. AOI 

compartment), allowing for random intercepts and slopes modeling patient sample, S, to account 

for multiple AOIs tested within a patient slide. P-values for the mixed effect models were 

calculated using Satterthwaite's approximation for degrees of freedom(47-49).  

P-values from statistical models were adjusted for multiple testing using the Benjamini-

Hochberg false-discovery rate (FDR)(50).  

 

Supplementary Materials 

Materials and Methods 

Table S1. Clinical and molecular characteristics of MIBC cohort samples. 

Table S2. RNA-ISH AOI characteristics and QC metrics. 

Table S3. Spatial differential expression and compartment interaction analysis 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/675926doi: bioRxiv preprint 

https://doi.org/10.1101/675926
http://creativecommons.org/licenses/by-nd/4.0/


Data File S1. GeoMx Antibody data used in analysis 

Data File S2. GeoMx RNA-ISH data used in analysis 

Data File S3. Bulk expression signature analysis 

Fig. S1. ROI placement on guide IF images 

Fig. S2. QC of GeoMx profiling 

Fig. S3. Relationship between bulk and GeoMx expression 

Fig. S4. IHC quantification of CD8 and GZMB  

Fig. S5. AOI expression of CD3 antibody 
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Figures:  

 

Fig. 1. Study overview and qualification of GeoMx readouts (A) Patient samples analyzed using 

separate workflows for bulk and spatial profiling. Samples were prepared for multiple 

workstreams for bulk of DNA and RNA and spatial profiling of RNA and protein 

expression. GeoMx analysis involves selection of regions of interest (ROIs) based on 

whole-slide IF and subsequent UV illumination of specific paths into areas of 

illumination (AOI, gray) based on Pan-CK staining by IF to collect oligo tags for 

downstream quantification. (B) Example IF guide images placed for selected ROIs during 

GeoMx workflow and (C) related CD8 IHC images of the same ROI for either a 

representative PPARγhigh patient (left) or PPARγlow patient (right) (D-F) Example 

validation of concordance between GeoMx profiling and (D) IHC of CD8 TILs, (E) 

PPARG expression by ISH, or (F) between guide markers and related antibody probes 
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(Pan-CK, left; CD3, right). Nominal significance shown for mixed effect model, denoted 

as . for p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.  

 

 

 

Fig. 2. Tumor intrinsic subtyping (A) Analysis of protein expression of CD44 as a marker for 

tumor subtype, per AOI. ROC curves shown for tumor and stromal AOIs analyzed 

separately. AUC values shown for each AOI type. (B) Unsupervised hierarchical 

clustering of subtyping probes included in RNA-ISH GeoMx analysis. Annotations show 

patient ID, RNA sequencing identified subtype (orange = luminal, light blue = basal), and 

PPARG expression group (dark blue = low, green = high) (C) ROC analysis of MIBC 

subtype classification for RNA-ISH markers measured in tumor AOIs. (D) Comparison 

of AUCs from ROC analysis of tumor or stromal AOIs from C. (E) Comparison of 

average variance within subtype or patient samples 
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Fig 3. Bulk profiling masks expression patterns observed in the stroma (A) Correlation of gene 

expression observed in IO360 profiling and RNA-ISH GeoMx profiling. Correlations 

were calculated between bulk samples and each AOI from the same sample and then 

separated by AOI type and tumor cellularity estimated from the IF image used to select 

ROIs. Significantly higher (p < 0.001, Welch’s t-test) correlation observed in tumor AOIs 

than Stromal AOIs. (B-C) Gene-based calculations of correlation based on average AOI 

expression for a patient within each AOI type, showing correlations across all genes 

based on (B) AOI location (Stroma, top; tumor, bottom) and (C) associated gene set 

information. Significance (p, Welch’s t-test) indicated by * < 0.05, ** < 0.01, ns > 0.05, 

nt for not tested when ngenes < 3 
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Fig 4. Phenotypic analysis of the tumor microenvironment in MIBC (A) Gene set enrichment 

analysis results from bulk RNA-sequencing analysis indicative of high immune-cell 

related signaling detection in PPARγlow tumors (B) PPARγ expression level vs tumor 

inflammation signature (TIS), colored base to PPARγ status from IO360 analysis (high = 

green, low = dark blue) (C) IO360 Signatures score expression based on PPARγ status, 

binned by type of signature. Significance (p, Welch’s t-test) indicated by * < 0.05, ** < 

