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ABSTRACT  
Nucleosomes are a crucial platform for the recruitment and assembly of protein complexes that 
process the DNA. Mechanistic and structural in vitro studies typically rely on recombinant 
nucleosomes that are reconstituted using artificial, strong-positioning DNA sequences. To 
facilitate such studies on native, genomic nucleosomes, there is a need for methods to produce 
any desired DNA sequence in an efficient manner. The current methods either do not offer 
much flexibility in choice of sequence or are less efficient in yield and labor. Here, we show 
that using ramified rolling circle amplification (RCA) milligram amounts of a genomic 
nucleosomal DNA fragment can be produced in a scalable, one-pot reaction overnight. The 
ramified RCA reaction is more efficient than the existing methods, is flexible in DNA sequence 
and shows a 10-fold increase in yield compared to PCR, rivalling the production using 
plasmids. We demonstrate the method by producing the genomic DNA from the human 
LIN28B locus and show that it forms functional nucleosomes capable of binding pioneer 
transcription factor Oct4. 
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INTRODUCTION 
Nucleosomes are the repeating unit of chromatin, protecting genome integrity and regulating 
DNA-templated processes like transcription, replication and repair. This makes them a crucial 
scaffold for protein binding and therefore a highly attractive target for biochemical and 
structural studies. Nucleosomes are usually reconstituted in vitro from the individual histones 
H2A, H2B, H3 and H4 and a ~150 bp DNA sequence. To obtain stable, homogeneous samples, 
so-called strong-positioning sequences, such as the Widom 601 sequence (1) or the human a 
satellite repeat (2), are commonly used to ensure uniform positioning of the nucleosomes on 
the DNA. Although these sequences are widely used in the field, there is a concern that the 
resulting nucleosomes are more stable than native ones and therefore do not accurately reflect 
the situation in vivo. Therefore, there is an increasing interest in the study of nucleosome 
dynamics and interactions reconstituted from alternative or genomic DNA sequences. Since 
structural studies usually require milligram quantities of nucleosomes at high concentration, 
there is a demand for efficient procedures to obtain nucleosomal DNA with any sequence of 
choice.  

At present, two methods are regularly used to produce nucleosomal DNA in milligram 
quantities. Firstly, the DNA can be produced from a plasmid containing multiple repeats of the 
desired sequence (3). The plasmid is transformed into E. coli and amplified by culturing the 
bacteria. The plasmid is then isolated and digested into the individual repeats, and the plasmid 
backbone is removed from the product sequence by ion exchange chromatography. In our lab, 
we get an average yield of 20 mg of product from 3 liters of culture using a 12-mer repeat of 
the 601 sequence; the Luger lab reported 46-61 mg from 6 liters of culture using a 24-mer 
repeat of the a satellite sequence. Alternatively, regular PCR amplification can be employed 
for nucleosomal DNA synthesis, starting from a plasmid containing a single copy of the desired 
sequence. This method is best used for small amounts, but can be scaled up, yielding 2-3 mg of 
pure product from 40 96-well plates in our lab. The plasmid method is usually preferred, as the 
yield is much higher. However, constructing the template plasmid containing multiple copies 
of the desired sequence can be challenging, forming a bottle neck when switching to different 
sequences. Although the single repeat plasmid used in the PCR method does allow sequence 
flexibility, the method is rather labor-intensive, and the yield is low. 

A third option to produce DNA is based on rolling circle amplification (RCA). RCA requires 
a circular template and a polymerase that has a high processivity and strand displacement 
capacity, resulting in a long single-stranded product containing many complementary repeats 
of the template sequence. An advantage of RCA over PCR is that it is carried out in a one-step, 
isothermal reaction. RCA was originally developed for single-stranded amplification of so-
called ‘padlock’ probes for specific DNA sequence detection (4-6). Since then, RCA has been 
used in a wide variety of applications, ranging from single molecule detection methods to the 
synthesis of DNA nanostructures and materials (for a review see (7)). For large-scale synthesis 
of single-stranded DNA, the RCA protocol has been extended to include digestion of the long 
RCA product into monomers by ‘cutter hairpins’ (8) or annealing of a complementary digestion 
splint to form double-stranded restriction sites (9). This procedure has been used to produce 
‘monoclonal’ single-stranded DNA oligonucleotides on a microgram scale (8) and single-
stranded DNA aptamers on a multi-milligram scale (9).  

RCA can be tuned to produce double-stranded DNA by the addition of a primer 
complementary to the product strand. This leads to ramification or (hyper)branching and an 
overall enhanced amplification factor of the reaction (10,11). This technique, also known as 
cascade RCA of exponential RCA, has been exploited in diagnostic and biosensing assays as 
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well as sequencing of single cell genomes to improve detection of low abundance nucleic acid 
targets (10,12).  

