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 2 

Summary		1 

	2 

The	 chronic	 NF-kB	 activation	 in	 inflammation	 and	 cancer	 has	 long	 been	 linked	 to	3 

persistent	activation	of	NF-kB	responsive	gene	promoters.	However,	NF-kB	factors	such	4 

as	RELA	also	massively	bind	to	gene	bodies.	Here,	we	demonstrate	that	the	recruitment	5 

of	RELA	to	intragenic	regions	regulates	alternative	splicing	upon	activation	of	NF-kB	by	6 

the	viral	oncogene	TAX	of	HTLV-1.	 Integrative	analysis	of	RNA	splicing	and	chromatin	7 

occupancy,	 combined	 with	 chromatin	 tethering	 assays,	 demonstrate	 that	 DNA-bound	8 

RELA	 interacts	with	 and	 recruits	 the	 splicing	 regulator	 DDX17	 in	 a	 NF-kB	 activation-9 

dependent	manner,	leading	to	alternative	splicing	of	target	exons	thanks	to	DDX17	RNA	10 

helicase	activity.	This	NF-kB/DDX17	axis	accounts	for	a	major	part	of	the	TAX-induced	11 

alternative	splicing	landscape	that	mainly	affects	genes	involved	in	oncogenic	pathways.	12 

Collectively,	 our	 results	 demonstrate	 a	 physical	 and	 direct	 involvement	 of	 NF-kB	 in	13 

alternative	 splicing	 regulation,	 which	 significantly	 revisits	 our	 knowledge	 of	 HTLV-1	14 

pathogenesis	and	other	NF-kB-related	diseases.	15 

	16 

	17 
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 3 

Introduction	1 

The	 Human	 T-cell	 leukemia	 virus	 (HTLV-1)	 is	 the	 etiologic	 agent	 of	 Adult	 T-cell	2 

Leukemia/Lymphoma	 (ATLL)	 1,	 an	 aggressive	 CD4+	T-cell	malignancy,	 and	 of	 various	3 

inflammatory	 diseases	 including	 the	 HTLV-1-associated	 myelopathy/tropical	 spastic	4 

paraparesis	(HAM/TSP)	2.	It	has	long	been	established	that	changes	in	gene	expression	5 

level	participate	to	the	persistent	clonal	expansion	of	HTLV-infected	CD4+	and	CD8+	T-6 

cells,	 leading	 ultimately	 to	 HTLV-1	 associated	 diseases	 3.	 We	 recently	 reported	 that	7 

alternative	 splicing	 events	 help	 to	 discriminate	 between	 ATLL	 cells,	 untransformed	8 

infected	 cells	 and	 their	 uninfected	 counterparts	 derived	 from	 patients	 4.	 Alternative	9 

splicing	of	pre-messenger	RNAs	is	a	cotranscriptional	processing	step	that	controls	both	10 

the	 transcriptome	 and	 proteome	diversity	 and	 governs	 in	 turn	 cell	 fate.	 Its	 regulation	11 

relies	on	a	complex	and	still	incompletely	understood	interplay	between	splicing	factors,	12 

chromatin	 regulators	 and	 transcription	 factors	 5,6.	 In	 this	 setting,	 the	 molecular	13 

mechanisms	of	HTLV-1-induced	splicing	modifications	and	whether	these	effects	rely	on	14 

an	interplay	between	transcription	and	splicing	is	not	known	.		15 

	16 

TAX	is	an	HTLV-1-encoded	protein	that	regulates	viral	and	cellular	gene	transcription.	17 

TAX	also	alters	host	signaling	pathways	that	sustain	cell	proliferation	and	lead	ultimately	18 

to	cell	immortalization	7.	The	Nuclear	factors	kB	(NF-kB)	signaling	pathway	is	the	most	19 

critical	target	of	TAX	for	cell	transformation	8.	The	NF-kB	transcription	factors	(RELA,	p50,	20 

c-Rel,	RelB,	and	p52)	govern	immune	functions,	cell	differentiation	and	proliferation	9.	NF-21 

kB	 activation	 involves	 the	 degradation	 of	 IκB	 that	 sequesters	 NF-kB	 factors	 in	 the	22 

cytoplasmic	compartment,	leading	to	NF-kB	nuclear	translocation	and	binding	of	NF-kB	23 

dimers	(e.g.,	RELA:p50	for	the	most	abundant)	to	their	target	promoters	10,11.	TAX	induces	24 

IKK	phosphorylation	and	IκB	degradation,	leading	to	persistent	nuclear	translocation	of	25 

NF-kB	 12,13.	 In	 addition,	 TAX	 interacts	with	 nuclear	 NF-kB	 factors	 and	 enhances	 their	26 

effects	on	transcription	14,15.		27 

	28 

Interestingly,	 genome-wide	analyses	of	NF-kB	distribution	have	unveiled	 that	 the	vast	29 

majority	of	RELA	peaks	is	outside	promoter	regions	and	can	be	localized	in	introns	and	30 

exons	 16-19.	 Some	 of	 those	 promoter-distant	 RELA	 binding	 sites	 correspond	 to	 cis-31 

regulatory	transcriptional	elements	20,21	but	globally,	there	is	a	weak	correlation	between	32 

the	binding	of	RELA	to	genes	and	regulation	of	their	steady-state	expression	17,18.	These	33 
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 4 

data	 suggest	 that	 NF-kB	 could	 have	 other	 functions	 than	 its	 initially	 described	1 

transcription	factor	function.		2 

	3 

Here,	we	show	for	the	first	time	that	NF-kB	activation	accounts	for	alternative	splicing	4 

modifications	generated	upon	TAX	expression.	These	effects	rely	on	a	tight	physical	and	5 

functional	interplay	between	TAX,	RELA	and	the	DDX17	splicing	factor.	Our	results	reveal	6 

that	DNA	binding	of	RELA	at	the	vicinity	of	genomic	exons	regulates	alternative	splicing	7 

through	 the	 recruitment	of	DDX17,	which	modulates	exon	 inclusion	 thanks	to	 its	RNA	8 

helicase	activity.		 	9 
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 5 

Results		1 

TAX	 induces	 alternative	 splicing	 modifications	 irrespectively	 of	 its	 effects	 on	2 

transcription.			3 

RNA-seq	analyses	were	performed	on	293T-LTR-GFP	cells	transiently	transfected	with	a	4 

TAX	expression	vector.	TAX-induced	changes	in	gene	expression	level	and	in	alternative	5 

splicing	were	identified	and	annotated	as	previously	described	22,23(Table	S1).	As	shown	6 

in	 Figure	 1A,	 the	 ectopic	 expression	of	 TAX	 affected	 the	 splicing	 and	 gene	 expression	7 

levels	of	939	and	523	genes,	respectively.	A	total	of	1108	alternative	splicing	events	were	8 

predicted	 including	710	exon	skipping	events	 (Figure	1B).	A	minority	of	 genes	 (3.5%,	9 

33/939)	was	altered	at	both	the	expression	and	splicing	levels,	indicating	that	TAX	largely	10 

affects	 alternative	 splicing	 independently	 of	 its	 transcriptional	 activity.	 A	 subset	 of	11 

splicing	 events	was	 validated	 by	 RT-PCR	 (Figure	 1C).	We	 took	 advantage	 of	 RNA-seq	12 

datasets	(EGAS00001001296	24)	for	assessing	whether	TAX-related	alternative	splicing	13 

could	pertain	to	asymptomatic	carriers	(AC)	and	ATLL	patients.	Overall,	542	(48%)	TAX-14 

induced	 splicing	modifications	were	 detected	 at	 least	 once	 across	 55	 clinical	 samples	15 

