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Abstract 

The human genetic diversity of the Americas has been shaped by several events of gene flow 

that have continued since the Colonial Era and the Atlantic slave trade. Moreover, multiple 

waves of migration followed by local admixture occurred in the last two centuries, the impact 

of which has been largely unexplored. 

Here we compiled a genome-wide dataset of ~12,000 individuals from twelve American 

countries and ~6,000 individuals from worldwide populations and applied haplotype-based 

methods to investigate how historical movements from outside the New World affected i) the 

genetic structure, ii) the admixture profile, iii) the demographic history and iv) sex-biased gene-

flow dynamics, of the Americas. 

We revealed a high degree of complexity underlying the genetic contribution of European and 

African populations in North and South America, from both geographic and temporal 

perspectives, identifying previously unreported sources related to Italy, the Middle East and to 

specific regions of Africa.   
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Introduction 

North and South America were the last two continents to be colonized by humans. The 

peopling of the Americas was a complex process, involving multiple dispersal events, that 

started at least 15 thousand years ago (kya) 1–6. Nowadays, a substantial proportion of 

individuals living in the Americas is the result of more recent episodes of admixture, occurred 

following large migrations during and after the European Colonial era and the consequent 

deportations in the African slave trade 7. 

The Colonial Era of the Americas started soon after the European discovery of the continents 

in 1492, when old world’s powers started to explore and settle the Western hemisphere. This 

colonization heavily impacted autochthonous population, which were decimated both by wars 

and pathogens brought by the invaders. The Atlantic slave trade, which occurred between the 

16th and 19th century, was initiated by Portuguese and Spaniards leading to the presence of 

millions of people with African ancestry in the American continents. 

Historical records have attested a general imbalance in the number of males and females 

disembarked in these migration and deportation events. Especially during the early phase of 

Iberian colonization, the immigrants were represented mostly (>80%) by males 8, while the 

females represented only 5-6%, although their proportion increased in the following decades7. 

Since the end of the 19th century, several migrations, mostly from the Southern and Eastern 

regions of Europe, had a strong impact on the demographic variability of the continent. In fact, 

it has been estimated that more than 32 million individuals reached the United States at the 

end of the 1800s and the beginning of the 1900s and similar estimates are available for other 

American countries. For example, more than 6 million people arrived in Argentina and more 

than 5 million in Brazil in the same period 9. 

 

Given their historical and epidemiological implications, these migrations have been the subject 

of several genetic studies 10–14. Most of them have exploited Local Ancestry inference (LA) 

algorithms, in which individual genomes are deconvoluted into fragments ultimately tracing 

their ancestry to populations from different macro-geographic areas. LA approaches provided 

multiple insights into the composition of several recently admixed populations 15,16. However, 

when multiple closely related populations are involved in the admixture of a specific target 

group, this strategy might have a reduced power in discriminating among sources, leading to 

spurious or incomplete results.  

While several surveys 10,13,14,17 present a continental-wide analysis of the origin and dynamics 

of the African and European Diaspora into the Americas, a more comprehensive and 

systematic investigation considering multiple ancestries across the two continents is currently 

missing 10–13.        
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Gouveia et al.17 have recently performed a detailed analysis of the African regional ancestry 

and its dynamics in several populations from North-, South-America and the Caribbean region. 

 

The recently increased availability of genome-wide data, offers, for the first time, the chance 

to capture the complexity of historical and demographic events that affected the recent history 

of the Americas by studying the recent admixture profile of American populations in the 

continents. 

With this in mind, we have assembled and analysed a genome-wide dataset of 17,722 

individuals, including ~12,000 from North, Central and South America and ~6,000 from Africa, 

Europe, Asia and Oceania (Supplementary Figure 1, Supplementary Table 1A-B). 

To provide a comprehensive genetic description of the complex ancestries blending in the 

Americas, we have harnessed haplotype-based and allele frequency methods to a) 

reconstruct the fine scale ancestry composition, b) evaluate the time of admixture, c) explore 

the demographic evolution of different continental ancestries after the admixture and d) assess 

the extent and magnitude of sex biased gene-flow dynamics.  
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Results 

 

Clustering of the donor individuals 

 

To minimize the impact of within-source (“donors”) genetic heterogeneity in the ancestry 

characterization process, we grouped the assembled 6,115 individuals (Supplementary Figure 

1, Supplementary Table 1A-B) from 239 population-label donors (from which American 

individuals are subsequently allowed to copy fragments of genome, see Methods) into 89 

genetically homogeneous clusters (Supplementary Figure 2, Supplementary Table 2) on the 

basis of haplotype similarities using CHROMOPAINTER and fineSTRUCTURE18. 41 and 40 

of these were European/West Eurasian and African respectively, along with 3 groups of 

American individuals; while the remaining 5 clusters differentiate Oceania and East Asia.  

A detailed description of the composition of the clusters is reported in Supplementary Text and 

Supplementary Table 2. 

Our fineSTRUCTURE results (Supplementary Figure 2, Supplementary Table 2) confirm the 

worldwide genetic variation pattern already observed by previous studies at the continental 

scale 19–23. 