Here, we show that rRCA is an efficient and flexible method for large-scale production of 
dsDNA, in particular for nucleosomal DNA synthesis. The protocol introduced here enables 
the production of milligram amounts of double-stranded DNA in a scalable, one-pot overnight 
reaction. By proper design of the template sequence, the long double-stranded product can be 
directly digested into monomers by a dedicated restriction enzyme. We detail the procedure to 
design and construct the circular template, to efficiently digest the rRCA product and purify the 
desired nucleosomal DNA. Our procedure yields 2 mg from a 12 mL reaction, a 10-fold 
increase in yield compared to the same volume of PCR reactions. The major advantage of the 
method is the flexibility in choice of DNA sequence. We demonstrate the method by producing 
genomic DNA from the LIN28B locus and showing that it forms functional nucleosomes 
capable of binding pioneer transcription factor Oct4. 
 
RESULTS 
To illustrate the efficient production of any nucleosomal DNA sequences of choice by rRCA, 
we here focus on reconstituting nucleosomes using a sequence from a well-defined genomic 
locus in human fibroblasts. The LIN28B locus on chromosome 6 contains a well-positioned 
nucleosome that is the binding site for pioneer factors Oct4, Sox2, Klf4 and c-Myc (OSKM) 
(13) and is crucial in reprogramming and pluripotency (14,15). A 162 bp sequence from the 
LIN28B locus was successfully used for OSKM binding assays by Soufi et al. (16) and as such 
is an excellent model system to test the functional quality of the nucleosomal DNA generated 
by ramified RCA. 

The approach is outlined in Figure 1. Briefly, a dsDNA sequence of choice is amplified from 
a storage vector, one of its strands is purified and circularized to yield the ssDNA template for 
RCA (Figure 1A). In ramified RCA, this template is amplified using two primers, a starting 
primer and a branching primer, and Phi29 DNA polymerase. This enzyme is frequently used 
for RCA because of its high processivity and its strand displacement capacity (17), high 3’-5’ 
exonuclease activity and low error rate (18,19). The starting primer anneals to the circular 
template and is elongated into a long, single-stranded repeat to which the branching primer can 
anneal. In regular RCA, only an equimolar amount of starting primer to circular template is 
needed, but in rRCA both starting and branching primer need to be in excess to template. 
Combined with strand displacement by Phi29, this results in the synthesis of a very long, 
branched, double-stranded repeat of the desired sequence. It should be noted that both starting 
and branching primer contribute to the ramification, as can be seen in Figure 1B. Subsequent 
digestion and purification yields the final nucleosomal DNA fragment. 
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Figure 1. Schematic workflow of ramified RCA for nucleosomal DNA synthesis. (A) 
Preparation of circular templates, starting from a plasmid with the desired nucleosomal DNA 
sequence, a 5’-phosphorylated primer and a 5’-biotinylated primer. The template strand (dark 
gray) is purified by removing the biotin-labeled strand (light gray) using streptavidin beads. 
The template strand is circularized using a splint to anneal the 5’- and 3’-end together for 
ligation. (B) Ramified RCA starting from the circular template, two primers (pink and teal), 
and Phi29 polymerase produces a long, branched dsDNA product. Digestion is performed in 
the same reaction volume after addition of restriction enzyme SmaI (scissors) to release the 
double-stranded LIN28B product.  
 
Design and storage of the template 
The DNA sequence of choice will typically need minor modification to allow efficient use in 
rRCA. First, the template sequence needs to be designed to encode a restriction site for a blunt-
end nuclease in the rRCA product such that the final nucleosomal DNA fragment can be 
released. In the most straightforward design, the restriction site is formed from the ends of the 
linear template, and thus overlaps with the ligation site (see Fig. 1 and 2). Therefore, accurate 
ligation of these ends into the circular template is essential as mutations in the restriction site 
would consequently impair digestion of the rRCA product and significantly lower the final 
yield (see also below). Alternatively, the linear template can be designed in a way that the 
ligation site does not overlap with the restriction site, although care has to be taken not to 
introduce ligation mistakes that interfere elsewhere, e.g. with nucleosome positioning or protein 
binding. If ligation is found to be inaccurate, the ligation site can be separated from the template 
sequence by encoding a digestion site on both the 3’- and the 5’-end of the desired sequence, 
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followed or preceded by a spacer sequence that contains the (half) ligation site such that it will 
be cut out during digestion of the rRCA product.  

The choice of restriction enzyme can be guided by sequence of the terminal bases in the 
desired nucleosomal DNA. As long as these bases are not part of a functional protein binding 
site, they can likely be altered at will since nucleosome positioning is encoded within the central 
120bp of the nucleosomal DNA. For LIN28B, we changed 4 residues at the termini of the 
original sequence to construct the recognition site for blunt-end cutter SmaI (CCCGGG), the 
first half of which (CCC) is at the 3’-end and the second half (GGG) at the 5’-end of the 
template sequence (Figure 2A,B). Notably, we found that Phi29 is highly active in CutSmart® 
buffer when supplemented with 4 mM DTT. Thus, rRCA and digestion can be performed in 
the same reaction buffer, avoiding an additional buffer-exchange. 