(Table	 S1).	 Hierarchical	 clustering	 of	 these	 exons	 based	 on	 their	 inclusion	 rate	 (PSI)	16 

identified	TAX-regulated	exons	that	discriminate	AC	and	ATLL	samples	from	uninfected	17 

CD4+	T-cells	(Figure	1D).	We	furthermore	confirmed	that	TAX	promotes	splicing	events	18 

previously	detected	in	HTLV-1	infected	individuals,	including	AASS,	CASK,	RFX2	and	CD44	19 
4,25.	We	firmly	established	that	the	expression	of	the	splicing	variant	CD44v10	previously	20 

identified	in	HAM/TSP	patients	25	fully	relies	on	TAX	expression	(Figure	1C	and	Figures	21 

S1A-C).	Altogether,	these	results	uncovered	a	large	number	of	splicing	modifications	upon	22 

TAX	expression	that	for	a	part	coincide	with	alternative	splicing	events	observed	in	HTLV-23 

1	patients.		24 

	25 

Gene	 ontology	 analysis	 of	 quantitatively	 altered	 genes	 revealed	 several	 signaling	26 

pathways	 that	 are	 well	 described	 in	 TAX	 expressing	 cells,	 including	 NF-kB,	 TNF,	 and	27 

MAPK	signaling	(Figure	1E)	26,27.	In	contrast,	genes	modified	at	the	splicing	level	belong	28 

to	membrane-related	regulatory	processes	including	focal	adhesion	and	ABC	transporters	29 

(Figure	1E).	In	this	setting,	we	observed	that	TAX-expressing	cells	displayed	switched	cell	30 

adhesion	properties	 from	hyaluronate-	 to	 type	IV	collagen-coated	surfaces,	which	 is	 in	31 

accordance	with	the	substrate	affinity	of	the	CD44v10	isoform	28	(Figure	S1D).		32 

	33 
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 6 

The	 splicing	 factor	 DDX17	 interacts	 with	 RELA	 and	 TAX	 in	 a	 NF-kB	 dependent	1 

manner.	2 

Since	Tax	is	a	well-known	trans-acting	transcription	regulator,	we	first	analysed	whether	3 

TAX	could	affect	gene	expression	levels	of	splicing	factors.	However,	no	significant	change	4 

was	measured	for	227	genes	encoding	splicing	regulators	(Table	S1,	Figure	2A),	thereby	5 

suggesting	a	direct	role	of	TAX	in	alternative	splicing	regulatory	mechanisms.	To	tackle	6 

this	question,	we	focused	on	the	auxiliary	component	of	the	spliceosome	DDX17,	which	7 

has	been	previously	identified,	but	not	validated,	in a recent	mass	spectrometry	screen	8 

for	putative	protein	partners	of	TAX 29.		9 

	10 

We	therefore	aimed	 to	validate	 the	 interaction	between	TAX	and	DDX17.	As	shown	 in	11 

Figure	 2B,	 TAX	 co-immunoprecipitated	with	 the	 two	 endogenous	 isoforms	 of	 DDX17,	12 

namely	 p72	 and	 p82.	 Reciprocal	 IP	 confirmed	 this	 interaction	 (Figure	 2C).	Due	 to	 the	13 

involvement	of	NF-kB	signaling	in	TAX	positive	cells	(Figure	1D,	27),	we	examined	whether	14 

DDX17	 interacts	 with	 a	 TAX	 mutated	 form,	 namely	 M22	 (G137A,	 L138S),	 which	 is	15 

defective	 for	 IKK	 and	 NF-kB	 activation	 30-33.	 Despite	 similar	 expression	 levels	 and	16 

immunoprecipitation	efficiencies	of	TAX	and	M22	 (Figure	2D),	we	 failed	 to	detect	 any	17 

interaction	 between	 M22	 and	 DDX17	 (Figures	 2B	 and	 2C),	 suggesting	 that	 NF-kB	 is	18 

required	for	recruiting	DDX17.	In	this	setting,	RELA	co-immunoprecipitated	with	DDX17	19 

and	 TAX,	 but	 not	 with	 M22	 (Figures	 2B	 and	 2C).	 Moreover,	 DDX17	 was	 co-20 

immunoprecipitated	with	RELA	in	a	TAX-dependent	manner	(Figure	2E).		This	interaction	21 

did	not	require	RNA	since	the	DDX17:RELA	complex	remained	detected	when	cell	extracts	22 

were	pre-treated	with	RNAse	A	(Figure	2F).	23 

	24 

As	DDX17:RELA	complexes	were	observed	neither	in	control	cells	(that	do	not	expressed	25 

TAX)	nor	in	M22	expressing	cells,	this	suggested	that	NF-kB	activation	is	necessary	for	the	26 

binding	 of	 DDX17	 to	 RELA.	 This	 hypothesis	 was	 confirmed	 by	 exposing	 TAXM22-27 

expressing	cells	to	TNFa,	a	potent	NF-kB	activator	that	allowed	to	retrieve	DDX17:RELA	28 

complexes	 (Figure	 2G).	 Altogether,	 these	 results	 revealed	 that	 TAX-induced	 NF-kB	29 

activation	dynamically	orchestrates	the	interations	between	TAX,	the	transcription	factor	30 

RELA	and	the	splicing	regulator	DDX17	(Figure	2H).		31 

	32 

TAX-mediated	effects	on	splicing	depend	on	DDX5/17.	33 
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 7 

To	 estimate	 the	 role	 of	DDX17	 in	TAX-regulated	 splicing	 events,	 RNA-sequencing	was	1 

performed	 using	 293T-LTR-GFP	 cells	 expressing	 or	 not	 TAX	 and	 depleted	 or	 not	 for	2 

DDX17	and	 its	paralog	DDX5,	which	cross-regulate	and	complement	each	other	22,34,35.	3 

TAX	had	no	effect	on	the	expression	of	DDX5	and	DDX17	(Figures	2A	and	3A)	and	RELA	4 

protein	 level	 was	 not	 significantly	 changed	 upon	 both	 TAX	 expression	 and	 DDX5/17	5 

silencing	(Figure	3B).		6 

	7 

Overall,	 58.5%	 (648/1108)	 of	 TAX-regulated	 exons	 were	 affected	 by	 DDX5/17	8 

knockdown,	a	significantly	higher	proportion	than	expected	by	chance	(Figure	3C,	Figure	9 

S2A).	 Of	 particular	 significance,	 423	 TAX-induced	 splicing	 events	 were	 completely	10 

dependent	 on	 the	 presence	 of	 DDX5/17	 (Table	 S3).	 For	 example,	 DDX5/17	 silencing	11 

completely	 abolished	 the	 TAX-mediated	 effect	 on	 splicing	 of	 SEC31B,	 CASK,	MYCBP2,	12 

CCNL1,	ROBO1,	ADD3	and	CD44	transcripts	(Figure	3D).	Of	note,	splicing	specific	RT-PCR	13 

assays	permitted	to	validate	the	effect	of	DDX5/17	on	TAX-dependent	splicing	changes	14 

for	CD44,	ADD3	and	EIF4A2	transcripts,	even	though	their	predicted	differential	inclusion	15 

fell	below	the	arbitrary	computational	threshold	(Table	S3,	Figure	3D	and	Figure	S2D).	16 