 

The ancestral mosaic of American populations 

 

We fit each of the 22 American populations as a mixture of the identified donor groups using 

SOURCEFIND24. In contrast to Non-Negative Least Square (NNLS) approach, SOURCEFIND 

uses a Bayesian algorithm to provide increased resolution in distinguishing true contribution 

from background noise (see Methods section).  

The contribution of the 21 most representative clusters (sources with proportion of no less 

than 2% in at least one recipient population) to the American admixed populations are reported 

in Figure 1A and Supplementary Table 3. The same procedure using NNLS provided 

consistently similar results (Supplementary Figure 3).  

 

African ancestries distribution reflects the complexity of the Slave Trade dynamics  

Sub-Saharan African ancestry was observed at high proportion in African-Americans 

(AfroAme: 69% and ASW: 74.1%) and Barbados (ACB: 87.1%), with relatively high 

contribution registered also for the other Caribbean and Brazilian populations (>10%; Figure 

1B).  

In detail, “BeninNigeria” cluster showed the highest contribution (≥30% of the total) in African 

Americans and Barbados, while, in other Caribbean populations, the contribution of 
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“BeninNigeria” and “GambiaSenegal” clusters is comparable with average proportion of 6.9% 

(min=2.6%; max=11%) and 6.7% (min=3.6%; max=11.1%), respectively.       

Moreover, we found contributions from “GambiaSenegal” (mean=4.2%; min=1.3%; 

max=11.1%) in Mexico, Caribbean islands and Colombia but not in Brazil, Argentina and Chile 

that have a proportion of less than 0.2%, consistent with previous results17. 

 

In South America, all the analysed populations show high heterogeneity in African proportions, 

the highest values in individuals from Salvador (47.8%)25, possibly reflecting the high number 

of deported African slaves for sugar production in the Northeast area of Brazil in the 17th 

century 26. 

In details, the African cluster contributing the most is related to groups from Angola and 

Namibia (“AngolaNamibia” cluster), with Salvador (Brazil) having the highest percentage 

(>20%), similar to the contribution from “BeninNigeria” (~19%), mirroring the history of African 

slaves arrivals in Brazil 26 (Supplementary Figure 4, Supplementary Table 3). Although a non-

negligible contribution from East and South-East Africa at the end of the Slave Trade period 

has been documented 27, none of the analysed population samples showed an East African 

ancestry fraction larger than 2%. AfroAme and ASW show the highest proportion of this 

ancestry (1.2% and 0.8%, respectively). Nevertheless, when the ancestry is explored at 

individual level, samples with more than 5% of East and/or South-East African ancestries were 

present in more than 1% of individuals from AfroAme (30/2004), ASW (2/55), Bambui (10/909) 

and Pelotas (51/3629) (Supplementary Figure 5), supporting recent findings 17. 

 

When dissecting the African ancestry into regional sources (Supplementary Figure 6B), the 

UPGMA clustering does not strictly mirror geographical/historical patterns. Yet, all the 

Caribbean and circum-Caribbean populations, with the exception of a Colombian sample, 

cluster together. Similarly, all the Southern American samples, but not Chile, form a private 

group. Interestingly, ACB is different from any other populations, composed mainly by 

“BeninIvoryCoast” and “BeninNigeria” clusters.  

 

Complex variation of European ancestries distribution 

European ancestry was observed at high proportion in European-Americans (EuroAme), 

Caribbean Islands (PUR from Puerto Rico having the highest proportion, 79%) and Mexico 

(~42% and ~48% for Mexican and MXL, respectively), but also in Southern America, with 

proportions ranging from 22% in Peru (PEL) to ~82% in Bambui. 

When the variation of European ancestries in the Americas is evaluated groups from United 

States (EuroAme, AfroAme e ASW) and Barbados (ACB) are characterized by a substantial 

proportion of British and French ancestries. On the contrary, in the remaining populations the 
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most prominent European ancestry was represented by Iberian-related clusters, reflecting the 

geo-political extent of European occupation during the Colonial Era (Figure 1A). In details, 

populations from Mexico, Caribbeans and South America derive most of their European 

ancestry from the Iberian Peninsula, represented by two clusters. European Americans 

(EuroAme) exhibit high levels of heterogeneity, showing not only a high proportion of France 

and Great Britain, but also Greece and South Italy, Central Europe and Scandinavia, revealing 

the high variability of European ancestries in the United States, possibly due to secondary 

movements in the 19th and 20th centuries 28, which involved populations that did not take part 

in the Colonial Era movements9. Moreover, Pelotas (Brazil) is characterized by a high 

contribution from North Italy (~3%), while Argentina from both North and South Italy (2.3% and 

2.2%, respectively).  

 

The investigation of the individual ancestry profiles confirmed and further refined the 

identification of multiple European secondary sources.  

In one African American sample (AfroAme), we identified a high variability of European 

ancestry, with several individuals characterized by more than 5% ancestry from Northern, 

Central and Southern European regions (Supplementary Figure 5). 

Italian ancestry was also found at considerable proportion (>5%) in individuals from Colombia 

(4/98), Caribbean (51/1112), Dominican Republic (2/27), Ecuador (1/19), Mexico (15/427), 

Peru (6/153), Puerto Rico (4/99), Argentina (27/133) and Brazil (622/5779). In fact, Italy has 

been reported as one of the main sources of migrants to South America during the 19th 

century, second only to the Spanish and Portuguese influences 29 (Supplementary Figure 5, 

Supplementary Figure 7).  