The RCA method starts from a circular, single-stranded DNA template. Single-stranded 
oligonucleotides up to 200 nucleotides are nowadays commercially available and could directly 
be circularized to use as an RCA template. However, the synthesis yield of such long 
oligonucleotides is usually limited to a few nanomoles and sequence inhomogeneity at the 5’-
end can reduce ligation efficiency or result in incorrect ligation products. This not only lowers 
the amount of desired circular templates available but may also give difficulties with the 
digestion of the product when the restriction site lies in or near the ligation junction. To create 
a robust stock of template, we therefore decided to generate the ssDNA template from a 
synthetic dsDNA gene. Such dsDNA fragments can be synthesized with highest sequence 
accuracy and can furthermore be stored in a vector, allowing for easy, reliable and low-cost 
amplification in E. coli. The desired ssDNA template can then be derived from this material as 
described below. 

The LIN28B sequence was cloned in a pUC19 vector by extending the desired sequence 
with flanking restriction sites (Figure 2C). Note that these extensions will not end up in the 
final nucleosomal DNA fragment. This sequence was ordered as a sequence-verified gBlock® 
double-stranded gene fragment (IDT). The final cloned constructs were verified by sequencing. 
This simple and straightforward cloning procedure can easily be performed with any other 
desired sequence and provides in a robust template for the preparation of rRCA single-stranded 
circles.  

 

Figure 2. Template design of the LIN28B sequence for use in ramified RCA. (A) Four bases 
of the original LIN28B sequence were mutated (in bold, original base indicated on top) to create 
a SmaI restriction site in the multimeric RCA product (B). (C) The extended LIN28B insert 
contains two restriction sites (EcoRI and XbaI, underlined) to enable cloning into the pUC19 
vector. 
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Preparation of the template circles 
To obtain the ssDNA template from the storage plasmid, a PCR using two 5’-modified primers 
is required (Figure 1A). The primer producing the template strand is 5’-phosphorylated, as the 
phosphate-group is necessary for ligation to the 3’-end. In order to purify this strand, the primer 
producing the other strand is 5’-biotinylated. Notably, either strand of a dsDNA molecule of 
interest can be chosen as template, as both will yield the same double-stranded final RCA 
product. By binding the PCR product to streptavidin beads and eluting the phosphorylated 
template strand with sodium hydroxide, pure single stranded product can be obtained. As the 
streptavidin beads have high binding capacity, no PCR product purification is necessary to 
remove excess biotinylated primers before binding to the streptavidin beads. This procedure 
yielded pure ssDNA LIN28B fragment in a straightforward manner (Figure 3A). 
 

 
Figure 3. Template strand production and circularization. (A) Agarose gel (2.5%, EtBr 
staining) showing template strand purification: crude PCR product (lane 1) and purified 
LIN28B strand (lane 2). (B) Denaturing PAGE gel (12%) showing circularization and 
exonuclease digestion of the template strand: Ligation splint (lane 1), purified template strand 
(lane 2), ligated template circles, crude (lane 3) and after exonuclease clean-up (lane 4). 
 

To circularize the linear template strand a short ssDNA fragment, the ligation splint, is 
needed to anneal both ends together. This creates a double-stranded region with a nick that will 
be ligated using a DNA ligase. Although T4 DNA ligase is a very efficient and commonly used 
enzyme for ligating nicks, it is also capable of ligating the termini if there is a 1 or 2 nucleotide 
gap present or if the nick contains mismatches (20-22). These gaps and mismatches could occur 
due to incorrect annealing of both ends on the ligation splint or by heterogeneity in the 5’-end 
of the primer used in PCR, commonly present in synthetic oligonucleotides. Since inaccurate 
ligation will cause mutations in the restriction site, special care needs to be taken to avoid this. 
We therefore used the thermostable Taq DNA ligase, which has a higher ligation accuracy and 
has no or little activity on gaps or mismatches at the ligation site (23). Taking advantage of its 
thermostability, the accuracy of splint annealing can be further increased by carrying out the 
ligation at elevated temperature. For LIN28B a 26nt ligation splint was used (see Table 1) in a 
ligation reaction with Taq DNA ligase at 45°C. The elevated temperature and thus more 
stringent annealing increased the amount of ligation efficiency, thus resulting in a homogenous 
pool of circular templates (Figure 3B). 
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After ligation, the reaction mix not only contains the circular template but also left-over 
splint and linear template. These could prime either on the circle or on the product during RCA, 
resulting in single stranded by-products. To avoid these contaminations of the product, all linear 
ssDNA fragments remaining in the ligation are digested with exonuclease I and III. Figure 3B 
shows this treatment results in pure circular templates. Sequencing analyses using the PCR 
primers confirmed that the purified circles contain the correct LIN28B sequence.  