This	 suggested	 that	 the	 contribution	of	DDX5/17	 to	TAX-mediated	alternative	 splicing	17 

regulation	might	be	under-estimated.		18 

	19 

Finally,	since	NF-kB	activation	modified	the	interactions	between	DDX17,	RELA,	and	TAX	20 

(Figure	2),	we	examined	the	 interplay	between	NF-kB	activation	and	DDX17-mediated	21 

splicing	 regulation.	As	 shown	 in	Figure	3D,	M22	did	not	have	any	effect	on	DDX5/17-22 

sensitive	splicing	events,	arguing	that	TAX	splicing	targets	are	regulated	by	RNA	helicases	23 

DDX5/17	in	an	NF-kB	dependent	manner.		24 

	25 

RELA	binds	to	genomic	exons	and	recruits	DDX17	to	regulate	splicing	in	an	RNA	26 

helicase-dependent	manner.	27 

The	results	described	above	prompted	us	to	hypothesize	that	the	nuclear	translocation	of	28 

RELA	upon	TAX	expression	might	promote	the	chromatin	recruitment	of	DDX17	to	RELA	29 

target	genes.	To	test	this	hypothesis,	the	CD44	gene	was	used	as	a	gene	model.	CD44	 is	30 

composed	of	10	constitutive	exons	and	10	variable	exons.	The	constitutive	exons	1–5	and	31 

15–20	encode	the	standard	CD44	transcripts,	while	CD44	variants	(CD44v)	are	produced	32 

by	extensive	splicing	leading	to	alternative	inclusion	of	variable	exons	5a-14	also	named	33 
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 8 

v1-v10	 (Figure	 4A)	 36.	 As	 shown	 above	 (Figure	 3D),	 the	 exon	 v10	 inclusion	 rate	 is	1 

markedly	influenced	by	TAX	in	a	DDX5/17-	and	NF-kB	activation-dependent	manner.	The	2 

importance	of	NF-kB	in	this	process	was	further	confirmed	as	the	inactivation	of	NF-kB	3 

via	 the	ectopic	expression	of	 the	 IkBa	super	repressor	(IkBSR)	abolished	the	effects	of	4 

TAX	on	CD44	v10	inclusion	(Figure	S3A).		5 

	6 

Quantitative	 ChIP	 (qChIP)	 analyses	 revealed	 that	 RELA	 was	 recruited	 upon	 TAX	7 

expression	not	only	 to	 the	CD44	 promoter,	but	also	 to	a	genomic	 region	spanning	 the	8 

alternative	exon	v10,	but	not	a	downstream	constitutive	exon	(E16)	(Figures	4A	and	4B,	9 

left	panel).	To	assess	whether	RELA	occupancies	at	the	v10	exon	and	CD44	promoter	are	10 

interrelated,	a	stable	cell	line	was	generated	in	which	the	kB	site	localized	at	-218	bp	from	11 

the	 transcription	 start	 site	 (TSS)	was	 deleted	 using	 a	 CRISPR-Cas9	 approach.	 Positive	12 

clones	 (CD44DkB)	were	 screened	and	sequenced	 to	 confirm	 the	40	bp	deletion	 in	 the	13 

promoter	 region	 (Figure	 4A).	 As	 expected,	 TAX	 expression	 failed	 to	 promote	 RELA	14 

binding	at	the	promoter	in	CD44DkB	cells	(Figure	4B,	right	panel).	Nevertheless,	TAX	still	15 

promoted	 RELA	 binding	 at	 the	 v10	 region.	 Importantly,	 TAX	 expression	 induced	 v10	16 

inclusion	at	a	similar	level	in	both	CD44DkB	and	parental	cells	(Figure	4C).	These	results	17 

suggested	that	TAX-mediated	effect	on	exon	v10	splicing	could	depend	on	RELA	binding	18 

in	 the	 vicinity	 of	 the	 alternative	 v10	 exon.	 Supporting	 this	 hypothesis,	 the	 analysis	 of	19 

publicly	 available	 RELA	 ChIP-seq	 datasets	 revealed	 that	 intragenic	 RELA	 peaks	 are	20 

significantly	closer	 to	alternative	exons	than	to	constitutive	exons	(Figure	S3B).	 In	 this	21 

setting,	 we	 observed	 that	 RELA	 binding	 sites	 are	 often	 found	 in	 the	 vicinity	 of	 TAX	22 

regulated	exons	(Figure	4D).		Using	the	MEME-ChiP	suite	as	motif	discovery	algorithm37,	23 

we	uncovered	that	RELA-binding	sites	located	within	the	closest	range	(<1kbp)	of	TAX-24 

regulated	 exons	 coincided	 with	 the	 typical	 NF-kB	 consensus	 motif	 (Figure	 4E).	25 

Furthermore,	 this	 subset	of	TAX-regulated	exons	displayed	weak	3’	 and	5’	 splice	 sites	26 

together	with	 significant	 low	MFE	 value	 (Figure	 4F)	 and	 high	GC-content	 (Figure	 4G)	27 

when	compared	to	all	human	exons.	This	emphasizes	the	high	potential	of	these	splice	28 

sites	to	form	stable	secondary	RNA	structures,	a	typical	feature	of	exons	regulated	by	RNA	29 

helicases	DDX5/17	 34.	 Taken	 together,	 these	 data	 define	 a	 signature	 of	 splicing	 target	30 

specificity	for	RELA,	and	they	suggest	that	RELA	and	DDX17	might	control	together	the	31 

inclusion	 of	 a	 subset	 TAX-regulated	 exons.	 We	 therefore	 investigated	 the	 genomic	32 

occupancy	of	some	target	exons	by	RELA	and	DDX17	by	qChIP	analysis	of	cells	expressing	33 
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 9 

or	 not	 TAX.	 For	 all	 tested	 genes	 (CD44,	 SEC31B,	CASK,	 and	MYCBP2),	 both	 RELA	 and	1 

DDX17	bound	specifically	 the	 regulated	 alternative	 exon	 in	 a	 TAX-dependent	manner,	2 

compared	to	a	downstream	constitutive	exon	(Figure	4H).	Furthermore,	RELA	binding	3 

was	 lost	 in	 cells	 depleted	 for	 DDX5/17,	 indicating	 that	 RNA	 helicases	 contribute	 to	4 

stabilize	DNA-bound	RELA	(Figure	4I).		5 

	6 

A	causal	relationship	between	exonic	DNA-binding	of	RELA,	chromatin	recruitment	7 

of	DDX17,	and	splicing	regulation.		8 

To	assess	the	causative	relationship	that	links	RELA	and	DDX17	to	alternative	splicing,	we	9 

intended	 to	 experimentally	 tether	 DDX17	 or	 RELA	 at	 the	CD44	 v10	 exon	 locus	 using	10 

modified	TALE	(Transcription-Activator-Like-Effector)	38.	We	designed	a	TALE	domain	11 

that	recognizes	specifically	an	exonic	20 bp	DNA	sequence	located	12	bp	upstream	from	12 

the	5′	splice	site	(SS)	of	exon	v10.	This	TALE	domain	was	either	fused	to	RELA	or	DDX17	13 

proteins	(Figure	5).	We	also	used	an	additional	construct	consisting	 in	 the	same	TALE	14 

fused	to	GFP	to	rule	out	non-specific	effects	resulting	from	the	DNA	binding	of	the	TALE.	15 