 

We estimated the relationship among American populations considering the relative European 

ancestries proportion by applying a UPGMA clustering approach (Supplementary Figure 6A). 

Differences in regional affinities to British/French vs Spanish/Portuguese ancestries among 

American populations were observed. Furthermore, within the last group, Spanish and 

Portuguese ancestries show distinct geographical distributions, consistent with the Treaty of 

Tordesillas, signed in 1494, to regulate the regional influence of Spain and Portugal in the 

Americas (Caribbean islands represent again an exception) (Supplementary Figure 6A).  

 

Native American ancestry distribution 

With the exception of Mayan individuals (>65%), Native American ancestry is high in 

populations from the Southern part of the continent and Mexico (41%), with the highest values 

in Peru (59.2% PEL), Ecuador (37%) and Argentina (31%) (Figure 1 and Supplementary Table 
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3). Interestingly, in both the analysed African-American samples we identified a non-negligible 

proportion of individuals harbouring Native American related ancestry. 

 

The contribution of Jewish related ancestry in the Americas 

A recent genetic investigation found a non-negligible proportion of ancestry related to Jews 

and Middle East groups in five populations from Southern America (Mexico, Colombia, Peru, 

Chile, Brazil) 24. In our analysis, we confirmed the presence of genetic ancestries related to 

“NorthAfrica”, “Levant”, “LevantCaucasus” and “Jews” clusters in the same countries, although 

at a lower proportion than previously estimated (~2.8%). This discrepancy might be due, at 

least in part, to the fact that our dataset is mostly composed by Brazilian individuals, which 

have been documented to have a smaller Jewish ancestry 24. Only 2.5% of analysed 

individuals contain more than 5% of Jewish or Middle-Eastern ancestry (Salvador: 0.8%, 

Bambui: 3.2%, Pelotas: 2.9 %). In contrast, this proportion is higher in the non-Brazilian 

populations (Colombian from Medellin CLM: 8%, Colombian: 3.8%, Peru: 2.3%, Mexican: 

5.4%, Mexicans from Lima, MXL: 11%, Chile: 16%, Argentina 12%). Similar proportions were 

found for Caribbean populations (ACB from Barbados: 1.4%, Caribbean: 6.8%, Dominican: 

3.7%, Puerto: 3.9%, PUR: 1.4%). Interestingly, we found a relatively high proportion of 

individuals showing more than 5% contributions related to “Jewish” sources also in one of the 

African American samples (AfroAme: 3.8%), in European Americans (EuroAme: 26.7%) and 

in Argentinians (~12%) (Supplementary Figure 5). 

  

Assessing the impact of sex-biased admixture of the Americas 

 

To evaluate the impact of sex-biased admixture dynamics in the American populations, we 

compared the continental ancestry proportions inferred by ADMIXTURE 30 from autosomal 

data against those estimated for the X chromosome (see Methods). With respect to European 

ancestry, a paired Wilcoxon test comparing the distribution of autosomal vs X chromosome 

revealed that the former is significantly higher in all comparisons, suggesting a higher 

contribution of European males than females in the gene pool of American populations 

(Supplementary Figure 8, Supplementary Table 4), in agreement with previous continental-

scale reports based on more limited data 25,31,32. This observation is further supported by the 

fact that Native American ancestry estimated from autosomal data is always lower (with the 

exception of Dominican) than that estimated from the X chromosome. In contrast, when 

considering the African ancestry, a considerable number of populations do not show any 

signature of sex imbalance. Indeed, in only eight out of 19 comparisons (ACB, AfroAme, 

Bambui, Caribbean, EuroAme, Pelotas, PUR and Salvador) the autosomal proportion was 

significantly lower than that inferred from the X chromosome (adj. p < 0.05). With the exception 
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of ACB, all these significant differences were associated with sample sizes greater than 100. 

These results are in contrast with historical records documenting a higher number of 

disembarked male slaves 27 and might reflect complex admixture dynamics in the following 

five centuries, or limitations in the approach exploited here, as previously suggested 33.  

 

Inferring the time of admixture in American populations. 

 

To provide a temporal dimension to the gene flow among the analysed populations, we 

inferred time of admixture by applying GLOBETROTTER (GT) in two different setups for 

“Population” and “Individual” level analyses, as detailed in the Methods section. 

In population-level inferences all the analysed groups showed evidence of at least one 

admixture event as reported in Figure 2A and Supplementary Table 5. Specifically, we 

identified one admixture event in 14 populations (ASW, ACB, Mayas, Maya, PEL, Peru, 

Salvador, Ecuadorian, Colombian, MXL, Argentina, CLM, Chile, Puerto) with inferred times 

spanning between ~6 and 11 generations ago. The identified sources are related to British or 

French and Benin-Nigeria in ACB and ASW, Iberian or Southern European and America in 

Maya, Mayas, PEL, Puerto, Peru, Ecuador, Colombian, CLM, MXL, Argentina and Chile, in 

line with SOURCEFIND estimates. In contrast, Salvador sources are representative of Iberia 

and Cameroon-Gabon. Two populations from Caribbean Islands, PUR and Dominican, 

showed a curve profile that fits better with a single admixture involving more than two sources 

from Europe, Africa and America, dated ~9-11 generations ago. The remaining six populations 

(Mexican, EuroAme, Pelotas, Caribbean, AfroAme and Bambui) showed signature of at least 

two admixture events mainly involving American, European and African sources and occurring 

6-8 generations ago.  