0.01, *** < 1-e3 (D) Differential expression analysis GeoMx RNA-ISH data shows 

stromal enrichment of immune cell and immune signaling genes in PPARγhigh tumors 

(left), while no significant difference is observed in PPARγlow tumors (right). Genes 

colored based on gene sets, labelled for immune cells or subtyping markers for FDR < 

0.05 (D) Differential expression analysis GeoMx RNA-ISH data based on PPARG status 

in each type of AOI. Genes colored based on gene sets, labelled for immune cells or 

subtyping markers for FDR < 0.1 in Tumor AOIs, all genes with FDR < 0.1 labeled in 

stromal AOIs (F) USHC of immune cell markers from antibody analysis of either stromal 

AOIs (top) or tumor AOIs (bottom). 
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Fig 5. Tumor mutations associated with high TILs in patient 10182 (A) IF images of ROIs 

collected from sample 10182. Markers stained include Pan-CK (green), CD3 (red), and 

nuclear stain (blue). Arrows indicate CD3+ TILs within Pan-CK AOIs. (B) TMB analysis 

of bulk samples vs TIS or PPARG group, highlighting sample 10182 (C) Oncoprint of 

mutations across samples showing tumor-intrinsic subtype, PPARγ expression, TMB 

counts, and TIS. 
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Fig 6. Spatial analysis identifies a stromal WNT-β-Catenin axis associated with immune cells 

(A) RNA-ISH tag expression from AOIs (gray areas, left) was used to calculate the 

correlation coefficient (ρ, Spearman) for expression values for all pairs of genes across 

different combinations of types of AOIs measured across 95 ROIs. Potential paracrine 

associations (n = 119) were identified by selecting genes with high correlation between 

expression in tumor and stromal compartments (|ρ(T,S)| > 0.5), while also having 

minimal correlation within the same compartment type (|ρ(T,T; S,S)| < 0.2).  (C) 

Expression of CTNNB1 (β-Catenin) and PTPRC (CD45) based on compartment of 

measurement, demonstrating the specific correlation between stromal β-catenin and 

tumor expression of PTPRC (D) Map of identified tumor-stroma interactions. Lines 

indicate tumor-stroma specific correlations, with pairs that include stromal CTNBB1 

highlighted in blue. Nodes colored by AOI of expression, size based on number of 

interactions identified. (E) Expression of β-catenin and GSK3B based on PPARγ 

expression and AOI. ** FDR < 0.01 (F) Heatmap of WNT/β-catenin pathway members 

in each compartment based on PPARγ expression. 
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  PPARγhigh 

(n = 13) 

PPARγlow 

(n = 12) 

Stage I 

II 

III 

IV 

2 

3 

5 

3 

0 

0 

5 

7 

Age*  58 (44-75) 67 (43-72) 

LN Status Negative 

Positive 

10 

3 

6 

6 

Gender Female 

Male 

1 

12 

3 

9 

Genomic 

Subtype 

Basal 

Luminal 

0 

13 

8 

4 

CD8 TILS < 1% 

> 1% & < 5% 

> 5% 

9 

3 

1 

3 

4 

5 

Tumor 

Cellularity†  

< 60% 

> 60% 

4 

9 

7 

2 

GeoMx 

Profiling 

Antibody 

RNA-ISH 

13 

10 

10 

9 

Table 1. Clinical, genomic, and TME characteristics of MIBC cohort. *median age and range 

shown. †Estimated from RNA-ISH IF Pan-CK staining 
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Supplementary Methods. 