Each	 TALE	 construct	 was	 transiently	 transfected	 into	 293T-LTR-GFP	 cells,	 and	 we	16 

monitored	their	relative	effects	both	on	the	recruitment	of	endogenous	RELA	and	DDX17,	17 

and	 on	 the	 splicing	 of	 exon	 v10.	 All	 results	 shown	 in	 Figure	 5	 were	 normalized	 and	18 

expressed	as	relative	effects	compared	to	the	TALE-GFP.	As	expected,	and	validating	our	19 

approach,	TALE-RELA	tethering	to	the	exon	v10	led	to	a	significant	chromatin	recruitment	20 

of	RELA	to	its	target	site,	and	not	to	the	downstream	exon	E16	used	as	control	(Figure	5A,	21 

left	panel).	A	significant	and	specific	enrichment	of	DDX17	was	also	observed	on	exon	v10	22 

upon	 expression	 of	 the	 TALE-RELA	 compared	 to	 TALE-GFP	 (Figure	 5A,	 left	 panel),	23 

indicating	that	 tethering	RELA	to	exon	v10	 induced	a	 local	recruitment	of	endogenous	24 

DDX17	 proteins.	 At	 the	 RNA	 level,	 this	 TALE-RELA-mediated	 recruitment	 of	 DDX17	25 

coincided	with	a	significant	increase	in	exon	v10	inclusion	rate	(Figure	5A).	26 

	27 

We	 next	 investigated	 whether	 DDX17	 tethering	 could	 result	 in	 similar	 effects.	28 

Quantitative	ChIP	analysis	demonstrated	that	DDX17	was	properly	tethered	to	exon	v10	29 

when	fused	to	the	designed	TALE	(Figure	5B)	but	TALE-DDX17	had	no	effect	on	RELA	30 

recruitment	 (Figure	 5B).	 This	 was	 expected	 since	 the	 formation	 of	 RELA:DDX17	31 

complexes	 only	 occurs	 upon	 NF-kB	 activation	 (Figure	 2).	 Nevertheless,	 TALE-DDX17-32 

expressing	cells	exhibited	a	reproducible	and	significant	increase	in	v10	inclusion	(Figure	33 
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5B),	indicating	that	chromatin-bound	DDX17	alone	can	modulate	splicing	efficiency.	It	is	1 

worth	to	underline	that	the	level	of	v10	exon	inclusion	induced	by	the	TALE-RELA	and	-2 

DDX17	 was	 comparable	 to	 that	measured	 in	 cells	 transiently	 transfected	 with	 a	 TAX	3 

expression	vector	(Figure	4C	and	Figure	S1C).	Although	it	is	less	quantitative	approach,	a	4 

nested	RT-PCR	assay	clearly	confirmed	these	results	(Figure	S4).	Strikingly	however,	the	5 

TALE-DDX17_K142R	 (a	 DDX17	 helicase	 mutant	 34,39-41)	 failed	 to	 influence	 exon	 v10	6 

inclusion	 despite	 a	 clear	 chromatin	 enrichment	 of	 DDX17	 (Figure	 5C,	 Figure	 S4).	7 

Collectively,	these	results	demonstrate	that	the	binding	of	RELA	at	the	vicinity	of	genomic	8 

exons	recruits	the	RNA	helicase	DDX17	that	positively	regulates	the	inclusion	rate	of	the	9 

target	exon	thanks	to	its	RNA	helicase	activity.		 	10 
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DISCUSSION		1 

Since	 the	 finding	 of	 splicing	 dysregulations	 in	 HTLV-1	 infected	 individuals	 4,24,25,42,	2 

deciphering	how	HTLV-1	interferes	with	the	splicing	regulatory	network	has	become	a	3 

new	challenging	issue	for	improving	our	knowledge	of	HTLV-1	infection	and	its	associated	4 

diseases.	Here,	we	provide	 the	 first	molecular	evidence	 that	upon	TAX-induced	NF-kB	5 

activation,	RELA	directly	regulates	splicing	by	binding	to	gene	bodies	at	the	vicinity	of	GC-6 

rich	exons	and	by	locally	recruiting	the	splicing	factor	DDX17,	which	regulates	splicing	via	7 

its	RNA	helicase	activity.		8 

	9 

Our	results	demonstrate	 for	 the	 first	 time	that	TAX	deeply	 impacts	alternative	splicing	10 

independently	 from	its	effects	on	transcription.	 In	addition,	TAX-regulated	exons	were	11 

found	in	transcripts	enriched	in	functional	pathways	that	are	distinct	from	those	enriched	12 

by	TAX	transcriptional	targets,	suggesting	that	splicing	reprogramming	may	constitute	an	13 

additional	layer	of	regulations	by	which	HTLV-1	modifies	the	host	cell	phenotype.	Arguing	14 

for	this,	we	showed	that	the	TAX-induced	splicing	variant	CD44v10,	which	was	previously	15 

identified	 in	 circulating	 blood	 of	 HAM/TSP	 patients	 25	 and	 confirmed	 here	 ex	 vivo	 in	16 

infected	CD4+	T-cell	 clones,	 contributes	 to	modulate	 cell	 adhesion	affinity	 in	 vitro.	GO	17 

analyses	of	TAX	splicing	targets	also	pointed	to	the	phosphatidylinositol	signaling	system	18 

and	to	the	inositol	phosphate	metabolism,	two	processes	that	are	particularly	connected	19 

to	NF-kB	signaling	and	that	play	critical	roles	in	oncogenesis	and	disease	progression	of	20 

malignant	 diseases,	 including	ATLL	 43,44.	 This	 suggests	 that,	 besides	 its	 transcriptional	21 

effects,	splicing	regulatory	functions	of	TAX	might	account	for	its	oncogenic	properties.	22 

Accordingly,	a	large	number	of	TAX-regulated	exons	could	be	observed	in	ATLL	samples,	23 

which	 rarely	 express	 TAX	 but	 typically	 exhibit	 NF-kB	 addiction	 for	 survival	 and	24 

proliferation	24,45,46.	25 

	26 

At	the	molecular	level,	we	showed	that	the	increased	chromatin	occupancy	of	RELA	upon	27 

TAX	expression	 is	not	restricted	 to	promoter	regions	but	also	occurs	 in	 the	vicinity	of	28 

exons	that	are	regulated	at	the	splicing	level	(Figure	4).	Exons	regulated	by	TAX,	especially	29 

those	localized	within	1	kb	of	intragenic	RELA	binding	sites,	are	characterized	by	a	high	30 

GC-content,	a	typical	feature	of	exons	regulated	by	the	DDX5	and	DDX17	RNA	helicases	34	31 

(Figure	S3D).	Accordingly,	we	found	that	a	majority	of	TAX-regulated	exons	depend	on	32 

the	expression	of	these	proteins	(Figure	3).	A	local	chromatin	recruitment	of	DDX17	and	33 
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RELA	was	 validated	 on	 several	 TAX-regulated	 exons	 (Figure	 4).	More	 importantly	we	1 

identified	a	confident	causal	relationship	between	the	exonic	tethering	of	RELA,	the	local	2 

chromatin	recruitment	of	DDX17,	and	the	subsequent	splicing	regulation	via	DDX17	RNA	3 

helicase	 activity.	 This	 catalytic	 activity	 of	 DDX17	 is	 strictly	 required	 for	 its	 splicing	4 

regulatory	 functions	 (Figure	 5),	 as	 previously	 reported	 34.	 Indeed,	 the	 RNA	 helicase	5 

activity	of	DDX5	and	DDX17	has	been	involved	in	resolving	RNA	structures,	facilitating	6 

the	recognition	of	the	5'	splice	site,	that	can	be	embedded	in	secondary	structures,	and	7 

exposing	RNA	binding	motifs	 to	additional	 splicing	 regulators	 34,40,47-49.	However,	 even	8 

though	 some	 RNA	 binding	 specificity	 has	 been	 reported	 for	 DDX17	 50,51,	 these	 RNA	9 

helicases	are	devoid	of	a	proper	RNA	binding	domain	and	their	activity	in	splicing	may	10 

depend	on	additional	factors	that	are	able	to	provide	target	specificity.	Here,	we	suggest	11 

that	RELA	may	be	also	regarded	as	a	DDX17	recruiter	by	acting	as	a	chromatin	anchor	for	12 