To assess regional spatio-temporal differences in admixture dynamics, we performed a GT 

“Individual” analysis (Figure 2B-D). For all the analysed populations the inferred 2.5%-97.5% 

time interval had similar boundaries spanning between ~1 and ~20 generations ago 

(min=1.18; max=19.5). 

The source-specific admixture time estimates were explored evaluating the distributions of 

time inferred considering different European and African signals (Figure 2B-C). When the 

European sources were considered, times involving Iberian clusters were significantly older 

than those involving British/French ones, which in turn were characterized by dates 

significantly older than those involving Italian sources (Wilcoxon test, Bonferroni adjusted p-

value < 0.05). 

For the five African sources considered, times inferred for the “SenegalGambia” cluster are 

significantly older than all the other tested sources (Wilcoxon test, Bonferroni adjusted p-value 

< 0.05). In contrast, times involving “AngolaNamibia” are more recent than all the others 
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(Wilcoxon test, Bonferroni adjusted p-value < 0.05). Moreover, times involving 

“BeninIvoryCoast” are significantly older than the one involving “BeninNigeria” and 

“CameroonGabon”. Lastly, times involving “CameroonGabon” are significantly older than the 

one involving “BeninNigeria” (Wilcoxon test, p-value < 0.05).  

Reconstructing the ancestry specific demographic histories of admixed populations.  

 

To characterize the demographic history of specific continental ancestries, we intersected the 

results of Identity-By-Descent (IBD) and LA inferences as in Browning et al. 34. We excluded 

from the analysis all the population ancestries in which 𝛼(𝑐𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡) ∗  𝑁 <  50 where α is the 

proportion of a specific ancestry as estimated by SOURCEFIND, and N is the total number of 

chromosomes in the analysed population.  

The majority of the studied populations showed, for all the continental ancestries considered, 

a demographic curve characterized by a decline until approximately 10 generations ago, 

followed by a general recovery. 

This pattern is not universally observed in all the American populations: the Brazilian samples 

from Bambui showed a general decline in population size for the African and European 

ancestry, according to previous surveys reporting its low heterogeneity 25. Conversely, the 

European ancestry for European Americans (EuroAme) does not show signs of demographic 

decline, possibly reflecting multiple European waves contributing to this population.  

When evaluating the Native American ancestry, the Mexican sample differs from all the others 

not showing any decrease in the effective population size. A similar behavior was shown when 

the two samples from Peru were pooled together (Supplementary Figure 10), and could reflect 

admixture among different Native American groups occurred after the European colonization, 

or different demographic histories across various American regions. 

For the European ancestry, Puerto Ricans (PUR) and Colombians (CLM) showed the most 

severe decline in effective population size (Figure 3, Supplementary Figure 9). 

Interestingly, for the four populations showing a decline-recovery pattern and for which the 

effective population size for African and European components were available, the African 

ancestry started to recover later than the European one, with the exception of the Caribbean 

population. Furthermore, when all the available data points are considered, the time of the last 

minimum before the recovery is significantly larger for the African ancestry (Wilcoxon test, p-

value < 0.05).  
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Discussion 

 

Despite being virtually isolated from the rest of the world until five hundred years ago, most of 

the individuals living in the Americas harbour, together with Native American ancestry, a 

substantial genomic proportion inherited from Europe and Africa. These ancestral mosaics are 

the consequence of admixture events occurred after European exploration and colonization, 

which was followed by African deportation and labour migration that have impacted the 

American continents in the 19th and 20th century.  

 

The investigation of the times of admixture among the two continents revealed that all the 

present day American populations are the result of at least one admixture event involving 

Native American, African, and European sources within the last 6-12 generations, 

corresponding to 1644 Common Era (CE) and 1812 CE (considering a generation time of 28 

years; Figure 1 and Figure 2). However, the approach considering populations does not 

capture the high complexity of the admixture dynamics, characterized by several waves of 

migration in the last five centuries, as reported in historical and anthropological records 7,27,35. 

One way to partially overcome this limitation is analysing single individuals rather than 

populations, capturing a higher degree of variation in the fragment length distribution. Our per-

individual time estimations provided several insights into the complexity of admixture in the 

Americas. It has been recently reported that the origin of Africans deported in the continents 

followed a general North-South temporal pattern 36, with slaves from Senegal and Gambia 

being deported earlier than the ones from more southern areas (www.slavevoyages.org). In 

accordance with historical data, the inferred admixture dates involving populations from 

Senegal and Gambia are older than the ones involving all the others, indeed this area 

remained the main slave trade site for the Spanish possessions until 1640 37. Similarly, all the 

dates involving clusters related to Angolan and Namibian individuals are characterized by 

younger recent admixture times (Figure 2D). 