 
Optimization of ramified RCA reaction conditions 
Ramified RCA is performed as a one-pot reaction at constant temperature (30°C for Phi29 
polymerase). The optimal reaction buffer will depend on both the polymerase and restriction 
enzyme used, as mentioned above. For rRCA, the yield depends on the degree of branching 
and thus on the amount of starting and branching primer. Both primers need to be added in a 
1:1 ratio to avoid contamination with ssDNA. To maximize the yield, also the amount of dNTPs 
and Phi29 polymerase can be increased as these can become limiting. Finally, the purity of the 
circular template is essential to avoid by-products from remaining linear fragments (see above). 

Initial rRCA reactions were performed using template circles that were purified after a 
standard 30-minute exonuclease treatment. While the templates appeared pure on gel-analysis, 
considerable ssDNA LIN28B product (and multimers) were generated after digestion, 
indicating presence of residues linear template or annealing splint (Figure 4A). By extending 
the exonuclease treatment three-fold, these by-products could be largely eliminated (Figure 
4A). Unexpectedly, in negative controls carried out without starting and branching primers, 
RCA product formation was still observed when starting from these pure template circles 
(Figure 4B). This suggests that there are trace levels of DNA in the reaction mixture that can 
act as primer. These likely originate from the Phi29 polymerase stock, as co-purification of 
DNA is hard to avoid in preparations of this enzyme due to its high affinity for ssDNA and 
dsDNA (24).  

To determine the optimal primer and Phi29 amounts, a series of 50 µL reactions were carried 
out using an excess of dNTPs (500 µM), and in presence of pyrophosphatase to avoid 
pyrophosphate-induced sequestering of the Mg2+ required for the polymerase. All reactions 
showed formation of a large RCA product that remains in the well of the agarose gel (see Figure 
4B and Figure 4C, top panel). Since the product was difficult to pipet due to its high viscosity, 
the rRCA yield was assessed only after digestion by SmaI, resulting in LIN28B monomers of 
the expected size (162 bp) together with some dimers (324 bp) and multimers resulting from 
incomplete digestion (Figure 4C, bottom panel).  

First, the non-ramified control reaction, using only starting primer in equimolar ratio to the 
circular template, generated double-stranded product of the same size as LIN28B monomers, 
while a long single-stranded product was expected (Figure 4C, lane 1). This may be caused by 
trace levels of DNA impurities as mentioned above, possibly in combination with aspecific 
priming of the starting primer or template-switching by Phi29 (25). 

Second, addition of an equimolar amount of the branching primer showed double-stranded 
product formation with negligible increase in yield compared to the non-ramified reaction 
(Figure 4C, lane 2). Under these equimolar conditions, the branching primer can anneal to the 
product as soon as a full ssDNA LIN28B repeat is synthesized, resulting in only one or a few 
repeats of double-stranded product and no ramification, leaving the majority still single-
stranded.  

Reactions with either 50- or 100-fold molar excess of both primers, showed significant and 
progressively increasing yield of double-stranded product, indicating successful ramification 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2019. ; https://doi.org/10.1101/676528doi: bioRxiv preprint 

https://doi.org/10.1101/676528
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ramified RCA for efficient synthesis of nucleosomal DNA	

	 8	

(Figure 4C, lane 3 and 5). This confirms that effective branching only occurs at excess of both 
primers compared to the template. At these high primer concentrations, the amount of Phi29 
polymerase becomes limiting, as seen by the increase in yield upon adding two- or three-fold 
more Phi29 at constant primer concentration (Figure 4C, lane 4, 6 and 7). Further increase of 
either primers or Phi29 may increase yield even more. Yet since very high excess polymerase 
is known to reduce polymerization efficiency and reaction volume can easily be scaled (see 
below), we choose to not explore even higher excess of this component. 

In all cases, reaction time was limited to five hours. Since at this point the reaction mixtures 
turned highly viscous due to product formation, we presumed reaction progress would be 
significantly reduced and thus little benefit would be gained by extending the reaction for 
longer. 

While these results highlight a sensitivity of Phi29 polymerase to the presence of trace levels 
of primers, large excess of starting and branching primer under ramified conditions will ensure 
correct priming and product formation. The results further demonstrate that maximum rRCA 
yield of dsDNA product is obtained at high molar excess of both primers in combination with 
elevated levels of Phi29 polymerase. These conditions are most likely independent of the DNA 
sequence being produced. 
 

 
Figure 4. Optimization of ramified RCA reaction conditions. (A) Agarose gel (2.5%, EtBr 
staining) showing digested rRCA products from a reaction with a clean circular template (lane 
1) and with a circular template that still contained impurities (lane 2). Single-stranded by-
products are indicated with an asterisk (*). (B) RCA products for ‘no primer’ (NP) control 
compared to product from RCA (1 pmol starting primer) and rRCA (50 pmol of both primers) 
on 0.8% agarose gel (EtBr staining). The circular template (1 pmol) used in this experiment 
was treated with exonuclease I and III for 1.5h. (C) Optimization of primer amounts for 
ramification and adjustment of Phi29 polymerase amount (2.5% agarose gel, EtBr staining). 
Top panel shows rRCA product, bottom panel shows SmaI-digested product. Before digestion, 
the rRCA yield is hard to compare, because of inconsistent pipetting due to high viscosity of 
the sample. Primer amounts are indicated above each lane, Phi29 concentrations are indicated 
below each lane.  
 