DDX17	in	the	vicinity	of	exons	dynamically	selected	upon	NF-kB	activation.		13 

	14 

The	target	specificity	of	NF-kB	factors	remains	a	complex	question.	It	has	been	estimated	15 

that	approximately	30	to	50%	of	genomic	RELA	binding	sites	do	not	harbor	a	typical	NF-16 

kB	site,	and	that	only	a	minority	of	RELA-binding	events	associate	with	transcriptional	17 

change16-19,	 thereby	 indicating	 that	 neither	 a	 consensus	 site	 nor	 significant	 NF-kB	18 

occupancy	are	sufficient	criteria	for	defining	RELA’s	target	specificity.	Here,	we	identified	19 

a	typical	kB	consensus	motif	at	RELA-binding	loci	that	are	close	to	alternatively	spliced	20 

exons	but	we	also	uncovered	that	weak	splice	sites,	low	MFE,	and	significant	GC-content	21 

bias	of	exons	likely	contribute	to	RELA’s	target	specificity.	Because	low	MFE	and	high	GC-22 

content	confer	a	high	propensity	to	form	stable	RNA	secondary	structures,	the	recognition	23 

and	the	selection	of	such	GC-rich	exons	with	weak	splice	sites	by	the	splicing	machinery	24 

typically	depend	on	RNA	helicases	DDX5/17	34.	Based	on	these	observations	we	propose	25 

that,	upon	TAX-induced	NF-kB	activation,	RELA	binds	to	 intragenic	binding	consensus	26 

motifs	and	locally	recruits	DDX17.	When	the	RELA:DDX17	complex	is	located	at	a	close	27 

proximity	 of	 GC-rich	 exons	 flanked	 by	 weak	 splice	 sites,	 DDX17	 can	 impact	 on	 their	28 

inclusion	rate	by	unwinding	GC-rich	secondary	structures	of	the	nascent	RNA	transcript,	29 

and	by	potentially	unmasking	binding	motifs	for	additional	splicing	regulators.		30 

	31 

In	 conclusion,	 our	 results	 provide	 conceptual	 advance	 for	 understanding	 how	 cell	32 

signaling	 pathways	 may	 drive	 target	 specificity	 in	 splicing	 by	 dynamically	 recruiting	33 
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cognate	transcription	factors	at	the	vicinity	of	target	exons	that	act	as	chromatin	anchor	1 

for	 splicing	regulators.	 In	 the	 context	of	NF-kB	signaling,	 such	mechanism	likely	has	a	2 

significant	 impact	on	 cell	 fate	determination	and	disease	development	associated	with	3 

HTLV-1	 infection,	 but	 also	 on	 other	 situations	 linked	 to	 chronic	 NF-kB	 activation,	 as	4 

numerous	human	inflammatory	diseases	and	cancer.	5 

	 	6 
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Supplementary	data		1 

Table	 S1:	 Whole	 gene	 expression	 and	 alternative	 splicing	 changes	 upon	 TAX	2 
expression.	 Whole	 gene	 expression	 threshold	 was	 set	 to	 log2FC=0.6,	 p<0.05.	 For	3 
differential	splicing,	deltaPsi	threshold	was	set	to	1.1	p<0.05	(Fisher	test).	TAX-induced	4 
splicing	 regulations	 identified	 in	 RNA-seq	 datasets	 derived	 from	 carriers	 and	 ATLL	5 
samples	 (EGAS00001001296).	Alternative	splicing	profiles	of	 each	 clinical	 sample	was	6 
assessed	using	Farline	analysis	with	peripheral	blood	CD4+	T-cells	used	as	control.	The	7 
table	lists	452	TAX-induced	splicing	regulations	identified	at	least	once	across	56	clinical	8 
samples.	9 
	10 
Table	S2:	sequence	features	of	exons	regulated	by	TAX	11 
	12 
Table	S3:	genes	modified	in	splicing	by	TAX	in	a	DDX5/17-dependent	manner.		13 
TAX	splicing	targets	responsive	to	DDX5/17	were	attributed	to	splicing	events	lost	upon	14 
DDX5/17	depletion.		15 
	16 
Table	S4:	list	of	oligonucleotides,	siRNA,	sgRNA	and	TALE	sequences	 	17 
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Methods		1 

Cell	Culture	and	Transfections	2 

Peripheral	blood	mononuclear	cells	(PBMCs)	were	obtained	by	Ficoll	separation	of	whole	3 

blood	of	HTLV-1	infected	individuals.	T-cell	limiting	dilution	cloning	was	performed	as	4 

previously	 described	 4.	 The	 human	 embryonic	 kidney	 293T-LTR-GFP	 cells	 52,	 which	5 

contain	an	integrated	GFP	reporter	gene	under	the	control	of	the	TAX-responsive		HTLV-6 

1	LTR,	were	cultured	in	DMEM+Glutamax	medium	supplemented	with	decomplemented	7 

10%	 FBS	 and	 1%	 penicilline/streptomycine.	 This	 cell	 line	 was	 used	 to	 measure	8 

transfection	 efficiency	 in	 TAX	 and	 TAX	 M22	 conditions.	 In	 standard	 transfection	9 

experiments,	siRNAs	(Table	S4)	and/or	expression	vectors	(pSG5M	empty,	pSG5M-TAX-10 

WT,	 pSG5M-M22)	 were	 mixed	 with	 JetPrime	 (Polyplus-Transfection)	 following	 the	11 

manufacturer’s	 instructions	 and	 cells	 were	 harvested	 48h	 after	 transfection.	 TNFa	12 

exposure	consisted	in	treating	cells	with	10ng/ml	of	TNFa	for	24	hours.	13 

	14 

Cell-adhesion	assays		15 

Culture	 plates	were	 prepared	 by	 coating	with	 40	 µg/ml	 hyaluronic	 acid	 from	 human	16 

umbilical	 cord	 (Sigma)	 and	 25	 µg/ml	 type	 IV	 collagen	 from	 human	 placenta	 (Sigma)	17 

overnight	at	4°C.	Non-specific	binding	sites	were	blocked	for	1	h	with	PBS	containing	1	18 

mg/ml	 heat-denatured	 BSA.	 After	 three	 washes	 with	 PBS,	 5	 ×	 104	 cells	 transiently	19 

transfected	 with	 pSG5M-TAX	 vector	 or	 its	 empty	 control	 were	 added	 at	 48h	 post-20 

transfection.	Cell	adhesion	was	allowed	to	proceed	for	20	min	at	room	temperature.	Non-21 

adherent	cells	were	removed	with	3	PBS	washes,	and	adherent	cells	were	quantified.	All	22 

experiments	were	done	in	triplicate.		23 

	24 

Western	Blot	25 

Cells	were	washed	twice	with	1X	PBS	and	total	proteins	were	directly	extracted	in	RIPA	26 

buffer	(50mM	Tris	HCL	pH	7.4,	50	mM	NaCl,	2mM	EDTA,	0.1%	SDS).	A	total	of	20	μg	of	27 

whole	 cell	 proteins	 were	 separated	 on	 a	 NuPAGE™	 4-12%	 Bis-Tris	 Protein	 Gels	 and	28 

transferred	on	a	nitrocellulose	membrane	using	Trans-Blot®	TurboTM	Blotting	System.	29 