For European sources, estimated admixture dates involving gene flow from Iberia are older 

than dates of admixture from France/Great Britain sources, which, in turn, are older than 

admixture events from Italian sources, that, according to historical records became substantial 

only in the second half of the 19th century.  

 

Furthermore, we assessed the large impact of the Atlantic Slave trade in several populations 

under study, with patterns reflecting historical records 27,35,37.  

In detail, our analysis revealed that West-Central Africa ancestry is the most prevalent in the 

American continents as previously reported 14,17, but we additionally identified a high 
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contribution from Senegal and Gambia in Caribbean, Mexico and Colombia in accordance 

with African slave arrivals predominantly to Spanish-speaking America until 1620s 27.  

 

Subsequently, according to disembarkment records, about 50% of all West African slaves 

were deported to Dutch, French and British sugar plantations in the Caribbean. Accordingly, 

we estimated a high contribution from Benin and Nigeria in all the Caribbean populations and 

in populations from US in line with the reported slave arrivals. 

 

Among all the analysed populations, ACB (Barbados) is characterized by the highest Sub-

Saharan ancestry proportion (~88%), possibly due to the presence of sugar cane industry 

combined with the relatively low European immigration 35 in the 18th century.  

At a microgeographic scale, Barbadians derives their African ancestry from “BeninNigeria” 

(~50%) and from “BeninIvoryCoast” (~21%) (Figure 1A and Supplementary Table 3), two of 

the main source areas reported for the British-mediated slave trade.  

In contrast, Brazil shows a peculiar African ancestral composition, characterized by a high 

proportion of ancestry related to Angola and Namibia, consistent with the Portuguese 

settlement in Angola from the beginning of the XVII century. A similar African component is 

also observed in Argentina, probably due to the fact that slaves arrived primarily from Brazil 

via the Portuguese slave trade from Angola 36,38. 

The Atlantic coast of Africa was not the only region involved in slave deportation; in the last 

decades of the slave trade period, Mozambique was the third largest supplier of slaves27. We 

found ancestry related to Southern East African groups in a non-negligible proportion of 

individuals from Bambui and Pelotas.  

While similar works 14,17 analyzed Bantu populations from Southern, Southern Eastern and 

Eastern Africa, here we included Bantu populations from Angola, which has been documented 

as one of the main regions for slave deportation. Considered together, this study and Gouveia 

et al. 17 suggest an important role of Southwestern, South and Southeastern Africa in shaping 

the African gene pool of populations from the Atlantic Coast of the Southern Cone of South-

America. 

For European sources, we confirmed the large impact of Great Britain, France and Iberian 

Peninsula for all the tested populations, with a distribution reflecting the geographic occupation 

of the Americas in the Colonial Era.  

Furthermore, our approach revealed the existence of several European secondary sources 

that contributed to many American populations. In fact, we have identified ancestry closely 

related to Italian populations in European Americans from the United States, Argentinian and 

Brazilian populations 39. 
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The Italian migration in the Americas has been recently described as one of the largest 

migrations of the 19th century, and has been usually referred to as the “Italian diaspora” 40–42. 

Although it started soon after 1492, it reached high proportions only in the second half of the 

19th century, with more than 11 million individuals migrating towards the continents, largely to 

the US, Brazil and Argentina. 

Between the 1866 and the 1916, approximately 4 million Italians were admitted in the United 

States. In the 2017 United States Census Bureau nearly 17 million people (5% of global 

population) were reported as Italian, with proportions spanning from 1.3% to 17% in different 

states.  

In Brazil, also thanks to subsidies offered by the society for the promotion of immigration, after 

1820 nearly half of all immigrants were Italians, and in 1876, their annual arrival rate became 

higher than the one from Portugal. These migrations continued steadily until 1902, when a 

decree of the Italian government put an end to all subsidized emigration to Brazil 43. We found 

signals of these migrations, mostly related to North Italy, in all the three Brazilian samples 

analysed, with the highest proportion in Pelotas, followed by Bambui and Salvador. 

In Argentina, the identified Italian contribution is related both to the Northern and Southern 

part of the peninsula, which is in accordance with movements of millions of individuals from 

Northern (earlier) and Southern (later) Italy registered from the second half of 1800 throughout 

the 1950s 9,29. It has been reported that Italian immigration was the highest (39.4%) compared 

to the ones from other countries at the beginning of the 20th century 44,45. 

Therefore, at a pan American level, the distribution of the Italian components is heterogeneous 

and closely reflects the one reported by historical records. 

 

Moreover, Pelotas is also characterized by contributions from additional sources, such as 

Central and North-Europe (“GreatBritain1”, “France”, “CentralEurope1-2” and “Scandinavia”) 

in accordance with historical records. 

 

Recently, a survey employing similar methods on five Southern American populations 

identified South and East Mediterranean ancestries across Americas, which has been 

interpreted as a contribution from Converso Jews 24. Our analysis of the individual ancestry 

distribution confirmed the presence of Jews and Levantine ancestries in virtually all the 

analyzed populations, including those from the Caribbean (Supplementary Figure 5). 