Sample preparation and readout of protein Digital Spatial Profiling 

For multiplex antibody analysis, a cocktail of 40 primary antibodies (Supplementary Data 

File 1), each with a unique, UV photocleavable indexing oligo, and 2 fluorescent markers (Pan-

CK and CD3) were added to a 5 µm FFPE slide at 4°C overnight. Pan-CK and CD3 were used to 

identify tumor cells and T cells respectively. Syto83 (nuclear DNA stain) was added to the FFPE 

tissues for 5 minutes at room temperature. After washing off the extra antibodies in TBST, the 

tissue slides were placed on the stage of an inverted microscope. A custom gasket was then 

clamped onto each slide, allowing the tissue to be submerged in 1.5 mL of buffer solution. Under 

the microscope, wide field fluorescence imaging was performed with epi-illumination from 

visible LED light engine. 20x images were stitched together to yield a high-resolution image of 

the tissue area of interest. Two of the 25 samples (10171 and 10230) were omitted from further 

processing due to poor tissue attachment.  Of the remaining 23 samples, regions of interest 

(ROIs) were then selected based on the fluorescence information and sequentially processed by 

the microscope automation. Tumor and stromal segmentations were processed for each ROI 

based on Pan-CK+ and - using image J scripts as described below. UV LED light was collimated 

to be reflected from the digital micromirror device (DMD) surface into the microscope objective 

and focused at the sample tissue with paired segmentation mask (described below). A 

microcapillary tip connected to a syringe pump primed with buffer solution was moved to each 

ROI and collected oligos released from the tissue by UV irradiation. These oligos were further 

quantitated using Nanostring GeoMx™ Digital Spatial Profiler. 

Hybridization of cleaved indexing oligos to NanoString barcoded sequences was 

performed using the nCounter PlexSet reagents. Oligos were denatured at 95°C for 3 to 5 

minutes and placed on ice for 2 minutes. A master mix was created by adding 70 μL of 

hybridization buffer and in situ capture probes (ICP) to the PlexSet tube (A-G). A 7μL aliquot of 

master mix was added to each well in 96-well plate. And denatured protein samples were added 

to the well and the volume of each well was brought to a final volume of 15 μL with DEPC 

treated water. Hybridizations were performed at 65°C overnight in a thermocycler. After 

hybridization, samples were pooled by column and processed using the nCounter Prep Station 

and Digital Analyzer as per manufacturer instructions. 

Digital counts from tags corresponding to protein probes were analyzed as follows: raw 

counts were first normalized with internal spike-in controls to account for system variation. 

These normalized values were then normalized by adjusting for the area of sample illuminated 

by UV and log2 transformed prior to analysis. Antibodies with mean expression below the mean 

of the highest IgG control antibody were excluded from analysis. 

Sample preparation for ISH Digital Spatial Profiling  

For in situ hybridization, 5 µm FFPE sections were freshly cut and mounted onto positive 

charged slides were baked, deparaffinized, rehydrated in ethanol and washed in PBS using Leica 

Bond Rxm system. Targets were retrieved for 20 minutes in Leica Epitope Retrieval Solution 2, 

EDTA PH 9.0 buffer at 100°C. Tissues were washed with PBS and incubated with 1ug/ml 

proteinase K in PBS for 15 mins at 37°C and washed with PBS. After tissues were removed from 

the Leica Bond, they were covered with Hybrislip covers (Grace BioLabs) and incubated 

overnight at 37°C with hybridization solutions containing 4 nM of each RNA detection probe; 
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0.1 mg/mL salmon sperm DNA (Sigma-Aldrich, D7656); 2.5% dextran sulfate (Sigma-Aldrich, 

67578-5G); 0.2% BSA (ThermoFisher, 37525); 40% deionized formamide (Ambion, AM9344); 

2X SSC (Sigma, S6639). After overnight incubation, HybriSlip covers were gently removed by 

soaking in 2X SSC + 0.1% Tween 20 and then washed for 5 minutes in 2X SSC. Two 25-minute 

stringent washes were performed in 50% formamide in 2X SSC at 37°C. Tissues were washed 

twice for 2 minutes each in 2X SSC, and then were blocked with a Nanostring blocking buffer 

for 30 minutes at room temperature in a humidity chamber. SYTO 13 and fluorescently-

conjugated antibodies targeting Pan-CK and CD3 in blocking buffer were applied for 1 hour at 

room temperature, then washed three times for 5 minutes each in fresh 2X SSC. Three of the 25 

samples (10167, 10171 and 10230) were omitted from further processing due to poor tissue 

attachment. Oligos were cleaved and collected using Nanostring GeoMx™ Digital Spatial 

Microscope as described above. 

