Abstract
Extant echinoderms show five-part radial symmetry in typical shape. However, we can find some asymmetry in their details, represented by the madreporite position not at the center, different skeletal arrangement in two of the five rays of sea urchins, and a circular cavity formed by two-end closure. We suspect the existence of any difference in hidden information between the five. In our hypothesis, deep equivalency makes no issue in function even after exchanging the position of rays; otherwise, this autograft causes some trouble in behavior or tissue formation. For this attempt, we firstly developed a method to transplant an arm tip to the counterpart of another arm in the sea star Patiria pectinifera. As a result, seven arms were completely implanted—four into the original positions for a control and three into different positions—with underwater surgery where we sutured with nylon thread and physically prevented nearby tube feet extending. Based on our external and internal observation, each grafted arm (i) gradually recovered movement coordination with the proximal body, (ii) regenerated its lost half as in usual distal regeneration, and (iii) formed no irregular intercalation filling any positional gap at the suture, no matter whether two cut arms were swapped. We here suggest a deep symmetry among the five rays of sea stars not only in morphology but also in physiology, representing an evolutionary strategy that has given equal priority to all the radial directions. Moreover, our methodological notes for grafting a mass of body in sea stars would help echinoderm research involving positional information as well as immunology.