By evaluating the continental ancestry estimates using an allele frequency method we were 

able to confirm the sex-biased admixture dynamics suggesting that a higher number of 

American females than have contributed to the modern populations. Conversely, European 

males had a larger contribution than females from the same continent. 
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In contrast, for the African ancestry we observed an inconsistent result, with some, but not all 

the populations showing evidence for a higher female contribution, partially discordant with 

historical reports. A possible explanation might be that the ratio between African males and 

females is lower than the one observed for the European component, preventing its 

identification with small sample sizes, and suggesting that such patterns (or their absence) 

should be interpreted with caution, as previously suggested 33.  

All these results confirm that the European and African components are playing an important 

role in shaping the genetic differentiation of different American groups, although their 

demographic evolution after the arrival in the “new world” is still unknown. 

The analysis of ancestry-specific effective population sizes demonstrated that, regardless of 

their composition, virtually all the continental ancestries experienced a general decrease until 

approximately 10 generations ago, after which a general population size recovery was inferred 

(Figure 3, Supplementary Figure 9). 

Interestingly, the recovery of the African population component postdates those of the 

European one, possibly reflecting the different conditions experienced by African slaves and 

European settlers. 

On the other hand, the effective population size of the Native American component in 

Mexicans and Peruvians does not show evidence of decrease, in contrast with historical 

records reporting a general dramatic decline of the Native American population after European 

colonization.  

This observation is in line with Browning et al. 34 in which a smaller reduction in the effective 

population size of Mexicans for Native American ancestry compared to other populations was 

observed. This result is also in line with our GLOBETROTTER results, where we found 

evidence for admixture between two Native American related sources around 15 generations 

ago.  

It may be possible that, the reported decline did not heavily affect the genetic variability of 

survivor populations; or that individuals from different isolated native groups have been put in 

contact as a consequence of the European colonization and deportation, as recently 

suggested for Peruvian populations 46. This would result in an inflated effective population size 

estimate, as we observe in our IBDNe analysis.  

 

In conclusion, we demonstrated that the European and African genomic ancestries in 

American populations are composed of several different sources that arrived in the Americas 

in the last six centuries, dramatically affecting their demography and mirroring historical 

events. The analysis of high quality genomes from the American continents, combined with 

the analysis of ancient DNA and denser sampling will be crucial to better clarify the genetic 
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impact of these dramatic events. In addition, the fine scale composition here reported is 

important for the future development of epidemiological, translational and medical studies. 

 

Methods 

 

Dataset. We assembled 11,15,16,20,21,23,25,32,47–69 a genome-wide dataset of 25,732 worldwide 

individuals genotyped with different Illumina platforms. Of these, 25,455 were retrieved from 

publicly available and controlled access resources. In order to increase our resolution in 

identifying the source of analysed individuals, we added 277 samples from 35 Eurasian 

populations. Genotype data for 89 samples are available at http://evolbio.ut.ee/. The remaining 

samples will be available in dedicated future publications. 

The obtained dataset was filtered using PLINK ver. 1.9 70 to include only SNPs and individuals 

with genotyping success rate > 97%, retaining a total of 251,548 autosomal markers. 

We used KING to remove one random individual from pairs with kinship parameter higher than 

0.0884 71. The final dataset was therefore composed of 17,722 individuals from 261 

populations 11,15,16,20,21,23,25,32,47–69 (Supplementary Table 1A-B, Supplementary Figure 1). Of 

these, 11,607 individuals belonging to 22 admixed American populations were treated as 

‘recipients’, while the remaining 6,115 samples from 239 source populations were considered 

‘donors’. 

PCA analysis. Principal Components Analysis (PCA) was performed on the final dataset 

using the command --pca from PLINK 1.9. The resulting plot is shown in Supplementary Figure 

11. 

Phasing. Germline phase was inferred using the Segmented Haplotype Estimation and 

Imputation tool (ShapeIT2) software 72, using the HapMap37 human genome build 37 

recombination map. 

Clustering of donor populations. As a first step, we clustered the individuals belonging to 

‘donor’ populations into homogenous groups. First, we used the inferential algorithm 

implemented in CHROMOPAINTER (v2) 18 to reconstruct each individual’s chromosomes as 

a series of genomic fragments inherited (copied) from a set of donor individuals, using the 

information on the allelic state of recipient and donors at each available position. Briefly, we 

‘painted’ the genomic profile of each donor as the combination of fragments received from 

other donor individuals. We used a value of 288.998 for the nuisance parameters 

‘recombination scaling constant’ (which controls the average switch rate of the HMM) Ne, and 

0.00076 for the ‘per site mutation rate’ M, nuisance parameters, as estimated by 10 iterations 

of the expectation-maximization algorithm in CHROMOPAINTER. This algorithm finds the 

local optimum values of these parameters iterating over the data. Given the computational 

complexity of this process, the estimation of these two parameters was obtained by averaging 
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the values calculated from an analysis performed on a subset of six hundred individuals from 

all the analysed populations, with sample sizes mirroring the global composition of the dataset 

for five randomly selected chromosomes (3, 7, 10, 18 and 22). 