Custom UV illumination mask creation  

For each sample, 6 AOIs were selected and the oligonucleotide tags from stroma vs 

tumor areas were collected and analyzed separately by creating a Pan-CK+ and Pan-CK- UV 

illumination mask for each AOI. Custom masks were created in ImageJ to define custom regions 

of interest for UV illumination. These custom masks were used by the DMD device to determine 

which mirrors would be utilized to direct UV light to tumor and stromal segmentations. For each 

region of interest, 20x stacked tiff images with four fluorescent channels was split into four 

separate fluorescent images for custom thresholding. To make tumor segmentation, the image 

with Pan-CK channel was thresholded manually to match the Pan-CK staining pattern and 

converted to a binary mask. Remove fluorescent noise by copying a mask generated using 

“Analyze Particles” with settings size = 0-700 pixels, circularity = 0.35-1.00, and show = masks, 

to Pan-CK binary mask. “Fill holes” was proceeded to fill the nucleus of the tumor cells. “Invert 

LUT” is to make sure Pan-CK positive region could be UV illuminated. This image was saved as 

tumor segmentation. Stromal segmentation was generated by inverting tumor segmentation 

following by being dilated 3 times. Segmentation size is defaulted with 666×666 µm box. 

However, in some ROIs, only center region is designed to be UV radiation exposed. In this case, 

a centered 665 µm diameter circle mask could be added to tumor or stromal segmentations by 

using “Clear outside” function. 

RNA ISH profiling readout by NGS 

PCR was performed on photoreleased oligos collected from each well (corresponding to 

one AOI) to add Illumina adapter sequences and unique i5 and i7 sample indices.  Each PCR 

reaction used 4 uL of DSP photocleaved oligos, 1 uL of unique-dual indexing PCR primers, 2 uL 

of Nanostring 5X PCR Master Mix, and 3 uL PCR-grade water.  Thermocycling conditions were 

37C for 30 min, 50C for 10 min, 95C for 3 min; 18 cycles of 95C for 15sec, 65C for 1min, 68C 

for 30 sec; and 68C 5 min.  PCR reactions were pooled and purified twice using AMPure XP 

beads (Beckman Coulter) according to manufacturer protocol.  Pooled libraries were sequenced 

at 2x38 base pairs and with the dual index workflow on an Illumina NextSeq to generate 306M 

raw reads. 

For data from the NextSeq instrument, FASTQ files from multiple lanes were merged to 

generate single files for processing and insure proper removal of PCR duplicates later in the 

pipeline. Illumina adapter sequences were trimmed using Trim Galore (version 0.4.5) with a 

minimum base pair overlap stringency of four bases and a base quality threshold of 20. Paired 
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end reads were stitched using Paired-End reAd mergeR (PEAR, version 0.9.10) specifying a 

minimum stitched read length of 24bp and a maximum stitched read length of 28bp. The 14bp 

UMI sequence was extracted from the stitched FASTQ files from the 5’ end of the sequence 

reads using umi tools (version 0.5.3). The fastq files with extracted UMIs were then aligned to a 

genome containing the 12bp reference sequence tags using bowtie2 (version 2.3.4.1) in end-to-

end mode with a seed length of four. Using a custom python function, the generated SAM files 

were split in to multiple SAM files based on the tag to which they aligned to limit memory usage 

when removing PCR duplicates. The split SAM files were converted to bam files, sorted, and 

index using samtools (version 1.9) with the import, sort, and index options respectively. PCR 

duplicates were removed from the sorted and indexed bam files using the dedup command from 

umi tools with an edit distance threshold of three. An edit distance threshold of three was used 

because using a threshold of one quarter the length of the UMI has been demonstrated to be a 

conservative threshold. Using custom python functions, the SAM files with PCR duplicates 

removed were merged for each sample and used to generate digital counts of the tags. 