Membranes	were	saturated	with	5%	milk	and	incubated	overnight	at	4˚C	with	the	primary	30 

antibodies	against	RELA	(sc-109,	Santa	Cruz),	Tax	(1A3,	Covalab),	DDX17	(ProteinTech),	31 

DDX5	 (ab10261	Abcam),	Actin	 (sc-1616,	 SantaCruz).	After	 three	washes	with	1x	TBS-32 

Tween,	 membranes	 were	 incubated	 1h	 at	 room	 temperature	 with	 the	 secondary	33 
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antibodies	conjugated	with	the	HRP	enzyme	and	washed	3	times	as	above.	Finally,	 the	1 

HRP	 substrate	 (GE	 Helathcare)	 was	 applied	 to	 the	 membrane	 for	 5	 minutes	 and	 the	2 

chemiluminescence	was	read	on	Chemidoc	(Biorad).		3 

	4 

Co-immunoprecipitation			5 

Cells	were	harvested	in	IP	lysis	buffer	(20	mM	Tris-HCl	pH	7.5,	150	mM	NaCl,	2	mM	EDTA,	6 

1%	 NP40,	 10%	 Glycerol).	 Extracts	 were	 incubated	 overnight	 with	 5	 µg	 of	 antibodies	7 

recognizing	 either	 RELA	 (C20	 sc-372,	 Santa	 Cruz),	 Tax	 (1A3,	 Covalab),	 DDX17	8 

(ProteinTech)	 in	 the	 presence	 of	 30	 μL	 Dynabeads®	 Protein	 A/G	 (Thermo	 Fisher).	9 

Isotype	IgG	rabbit	(Invitrogen)	or	mouse	(Santa	Cruz)	was	also	used	as	negative	control.	10 

The	immunoprecipitated	complexes	were	washed	three	times	with	IP	lysis	buffer.		11 

	12 

Chromatin	Immunoprecipitation	13 

A	 total	 of	 107	 cells	were	 crosslinked	 with	 1%	 formaldehyde	 for	 10	 minutes	 at	 room	14 

temperature.	 Crosslinking	 was	 quenched	 by	 addition	 of	 0.125	 M	 glycin.	 Nuclei	 were	15 

isolated	 by	 sonication	 using	 a	 Covaris	 S220	 (2	 min,	 Peak	 Power:	 75;	 Duty	 Factor:	 2;	16 

Cycles/burst:	200),	pelleted	by	centrifugation	at	3,000	rpm	for	5	min	at	4°C,	washed	once	17 

with	FL	buffer	(5	mM	HEPES	pH	8.0,	85	mM	KCl,	0,5%	NP40)	and	resuspended	in	1	mL	18 

shearing	buffer	(10	mM	Tris-HCl	pH	8.0,	1	mM	EDTA,	2	mM	EDTA,	0,1%	SDS).	Chromatin	19 

was	sheared	in	order	to	obtain	fragments	ranging	from	200	to	800	bp	using	Covaris	S220	20 

(20	 min,	 Peak	 Power:	 140;	 Duty	 Factor:	 5;	 Cycles/burst:	 200).	 Chromatin	 was	 next	21 

immunoprecipitated	overnight	at	4°C	with	5	µg	of	antibodies:	RELA	(C20	sc-372,	Santa	22 

Cruz),	 DDX17	 (19910-1-AP,	 ProteinTech)	 and	 V5	 (AB3792,	 Millipore).	 Then,	 30	 μL	23 

Dynabeads®	Protein	A/G	(Thermo	Fisher)	were	added.	Complexes	were	washed	using	5	24 

different	buffers	:	Wash	1	(	1	%	Trition,	0.1	%	NaDOC	,	150mM	NaCl	,	10mM	Tris	HCL	pH8)	25 

,	Wash	2	(1	%	NP-40,	1	%	NaDOC	,	150mM	KCl	,	10mM	Tris	HCL	pH8)	,	Wash	3	(	0.5	%	26 

Trition,	0.1	%	NaDOC	,	500mM	NaCl	,	10mM	Tris	HCL	pH8),	Wash	4	(	0,5%	NP-40	,	0.5	%	27 

NaDOC	,		250mM	LiCl	,	20mM	TRIS.Cl	pH8	,	1mM	EDTA)	,	Wash	5	(	0.1	%	NP-40,	150mM	28 

NaCl	,	20mM	Tris	HCL	pH8,1mM	EDTA).	The	immunoprecipitated	chromatin	was	purified	29 

by	phenol-chloroform	extraction	and	quantitative	PCR	was	performed	using	Rotor-Gene	30 

3000	cycler	(Corbett)	or	LightCycler	480	II	 (Roche,	Mannheim,	Germany).	Values	were	31 

expressed	relative	to	the	signal	obtained	for	the	immunoprecipitation	with	control	IgG.	32 

Primers	used	for	ChIP	experiments	were	designed	in	exon/intron	junction	(Table	S4).	For	33 
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TALE	 ChIP	 experiment,	 DDX17	 and	 RelA	 enrichment	 were	 normalized	 to	 the	 signal	1 

observed	 with	 V5	 antibody	 corresponding	 to	 TALE	 recruitment.	 Then,	 the	 TALE	 GFP	2 

condition	was	used	as	control	and	set	to	1.	3 

	4 

RNA	extraction,	classical	PCR	and	Real-time	quantitative	PCR.		5 

Total	 RNAs	 were	 extracted	 using	 TRIzol	 (Invitrogen).	 RNAs	 (2.5	 μg)	 were	 retro-6 

transcribed	with	Maxima	First	Strand	cDNA	Synthesis	Kit	after	treatment	with	dsDNase	7 

(Thermo	 Scientific)	 following	 the	 manufacturer’s	 instructions.	 PCRs	 were	 performed	8 

using	 7.5	 ng	 of	 cDNAs	 with	 GoTaq	 polymerase	 (Promega,	 Madison,	 WI,	 USA).	 PCR	9 

products	were	separated	by	ethidium	bromide-labeled	agarose	gel	electrophoresis.	Band	10 

intensity	was	quantified	using	the	ImageLab	software	(Bio-Rad).	Quantitative	PCR	was	11 

then	performed	using	5 ng	of	cDNAs	with	SYBR®	Premix	Ex	Taq	TM	II	(Tli	RNaseH	Plus)	12 

on	LightCycler	480	II.	Relative	level	of	the	target	sequence	was	normalized	using	the	18S	13 

or	GAPDH	 gene	 expression	 (∆Ct)	 and	 controls	were	 set	 to	 1(∆∆Ct).	We	 calculated	 the	14 

inclusion	 rate	 of	 alternative	 exons	 using	 the	 following	 method:	 2−∆∆Ct	 (included	15 

exon)/2−∆∆Ct	(constitutive	exon).	The	oligonucleotide	sequences	used	are	listed	in	Table	16 