Large-scale production, digestion & purification 

For large-scale production of nucleosomal DNA, we take advantage of the fact that both 
rRCA and digestion are performed in a single reaction tube without the need of thermocycling. 
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This means the reaction can easily be scaled up by increasing the reaction volume and reaction 
components accordingly. For large-scale production of LIN28B DNA, we performed both a 2 
mL and a 12 mL synthesis in a single tube. Since these large-scale rRCA reactions require 
larger amount of the polymerase, we use in-house produced Phi29 (see Materials and Methods) 
to reduce costs.  

For LIN28B a 2 and 12 mL rRCA were performed under conditions determined above for 
5 hours. In both cases, viscosity of the solution became very high at this point, which was 
quickly lowered after addition of the restriction enzyme SmaI due to the digestion of the rRCA 
product into 162bp LIN28B monomers. Restriction was almost complete after overnight 
incubation (Figure 5A). The remaining larger fragments were separated from the main product 
by anion exchange chromatography using a very shallow salt gradient, resulting in pure 
nucleosomal DNA (Figure 5B and C). We obtained 0.35 mg (3500 pmol) of purified product 
starting from 40 pmol of circular template in a 2 mL reaction volume, which is almost a 10-
fold increase in yield compare to the same volume of regular PCR reactions. The 12 mL 
synthesis yielded 2.0 mg of pure LIN28B, demonstrating that the rRCA scales linearly with 
reaction volume. 
 

 
Figure 5. Ramified RCA, SmaI digestion and ion exchange chromatography purification. (A) 
Ramified RCA product (lane 1) and SmaI digestion (lane 2) (B) IEX trace of crude digested 
rRCA product, A280 trace in blue, applied salt gradient in green (0-100% B, 1M NaCl), 
measured conductivity in brown (mS). (C) 5% native PAGE gel showing the pooled fractions 
of peak 1 and 2, indicated in the chromatogram (panel B).  
 
Reconstitution of LIN28B nucleosomes and Oct4 binding 
We next aimed to demonstrate that the nucleosomal DNA generated in our ramified RCA 
approach can be used to reconstitute functional nucleosomes. We used the LIN28B DNA from 
the large-scale production together with recombinantly expressed human histones to 
reconstitute human nucleosomes by salt-gradient dialysis, according to a previously published 
method (26). The reconstitution was assessed by native PAGE analysis (Figure 6A). A clear 
band shift was observed, indicating nucleosome formation. The efficiency of reconstitution was 
estimated from gel band intensities to be ~70%, which is comparable to what was previously 
published for LIN28B (16). We thus conclude that rRCA derived nucleosomal DNA can be 
used for nucleosome reconstitution in the same manner as DNA from other sources.  

To show that these nucleosomes are functional, we assayed their ability to bind pioneer 
transcription factor Oct4. Oct4 has been reported to associate with LIN28B nucleosomes in 
vitro in a sequence specific manner, as shown by DNase I footprinting (16). Addition of 
recombinant Oct4 protein to our LIN28B nucleosomes induced a clear band-shift in an EMSA 
experiment, indicating formation of an Oct4-nucleosome complex (Figure 6B). Both the band-
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shift and affinities for both free DNA and nucleosomes are in good agreement with previously 
published results (16). Together, these results show that the rRCA-produced LIN28B DNA has 
the required quality in terms of purity and sequence to enable reconstitution of native 
nucleosomes capable of binding pioneer transcription factor Oct4. 

 
Figure 6. (A) Nucleosome reconstitution with rRCA-produced LIN28B DNA (162bp) and 
human histones. Native PAGE (6%) lanes 1-4 contain 10, 25, 50 and 100 ng of free LIN28B 
DNA used for quantification of the nucleosome bands. DNA was mixed with histone octamer 
in a 1:1.1 ratio for reconstitution. Lanes 5-9 show increasing amounts of reconstituted 
nucleosomes estimated to contain 7, 17, 35, 71 or 142 ng of bound DNA, respectively, which 
is ~70% of the input free DNA. DNA in the nucleosome has approximately a 2-fold lower 
signal intensity compared to free DNA. (B) EMSA of Oct4 binding to free LIN28B DNA (10 
nM) and assembled LIN28B nucleosomes (25 nM). Native PAGE (5%) lanes 1-6 and lanes 7-
12 contain 0, 12.5, 25, 50, 100 and 200 nM of recombinant Oct4.  
 