Because each target transcript was counted using multiple probes and tags, outlier counts 

were removed before generating a consensus count for each target. Outlier tags were identified 

as those with counts 90% below the mean of the probe group in at least 20% of the AOIs 

analyzed and completely removed them from the analysis. Subsequently we removed tags from 

the analysis if they were flagged as outliers in at least 20% of the AOIs analyzed. This was done 

using the Rosner Test if there were at least 10 probes for the target (k = 0.2 * Number of Probes, 

alpha = 0.01), or the Grubbs test if there were less than 10 probes for the target. Probes flagged 

as outliers in less than 20% of the AOIs analyzed were only removed from the analysis for the 

AOIs in which they were flagged. Count reported for each target transcript were calculated as the 

mean of the remaining probes. 

The counts for each target transcript were then normalized to the count of the house 

keeper genes (C1orf43, GPI, OAZ1, POLR2A, PSMB2, RAB7A, SDHA, SNRPD3, 

TBC1D10B, TPM4, TUBB, UBB). The geometric mean of the house keeper gene counts was 

calculated for each AOI. These geometric means were then divided by the geometric mean of the 

geometric mean of the house keepers to generate a normalization factor for each AOI. The 

counts of the transcripts in each AOI were than multiplied by the associated normalization factor. 

Expression values were log2 transformed prior to analysis. 
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Supplementary Figure 1. ROI placement on guide IF images. Whole-slide IF images are shown 

for each sample indicating the placement of ROIs throughout the tissue. Each slide is scaled 

independently, though square ROIs are consistently sized, at 666 uM per ROI. Circular ROIs 

present in some samples were not used during analysis, as they varied in size and cell type 

composition. 
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Supplementary Figure 2. QC of GeoMx profiling. (A) Distribution of counts produced across 

probes from different classes of antibodies. HK probes include Histone H3, and S6. Control 

probes are Rabbit IgG1 (Rmab.IgG) and Mouse IgG2A (MmAb.IgG2a). All other probes are for 

endogenous expression detection. (B) Individual probe distribution and QC. Probes falling below 

the median expression of the Rabbit IgG1 probe were excluded from analysis due to poor signal. 

(C) Distribution of the rank of the negative control probes from RNA-ISH profiling across AOIs 

output from RNA-sequencing pipeline. AOIs with high ranking negative probes (e.g. high 

background samples. > Mean + 2σ), were removed from analysis (n = 13). (D) Distribution of 

RNA-ISH expression across all AOIs for all genes measured, aggregated by patient. Red dots 

indicate the negative control probe expression for each AOI within a patient block. 
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Supplementary Figure 3. Relationship between bulk and GeoMx expression. (A) Example 

expression patterns for tumor and immune cell related genes. Correlation between average tumor 

AOI or average stromal AOI expression shown compared to bulk profiling by IO360. (B) 

Correlation of individual genes with either stroma (x-axis) or tumor (y-axis) expression. Probe 

colored by gene set membership (C) Expression of tumor AOIs is weakly correlated with how 

well correlated a given probe is measured in tumor AOIs compared to bulk expression. 
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Supplementary Figure 4. IHC Quantification of CD8 and GZMB. (A) Example staining of 

CD8 and Granzyme B by IHC in a representative PPARg negative and positive tumor. Arrows 

indicate GZMB+ positive cells. (B) Quantification of samples stained with CD8 and GZMB 

across the cohort of samples based on PPARG status. 
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Supplementary Figure 5. AOI expression of CD3 antibody. (A-B) Patient level expression of 

CD3 for either (A) PPARγlow or (B) PPARγhigh samples. 
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