Second, we analysed the painted dataset using fineSTRUCTURE18, in order to identify 

homogeneous clusters. We ran the software in three subsequent steps: the first, also called 

“greedy”, infers in a fast way a rough clustering summarizing the relationships among 

individuals, and it is usually used when the number of samples is large (> 5000 individuals); 

the second, starting from the greedy clustering, performs 1 million MCMC iterations thinned 

every 10,000 and preceded by 100,000 burn in iterations. This generated a MCMC file (.xml) 

that was used, by the third run, to build the tree structure using the option --T 1 73. 

FineSTRUCTURE classified the analysed individuals into 370 clusters (Supplementary Figure 

12). In order to increase the interpretability of subsequent analysis we reduced the number of 

identified groups. In doing so, we iteratively climbed the tree, and lumped pairs of clusters until 

the minimum pairwise Total Variation Distance (TVD) estimated on the chunkcounts was lower 

than a given threshold. Taking into consideration the within continents variability and their 

relevance as sources to American populations, we applied a threshold of 0.04 for Sub-

Saharan African, Asian and Oceanian clusters, 0.03 for North-African, Native American and 

North-East European clusters and 0.015 for Central, West and South European clusters. After 

refining, 89 clusters remained (Supplementary Table 2, Supplementary Figure 2). One cluster 

composed of less than five individuals was excluded from the following further analysis. 

Painting of the recipient populations. We used CHROMOPAINTER, to paint each recipient 

individual as a combination of genomic fragments inherited by ‘donor individuals’ pooled using 

the clustering affiliation obtained as previously described, and with the same nuisance 

parameters inferred for the donor individuals.  

Bayesian haplotype-based ancestry estimation (SOURCEFIND). We applied a recently 

developed Bayesian method, SOURCEFIND, 24 to estimate the ancestral composition of 

recipient individuals. Thus, we modelled the copying vector (obtained with 

CHROMOPAINTER analysis) of each admixed individual as a weighted mixture of copying 

vectors from the donors. We used as parameters: self.copy.ind=0, number of total 

(num.surrogates) and expected (exp.num.surrogates) surrogates equal to 8 and 4 

respectively; performing (total number of MCMC iterations) 200,000 iterations thinned every 

1,000, and preceded by a burn in step of 50,000. Furthermore, we assigned equally-sized 

proportions to the surrogates (num.slots=100). For each recipient individual, we combined 10 

independent runs extracting and averaging the estimates with the highest posterior probability, 

weighted by their posterior probability. The efficacy and reliability of the method has been 

assessed for a similar scenario through an extensive simulation approach in Chacón-Duque 

et al. 24. 
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Non-Negative Least Square haplotype-based ancestry estimation. CHROMOPAINTER 

provides a summary of the amount of DNA copied from each donor population. We identified 

the most closely ancestrally related donor population for each admixed population by 

comparing their copying vectors to copying vectors inferred in the same way for each of the 

donor clusters, using a slight modification of non-negative least square (NNLS) function in R 

3.5.1 74 , and following the approach reported in Montinaro et al. and Leslie et al. 14,73. Briefly, 

this approach identifies copying vectors of donor populations that better match the copying 

vector of recipient populations as estimated by CHROMOPAINTER. For each recipient 

population, we decomposed the ancestry of that group as a mixture (with proportions summing 

to 1) of each sampled potential donor cluster, by comparing the ‘copying vector’ of donor and 

recipient populations.  

Estimation of admixture dates. In order to provide a temporal characterization of the 

admixture events in the Americas, we estimated times and most closely related putative 

sources using population-based and individual-based painting profiles. 

In the “population” approach, given the high demand of computational resources requested 

for the analysis, we have used fastGLOBETROTTER, which, based on GLOBETROTTER 75, 

implements several optimizations in performance, making it suitable for large datasets. In 

detail, we first harnessed the painting profiles obtained by CHROMOPAINTER by testing for 

any evidence of admixture using the options null.ind=1, prop.ind=1, and performing 100 

bootstrap iterations. For each of the admixture events inferred, we considered only those 

characterized by bootstrap values for time of admixture between 1 and 400. Subsequently, we 

estimated time of admixture repeating the same procedure with options null.ind=0 and 

prop.ind=1.  

For the individual analysis we estimated admixture times with GLOBETROTTER, applying the 

prop.ind=1, null.ind=0 approach to the 11,607 target individuals. In order to remove individuals 

with “unusual” painting profiles, only those falling in the 2.5-97.5% admixture time confidence 

interval were retained.  

We tested significant differences in times of admixture involving specific African or European 

clusters by applying a Wilcoxon test using R and setting alternative to “greater”. 

Ancestry-specific effective population size estimation. In order to estimate ancestry-

specific effective population size for the 22 recipient American populations we followed the 

pipeline presented by Browning et al. 

34(http://faculty.washington.edu/sguy/asibdne/posted_commands.txt). 

We used IBD and LA inferred from genome-wide data as a first step. We inferred IBD 

segments using the refined IBD algorithm implemented in Beagle 4.1, with the following 

parameters: ibdcm=2, window=400, overlap=24 and ibdtrim=12, as suggested in Browning et 
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al.34. Subsequently, we ran the merge-ibd-segments.12Jul18.a0b.jar script to remove breaks 

and short gaps in the inferred IBD segments (gaps shorter than 0.6cM). 