DISCUSSION 
We here showed that ramified RCA is an efficient and flexible alternative for the large-scale 
production of nucleosomal DNA in milligram quantities. Compared to plasmid and PCR-based 
production of nucleosomal DNA, our rRCA protocol combines the flexibility in choice of 
sequence from PCR with the excellent yields of a multi-repeat product from the plasmid-based 
method. The straightforward design procedure requires only minimal changes to the terminal 
ends of DNA sequence of choice in order to create the circular template needed for RCA. A 
crucial aspect in the design of the template is the incorporation of a restriction site to digest the 
long, branched product. Judicious choice of restriction enzyme allows product digestion in the 
same reaction volume as the rRCA reaction, boosting the time-efficiency of the method. 
Production, digestion and purification can be performed in two days, the whole procedure 
including preparation of circular templates can be completed within a week. The yield is almost 
10-fold higher than in the same volume of PCR reactions. Importantly, the one-pot rRCA 
reaction can easily be scaled up with a linear increase in yield. We here selected a DNA 
sequence corresponding to a well-positioned nucleosome at the LIN28B locus. Since this 
sequence with 56.8% AT content has no particular features, we expect that the method can 
generally be applied to most DNA sequences, including larger templates for reconstitution of 
nucleosomal arrays on genomic DNA. Performance with highly repetitive sequences may be 
compromised by fidelity problems of the polymerases.  

RCA requires a polymerase with extreme processivity and strand displacement, such as 
provided by Phi29 polymerase. Since large-scale production runs also require high amounts of 
enzyme, in-house production is advisable. Although this might be a barrier for labs that are not 
in need of continuous production of nucleosomal DNA, a 1 L culture provides Phi29 for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2019. ; https://doi.org/10.1101/676528doi: bioRxiv preprint 

https://doi.org/10.1101/676528
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ramified RCA for efficient synthesis of nucleosomal DNA	

	 11	

approximately 4000 mL of rRCA and Phi29 can be stored long-term at -20°C, making even 
incidental use feasible.  

Addition of pyrophosphatase was necessary to avoid the scavenging of Mg2+ by the formed 
pyrophosphate and to ensure a constant availability of Mg2+ throughout the reaction. This may 
be circumvented by performing the reaction in a dialysis bag in reaction buffer to avoid 
accumulation of pyrophosphate. Such a setup may improve yield by increasing buffer capacity 
and avoiding increases in phosphate concentration during the reaction, which could inhibit 
Phi29. Another potential bottleneck is the high viscosity that is observed towards the end of the 
rRCA reaction, since this limits the diffusion of polymerase and reactants through the solution, 
and thus likely reduces the reaction rate. Performing rRCA and product digestion 
simultaneously, preventing the formation of very long LIN28B repeats, could therefore further 
improve the yield. However, this requires methylation of the circular templates in combination 
with a methylation-sensitive restriction enzyme, to avoid digestion of the template. 

The rRCA yield was improved by increasing the primer to template ratio, as well as the 
dNTP and Phi29 concentration. Although rRCA can provide exponential amplification of the 
template as demonstrated at small-scale for Bst polymerase (27), we did not observe this in our 
work. Analysis of the yield showed that the starting template was amplified effectively ~100-
fold. The amplification here is presumably limited by the high concentration of the reactants 
and product leading to high viscosity. Dilution of the reaction could alleviate this, but lowered 
reaction rates may counteract reaching a higher yield. While further improvement in yield may 
be possible, we demonstrated here that our current protocol is effective and can furthermore be 
easily scaled. In comparison, exponential amplification in PCR is also only reached at very low 
template levels, thus requiring a large volume of reactions to reach milligram scale of purified 
product. In contrast, our rRCA protocol offers a highly practical execution without the need to 
prepare dozens of PCR-plates, and in particular when access to multiple PCR machines is 
limited. Moreover, the lack of thermocycling in rRCA leads to more efficient dNTP 
incorporation as a result of decreased degradation (9). Even if our protocol relies on PCR to 
generate the template strand, one PCR plate will generate sufficient template for a ~36 mL RCA 
reaction, generating ~6 mg of DNA, which would in turn be equivalent to ~120 plates of PCR. 

In conclusion, we presented a rRCA-based method to allow the efficient and flexible large-
scale synthesis of nucleosomal DNA sequences, any other dsDNA of comparable length. The 
protocol was used to produce multi-milligrams of human, genomic nucleosomal DNA with 
high purity. We demonstrated that rRCA-produced LIN28B DNA can be used to reconstitute 
stable and functional nucleosomes that are capable of binding pioneer transcription factor Oct4. 
Due to its ease of use and flexibility in sequence design, we believe this method is an ideal tool 
to produce a wide variety of nucleosomal DNA sequences to study the structure, dynamics, and 
interactions of nucleosomes or nucleosomal arrays, in particular of genomic nucleosomes as 
they occur in vivo. 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2019. ; https://doi.org/10.1101/676528doi: bioRxiv preprint 

https://doi.org/10.1101/676528
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ramified RCA for efficient synthesis of nucleosomal DNA	

	 12	

EXPERIMENTAL PROCEDURES 
 
Construction of the starting plasmid 
The LIN28B template sequence was obtained as a sequence-verified gBlock® gene fragment 
(IDT) including a 15 bp extension on both sides containing EcoRI and XbaI restriction sites for 
cloning into pUC19 (Table 1). Both the LIN28B gene fragment (75 ng) and the pUC19 vector 
(400 ng) were cut with 1U of both restriction enzymes in FastDigest buffer at 37°C for 30 min; 
1U of alkaline phosphatase (FastAP, Thermo Scientific) was added to the vector restriction. 
Insert (75ng) and vector (25ng) were mixed and incubated overnight with 1U T4 ligase at room 
temperature. Ligation reaction was used to transform E. coli (JM109) cells and the plasmid was 
purified from single transformants cultured in 5 mL LB overnight and sequence-verified before 
further application. 