S4.		17 

	18 

RNA-seq	and	bio-informatic	analysis	19 

RNA-seq	analyses	were	performed	as	previously	described	22.	Briefly,	poly-A	transcripts	20 

were	extracted	from	293T-LTR-GFP	cells	transfected	with	pSG5M-Tax	or	pSG5M	empty	21 

vectors	and	knockdown	or	not	for	DDX5-17.	RNA-seq	libraries	were	generated	at	the	Aros	22 

Applied	 Biotechnology	 (Aarhus,	 Denmark)	 using	 Stranded	 mRNA	 Sample	 Prep	 kit	23 

(Illumina)	and	sequenced	using	the	illumina	HiSeq	2500	technology.	Each	sample	have	in	24 

average	 6.107	 of	 paired-end	 pairs	 of	 reads.	 These	 RNA-seq	 data	were	 analyzed	 using	25 

FaRLine,	 a	 computational	 program	 dedicated	 to	 analyzing	 alternative	 splicing	 with	26 

FasterDB	database	 23,53.	The	gene	expression	 level	 in	each	 sample	was	 calculated	with	27 

HTSeq-count	(v0.7.2)	54	 and	differential	 expression	between	conditions	was	computed	28 

with	DESeq2	(v1.10.1)	(	abs(log2FoldChange)	≥	0.4,	pvalues	≤	0.05)	55.	In	silico	screening	29 

of	NF-kB	responsive	elements	in	the	CD44	promoter	sequence	was	carried	out	via	PROMO	30 

database	(based	on	TRANSFAC	v8.3)	56.	The	MEME-ChIP	suite	was	used	to	discover	the	31 

regulatory	motifs	in	the	NF-kB	ChIP-seq	data	37.		32 
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For	the	prediction	of	splice	site	strength,	scores	were	computed	using	MaxEntScan	57	for	1 

sequence	(3	bases	in	the	exon	and	6	bases	in	the	intron	for	5’	splice	sites;	20	bases	in	the	2 

intron	and	3	bases	in	the	exon	for	3’splice	sites)	covering	both	sides	of	the	splicing	site.	3 

MaxEntScan	 uses	Maximum	 Entropy	Models	 (MEMs)	 to	 compute	 log	 odds	 ratios.	 The	4 

minimum	free	energy	was	computed	from	exon-intron	junction	sequences	using	RNAFold	5 

from	 the	 ViennaRNA	 package	 (v	 2.4.1;	 http://rna.tbi.univie.ac.at/cgi-6 

bin/RNAWebSuite/RNAfold.cgi).	Analyzed	sequences	include	25	nucleotides	within	the	7 

intron	 and	 25	 nucleotides	 within	 the	 exon.	 The	 GC	 content	 was	 calculated	 for	 exons	8 

defined	in	FasterDB	53.		9 

	10 

The	distribution	of	RELA	peaks	across	alternative	and	constitutive	exons,	and	the	average	11 

distance	 between	 RELA	 peaks	 and	 TAX	 exon	 targets	 was	 measured	 using	 ChiP-seq	12 

datasets	 from	 GEO	 58,	 ENCODE	 59	 and	 CISTROME	 60	 databases:	 from	 GEO	 GSE63736,	13 

GSM1239484,	 GSM486271,	 GSM486293,	 GSM486298,	 GSM486318,	 GSM847876,	14 

GSM847877,	GSM2394419,	GSM2394421,	GSM2394423,	 from	ENCODE	ENCFF002CPA,	15 

ENCFF002CQB,	 ENCFF002CQJ,	 ENCFF002CQN,	 ENCFF580QGA	 and	 from	 CISTROME	16 

53597,	5388,	5389,	4940,	36310,	36316,	4971.	For	another	GEO	dataset,	GSM2628088,	17 

reads	were	mapped	to	the	hg19	build	of	the	human	genome	with	Bowtie2	61	and	RelA	18 

peaks	were	 identified	with	Macs2	 62.	 Alternative	 and	 Constitutive	 spliced	 exons	were	19 

obtained	 from	 FasterDB	 53.	 In	 order	 to	 focus	 on	 intragenic	 RELA	 peaks,	 we	 used	 the	20 

bedtools	63	intersect	command	to	remove	all	intergenic	RELA	peaks	and	all	RELA	peaks	21 

localized	on	 first	 exon	 (or	at	 least	 at	 less	 than	500nt)	 for	each	gene.	A	Perl	script	was	22 

specifically	 created	 to	 measure	 the	 distance	 between	 RELA	 peaks	 and	 TAX-regulated	23 

exons.	Briefly,	RELA	peaks	and	exons	are	provided	as	BED	files	and	the	script	reports	for	24 

each	exon	the	distance	in	nucleotides	of	the	nearest	RELA	peak.	Closest	peak	distances	25 

from	 the	 710	 TAX-regulated	 exon-cassettes	were	 compared	 to	 closest	 peak	 distances	26 

from	710	exons	chosen	by	chance	(105runs).		27 

	28 

TALE	design	and	construct	29 

The	 TALE	 constructs	 were	 obtained	 from	 ThermoFisher	 Scientific.	 TALEs	 were	30 

constructed	using	the	Golden	Gate	Assembly	method	as	previously	described	38.	The	RVDs	31 

HD,	NI,	NG	and	NN	were	chosen	to	specifically	recognize	the	nucleotides	C,	A,	T	and	G,	32 

respectively.	The	TALE	targeting	CD44	v10	sequence	was	5’	TCCAACTCTAATGTCAATC	3’.	33 
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This	TALE	construct	was	fused	to	a	V5	sequence	and	a	SV40	NLS	at	its	5’	end	and	cloned	1 

in	 the	 NotI-HindIII	 fragment	 of	 the	 pXJ41	 backbone	 plasmid.	 DDX17-WT	 and	 DDX17-2 

K142R	cDNA	were	obtained	by	PCR	from	pcDNA3-HA-DDX17	and	pcDNA3-HA-DDX17-3 

K142R	and	were	cloned	in	the	HindIII-BglII	fragment	in	the	MCS	downstream	to	the	TALE	4 

sequence.	The	RELA	cDNA	was	amplified	from	a	library	of	cDNA	of	293T-LTR-GFP	cells	5 

and	was	cloned	in	the	HindIII-BamHI	fragment.		6 

	7 

CRISPR	design	and	construct		8 

The	 sequence-specific	 sgRNA	 for	 site-specific	 interference	 of	 genomic	 targets	 were	9 

designed	using	CRISPRseek	R	package1,	 and	 sequences	were	 selected	 to	minimize	off-10 

target	effect	64.	Two	complementary	oligonucleotides	were	annealed	and	cloned	into	BbsI	11 

site	of	pSpCas9(BB)-2A-Puro	(PX459)	V2.0	(Addgene	plasmid	#62988)	for	co-expression	12 

with	Cas9	using	5U	of	T4	DNA	ligase,	T4	DNA	ligase	buffer	(1X)	(Roche).	293T-LTR-GFP	13 

cells	were	 transfected	with	 the	mix	 of	 equimolar	 ratio	 of	 PX459-sgRNA1	 and	 PX459-14 

sgRNA2	 (Table	 S4).	 At	 24h	 post-transfection,	 the	 medium	 was	 changed	 and	 1μg/ml	15 

puromycin	was	added	for	selection	and	cells	were	cloned	by	serial	dilution	method.		16 