We estimated the local ancestry for genomic fragments in the American individuals using 

RFMIX. As reference populations we used Yoruba (YRI), Gambia (GWDwg) and Mozambique 

for Africa, Chinese Han (CHB) and Japanese (JPT) for Asia, Spanish (IBS), British (GBR) and 

Tuscany (TSI) for Europe and Tepehuano, Wichi and Karitiana for Native American ancestry. 

We used “PopPhased”, “-n 5” and “--forward-backward” options as recommended in RFMix 

manual. Then, we corrected the initial phasing following the modifications of RFMIX and using 

the rephasevit.py script provided by Browning et al. 34. 

We combined the results from IBD analysis and LA assigning to each IBD segment the most 

probable ancestry. 

Subsequently, we calculated the adjusted number of pairs of haplotypes for each ancestry. 

This is required because two haplotypes can only be in IBD with respect to a given ancestry 

at genomic positions if both haplotypes have that ancestry. Therefore, in a sample composed 

by n individuals the ancestry-adjusted number of pairs of haplotypes is equal to: 

∑𝑛−1 
𝑖=1 ∑𝑛 

𝑗=𝑖+1  4pipj 

  

(where i and j are independent individuals and pi and pj are their proportions of the given 

ancestry). 

Finally, we used the obtained “npairs” to run IBDNe software (version ibdne.07May18.6a4) 

34,76 in default mode, except for filtersample=false. 

Sex-biased admixture evaluation. We intersected SNPs from the X chromosome that were 

present in both our main datasets and in the 1000 Genomes Project samples. Three admixed 

American groups (Mexican, Maya and Mayas), were removed because the data did not 

include any genotypes for chromosome X. We revised and imputed sex assignments based 

on X chromosome data using the --impute-sex command in PLINK. A male or female call is 

made when the rate of homozygosity is >80% and <20%, respectively. Individuals for which 

the sex imputation was ambiguous were removed and heterozygous SNPs in male X 

chromosomes were set as missing. After this step, only samples and positions with a 

genotyping rate >= 97% were retained: 5,227 SNPs in a total of 15,353 individuals. The same 

set of individuals was extracted from the filtered autosomal dataset with 258,720 SNPs. 

Subsequently, we performed LD pruning (--indep-pairwise 200 50 0.2) in both X chromosome 

and autosomal data sets, resulting in a total of 2,519 and 116,912 SNPs, respectively. We ran 

separate unsupervised ADMIXTURE (version 1.3.030) analysis for the two datasets using K 

values=3 and 10 independent runs. We used the option ‘--haploid='male:23' in order to 

properly treat male individuals and chose the best run according to the highest value of log 
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likelihood. Finally, we performed paired Wilcoxon tests in order to test for significant 

differences between the ancestry proportions observed in the autosomes versus the X 

chromosome and used Bonferroni correction for multiple-testing (adjusted p-value < 0.05).  

 

Figure captions 

 

Figure 1. The ancestral mosaic of American populations reveals a highly complex 

ancestral composition. A) Barplots representing ancestral genetic proportions based on 

SOURCEFIND results for North and South American populations. We applied 

CHROMOPAINTER/fineSTRUCTURE and SOURCEFIND to find the ancestral compositions 

of 22 American populations. Only the contribution for the 21 most representative 

fineSTRUCTURE clusters (contributing ≥ 2% in at least one recipient population) is reported 

(Supplementary Table 3). B) Proportion of continental ancestries for all target populations. 

Ancestries are represented in red for Africa, blue for Europe and yellow for America/Asia. 

 

Figure 2. The admixture history of the Americas, as inferred by GLOBETROTTER (GT).  

A) Estimates of time and sources of admixture events considering the whole population as 

target. One or two events of admixture are reported for each population. The closest inferred 

sources of admixture, are represented as colored squares, circles show the corresponding 

time of admixture estimated by GT. Time is expressed in generations from present (bottom x 

axis), and years of CE (top x axis). B) Distribution of admixture times considering single 

individuals as targets. We retained only the 2.5%-97.5% distribution of time estimation for 

each population. C) Density of admixture times inferred in events considering France/GBR, 

Iberian, and Italian clusters as sources, for all the 11,607 admixed American individuals under 

study. D) Density of admixture times inferred in events considering “GambiaSenegal”, 

“BeninIvoryCoast”, “BeninNigeria”, “CameroonGabon”, “Gabon” and “AngolaNamibia” 

clusters as sources, for all the 11,607 admixed American individuals under study. 

 

Figure 3. Ancestry-specific effective population size of American populations. 

We combined Identity by Descent and Local ancestry inferences to estimate ancestry-specific 

population size through time. 

The x-axes show time expressed in years of Common Era. The y-axes show ancestry-specific 

effective population size (Ne), plotted on a log scale. Solid lines show estimated ancestry-

specific effective population sizes (red = African ancestry, blue = European ancestry, yellow = 

Native American ancestry), with ribbons indicating the 95% confidence intervals. Only the 

population ancestries in which α(continent)* N > 50 where α is the proportion of a specific 
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ancestry and N is the total number of chromosomes in the analysed population are 

represented. 
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