Circular template synthesis 
Standard PCR reactions were performed using 2 µM of 5’-phosphorylated starting primer, 2 
µM of 5’-biotinylated branching primer, 10 ng of pUC19 plasmid containing the LIN28B 
template sequence, 0.2 mM dNTPs and 2-3 U of home-made Pfu polymerase per 50 uL 
reaction. The PCR program was 3 min of initial melting at 95°C, followed by 35 cycles of 30 s 
at 95°C, 30 s at 50°C for annealing and 30 s at 72°C for elongation and 3 min of final 
polymerization at 72°C. The template strand was purified by binding the biotinylated PCR 
product to Streptavidin Sepharose High Performance affinity resin (GE Healthcare), 
purification of the beads from the reaction mixture by repeated washing with Tris buffer (10 
mM Tris HCl pH 7.5, 1 mM MgCl2), and finally eluting the phosphorylated strand with 0.2 M 
NaOH. The eluent was neutralized by adding an equal volume of 0.2 M HCl and ethanol-
precipitated. The template strand was circularized by heat-annealing the ligation splint and 
subsequently incubating this partial duplex with 200 U Taq DNA ligase (NEB) per 100 pmol 
of template in Taq DNA ligase buffer for 3h at 45°C. The circular template was then ethanol 
precipitated, reconstituted in T4 DNA ligase buffer and treated with 12.5 U Exonuclease I and 
125 U Exonuclease III (Thermofisher) per 100 pmol of template at 37°C for 1 hour to remove 
the splint, unligated template and any other remaining single-stranded impurities. The circular 
templates were isopropanol precipitated and dissolved in MQ to a concentration of 1 µM before 
use in ramified RCA. 

Table 1. DNA sequences of the LIN28B gene fragment and oligonucleotides 
Name Sequencea 
LIN28B insert 5’_GCATCGAATTCCCGGGGGTATTAACATATCCTCAGTGGTGAGTAT

TAACATGGAACTTACTCCAACAATACAGATGCTGAATAAATGTAGT
CTAAGTGAAGGAAGAAGGAAAGGTGGGAGCTGCCATCACTCAGAA
TTGTCCAGCAGGGATTGTGCAAGCTTGTGAATAAAGCCCGGGTCTA
GACTAGA_3’ 

Starting primer 5’ GGGGGTATTAACATATCCTC 3’ 
Branching primer 5’ GGGCTTTATTCACAAGCTTGC 3’ 
Ligation splint 5’ TGTTAATACCCCCGGGCTTTATTCAC 3’ 

aMutated residues from the original LIN28B sequence are indicated in bold, restriction sites for 
EcoRI and XbaI for cloning are underlined, extensions not part of the LIN28B sequence are in 
italic. 
 