	17 
ACCESSION	NUMBERS	18 

The	RNA-Seq	data	have	been	deposited	on	NCBI	GEO	under	the	accession	number	19 

GSE123752.	20 
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Figure 1: TAX induces alternative splicing modifications independently of its transcriptional effects. 
(A) Genes regulated at the steady-state expression level and at the splicing level upon TAX expression. The 
significance thresholds were typically set to 10% for ∆PSI (differential percentage of spliced-in sequence) and 0.6 for 
log2- gene expression changes (p-val<0.05, Fisher's exact test), respectively. (B) Different alternative splicing events
induced by TAX: alternative acceptor (acc), alternative donor (don), exon skipping (ES), multi-exon skipping (MES), 
multi-exclusive exon skipping (MEx). (C) Validation of alternative splicing predictions by RT-PCR (35 cycles of PCR). 
The exon number is indicated in red. CD44 full variants (Ev*) were assessed using primers C13 and C12A (Figure S4). 
(D) Exon-based hierarchical clustering. Kruskal-Wallis ANOVA (p-val<0.05) was carried out with Mev4.0 software 
(http://www.tm4.org/) using the PSI values of exons that share similar regulations upon TAX and in clinical samples 
(EGAS00001001296). Only the most significant exon regulations are presented. (E) Gene ontology analysis (DAVID) 
of TAX splicing and transcriptional targets.
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Figure 2: Physical interactions between TAX, RELA and DDX17 in an NF-κB dependent manner. 
(A) Mean average plot (n=3, p<0.05) of cellular gene expressions upon TAX. Each gene is plotted according 
to its expression level (Log10(BaseMean) from DESeq2 analysis) and to fold change (Log2-FC) upon TAX. 
Red dots show significant gene expression changes (Log2-FC>0.6, p-val<0.05, Fisher's exact test). Black 
dots highlight genes encoding splicing factors. DDX5 and DDX17 are indicated. (B) Immunoprecipitation 
assays (IP) were carried out using isotype IgG or anti-DDX17 (B and G), anti-RELA (E and G) and anti-TAX 
(C and G) antibodies, followed by immunoblotting (IB) with indicated antibodies. (D) Western blot analysis 
of TAX and M22 expression 48h post-transfection. (F) RNA-free IP assays. (G) TNFα  exposure of M22 
expressing cells promotes RELA-DDX17 interactions. (H) Model of NF-κB-dependent interplay between 
TAX, RELA and DDX17.
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Figure 3: DDX5/17 regulates TAX splicing targets in an NF-κB-dependent manner. 
(A) Western blot analysis of DXX5 and DDX17 expression in cells expressing or not TAX and depleted or not of 
DDX5 and DDX17 by siRNA. (B) Western blot analysis of RELA and β−actin upon TAX expression and siRNA-
DDX5/17 delivery. (C) Splicing events modified upon the depletion of DDX5/17 in TAX positive cells. The significant 
threshold was set to ≥2 in comparisons between TAXvsCTL and TAXsiDDX5/17vsCTL. (D) Validation of alternative 
splicing predictions of a set of TAX- and DDX5/17-regulated exons. Histograms represent the results of exon specific
quantitative RT-PCR measurements computed as a relative exon inclusion (alternatively spliced exon vs constitutive
exon reflecting the total gene expression level) from three biological replicates ± s.d.. All of these genes but 
MYCBP2 were unmodified at the whole transcript level upon TAX expression (Figure S2C).
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across the promoter, the exon v10, and the constitutive exon E16 of CD44. The RELA enrichment is expressed as 
the fold increase in signal relative to the background signal obtained using a control IgG. (C) Relative exon inclusion 
of CD44 exon v10 were quantified by qRT-PCR in parental cells and its CD44∆kB counterparts. The histogram shows 
mean ± sd of three independent experiments. (D) Bootstrapped distribution of median distance between intragenic 
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Figure 5: Chromatin and splicing regulation upon TALE-mediated tethering of RELA and DDX17. 
(A) The TALE domain was designed to bind the v10 exon of CD44 and fused to either GFP (A-C), RELA (A), DDX17
 (B) or its helicase-deficient mutant DDX17_K142R (C). The effect of TALEs on RELA and DDX17 chromatin 
enrichment (left panels) and on the relative v10 exon inclusion (right panels) was monitored by qChIP and qRT-PCR,
 respectively. Results were normalized to measures obtained in TALE-GFP assays. Mean ± sd of three independent 
experiments are shown (*p-val<0.05).
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Figure S1: TAX-induced alternative splicing of CD44 in vivo and in vitro.  
(A) Expression of the splicing variant CD44v10 in HTLV-1 positive and negative cellular clones T-CD4+ derived from
HAM/TSP patients (7 cellular clones in each category). CD44v10 mRNA were quantified by qRT-PCR from total RNA
 extracts. Median ±SD for non-infected vs infected clones were 11.1±6.87 vs 3.7±3.57 ; Mann Whitney test, p=0.047. 
(B) Positive correlation between TAX and CD44v10 mRNA expression in 7 infected CD4+ T-cell clones (Pearson 
correlation test). (C) qRT-PCR analysis of exon inclusion rate of CD44 exon v10 in 293 T-cells transiently transfected
with pSG5M-TAX, pSG5M-M22 and empty pSG5M constructs. The relative exon inclusion of v10 corresponds to 
normalized v10 versus exon E16 (constitutive exon) expression levels. (D) Cell adhesion properties of cells transiently 
transfected with control vector, pSG5M-TAX and pCEP4-CD44V10 on plate surfaces coated with Hyaluronic acid 
and type IV Collagen. Histograms represent means ± s.d. of three independent experiments.
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Figure S2: DDX5/17 expression regulate TAX splicing targets. 
(A) Bootstrapped distribution of DDX5/17 sensitive TAX-regulated exons and 648 randomly chosen exons 
(10000 repetitions) among overall expressed exons (blue). One Sample t-test p = 2.2e-16. (B) Validation of RNA-seq 
data using exon specific RT-PCR. (C) Fold change in gene expression of TAX-regulated exons responsive to DDX5/17 
upon TAX expression. Values were obtained from DESeq2 analysis of RNA-seq data and expressed as
Log2(FoldChange). Histograms represent means ± s.d. of three independent experiments. (*) p-val<0.05 
(Mann Whitney test). 
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Figure S3: Chromatin tethering of RELA and DDX17 regulates alternative splicing. 
(A) TAX-induced exon inclusion of CD44 exon v10 relies on NF-kB activation. 293T-LTR-GFP cells were transiently
 transfected with the TAX vector along with the IkBSR expression vector and the corresponding empty control vectors. 
The inclusion rate of exon v10 was quantified by qRT-PCR. Histograms represent means ± s.d. of three independent 
experiments. (*) p<0.05 (Mann Whitney test). (B) Distribution of constitutive and alternative exons in RELA-enriched 
intragenic regions (3 kb). ChIP-seq datasets were analysed as detailed in method section. We excluded RELA peaks 
localized in intergenic regions and exons linked to specific events like pomoters, alternative first/last and mutually 
exclusive exons. The groups “Constitutive exons” and “Alternative exons” contained 41873 and 103000 exons, 
respectively. The window was fixed to 3 kb upstream and downstream of each exon coordinates. P-value was 
calculated using the Mann-Whitney test. 
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Figure S4: Nested RT-PCR analysis of CD44 transcripts expressed in TALE assays and in cells expressing 
or not TAX. 
Oligonucleotides were previously described (36). The first round of amplification consisted in 15 cycles of PCR with 
the primers C13 and C12A, the second round consisted in 35 cycles with primers pv10 and C2A. Final PCR products
were resolved on Agarose gel (1%). 
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