Phi29 expression and assessment of activity 
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The gene for Phi29 DNA polymerase (Phi29DNAP) was amplified by PCR from a stock of 
Phi29 phages using primers 5’ACCATGGATCCCATATGCCGAGAAAGATGTATAG3’ 
and 5’ACCATGAATTCTCGAGTTATTTGATTGTGAATGTG3 (restriction sites 
underlined) and cloned into the NdeI and EcoRI sites of pET28a (Novagen) introducing a N-
terminal His6-tag. E. coli BL21(DE3) was transformed with plasmid pPhi29DNAP and 
cultivated in LB medium under kanamycin selection at 37°C. Three baffled Erlenmeyer flasks 
containing 1 liter media were inoculated with 25 mL overnight culture and grown at 37°C with 
shaking at 225 rpm to an OD600 of ~0.8. IPTG was added to 1 mM and cultivation continued 
for another 3 hours. Cells were harvested by centrifugation at 5000 rpm, 4°C, 10 minutes in a 
Beckman JA-10 rotor. Alternatively, Phi29 polymerase was expressed in E. coli Rosetta2 cells 
in 250 mL of auto-induction medium (ZYM-5052) at 27.5°C overnight (28). Cells were 
resuspended in ice-cold lysis buffer (25 mM Tris-HCl (pH7.5), 0.5% Tween-20, 0.5% Nonidet 
P-40 substitute, 5% glycerol, 20 μg/mL PMSF, 5 mM β-mercaptoethanol, 1 mM EDTA and 
100 μg/mL lysozyme) and sonicated 10 cycles, each cycle consisting of 30 seconds at 10 micron 
amplitude and 1 minute chill on ice. MgCl2 was added to 2.5 mM, CaCl2 to 0.5 mM and DNaseI 
to 2 U/mL and the lysate was stirred for 10 minutes at room temperature. Imidazol was added 
to 10 mM, EDTA to 3 mM and NaCl to 300 mM and the lysate was then centrifuged for 30 
minutes at 15000 rpm, 4°C in a Beckman JA-20 rotor. The supernatant was loaded onto a 
HisTrap HP Sepharose column (5 mL, GE Healthcare) pre-equilibrated in column buffer (25 
mM Tris-HCl (pH7.5), 0.5% Tween-20, 0.5% Nonidet P-40 substitute, 5% glycerol, 5 mM β-
mercaptoethanol, 10 mM imidazol and 300 mM NaCl). The column was washed with 25 mL 
of column buffer containing 25 mM imidazol and Phi29 DNAP was eluted in fractions of 1 mL 
with column buffer containing 300 mM imidazol. Fractions containing Phi29DNAP were 
pooled and added to 50 mL of nuclease treatment buffer (25 mM Tris-HCl (pH7.5), 0.5% 
Tween-20, 0.5% Nonidet P-40 substitute, 5% glycerol, 5 mM β-mercaptoethanol, 2.5 mM 
MgCl2, 0.5 mM CaCl2, 100 U DNaseI, 200 U exonuclease I and 200 U RNaseI) and stirred for 
10 minutes at room temperature. EDTA was added to 3 mM and NaCl to 300 mM and the 
HisTrap HP Sepharose column purification was repeated on a freshly regenerated column. 
Protein containing fractions were pooled and dialyzed overnight against 1 liter of dialysis buffer 
(50 mM Tris-HCl (pH7.5), 100 mM NaCl, 1 mM DTT, 0.1 mM EDTA, 0.5% Tween-20, 0.5% 
Nonidet P-40 substitute and 50% glycerol) at 4°C. The Phi29 DNAP isolate was aliquoted and 
stored at -20°C. Activity of the isolate was determined by comparing product DNA yields 
relative to a commercial isolate (Epicentre). 

Ramified RCA and digestion 
The LIN28B circular template (20 nM) was amplified in a large-scale ramified RCA reaction 
in 1x CutSmart® buffer (NEB) with 200 U of home-made Phi29 polymerase and 0.5 U 
inorganic pyrophosphatase (NEB) per mL of reaction, 0.5 mM dNTPs, 2 µM of starting and 
branching primer and 4mM DTT. Circular template and primer were heat-annealed in CutSmart 
buffer before adding dNTPs and the enzymes. The rRCA reaction was incubated at 30°C for 
5h, followed by the addition of 1000 U SmaI (NEB) per mL of reaction and further incubation 
at 25 °C overnight. The resulting double stranded 162bp LIN28B DNA was purified by anion 
exchange chromatography and ethanol precipitated. 

Nucleosome reconstitution 
rRCA-produced LIN28B DNA was mixed with human purified histone octamers at a 1:1.1 
DNA:octamer molar ratio in the presence of 2M NaCl and nucleosomes were reconstituted by 
salt gradient dialysis. The nucleosomes were analyzed on 6% TBE gel (Novex) in 1X TBE at 
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90 V for 1 hr and visualized by Ethidium Bromide staining. The nucleosome concentration was 
calculated by quantifying the intensities of nucleosome bands, using free LIN28B DNA as the 
standard. The densitometric analysis of band intensities was performed using Multi-Gauge 
software (Fujifilm Science lab).  

Mobility shift assay with Oct4 
Full-length human Oct4 fused to an N-terminal 6X histidine tag with a thrombin cleavage site 
was expressed from a pET28b bacterial expression plasmid in E. Coli Rosetta (DE3) pLysS 
cells. The recombinant protein was purified under denaturing conditions over a His-SpinTrap 
column (GE Healthcare), desalted using a PD SpinTrap G-25 column (GE Healthcare) and 
concentrated using an Amicon Ultra-0.5 device (MW cut-off 10 kDa). EMSA was performed 
with increasing amounts of Oct4 to free LIN28B-DNA and LIN28B-nucleosomes. The free 
LIN28B-DNA (approx. 10 nM) and LIN28B-nucleosomes (approx. 25 nM) were incubated 
with recombinant Oct4 protein (12.5, 25, 50, 100, 200 nM) in DNA-binding buffer (10 mM 
Tris-HCl (pH 7.5), 1 mM MgCl2, 10 μM ZnCl2, 1 mM DTT, 10 mM KCl, 0.5 mg/ml BSA, 5% 
glycerol) at room temperature for 60 min. Free and Oct4 bound DNA were separated on 5% 
non-denaturing polyacrylamide gel run in 0.5X TBE at 90V for 4 hrs. The gel was stained with 
ethidium bromide and visualized using SynGene G:Box. 
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