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Abstract  

 

Background: Previous structural and functional neuroimaging studies have implicated 

distributed brain regions and networks in depression. However, there are no robust imaging 

biomarkers that are specific to depression, which may be due to clinical heterogeneity and 

neurobiological complexity. A dimensional approach and fusion of imaging modalities may 

yield a more coherent view of the neuronal correlates of depression.  

Methods: We used linked independent component analysis to fuse cortical macrostructure 

(thickness, area, gray matter density), white matter diffusion properties and resting-state 

fMRI default mode network amplitude in patients with a history of depression (n = 170) and 

controls (n = 71). We used univariate and machine learning approaches to assess the 

relationship between age, sex, case-control status, and symptom loads for depression and 

anxiety with the resulting brain components. 

Results: Univariate analyses revealed strong associations between age and sex with mainly 

global but also regional specific brain components, with varying degrees of multimodal 

involvement. In contrast, there were no significant associations with case-control status, nor 

symptom loads for depression and anxiety with the brain components, nor any interaction 

effects with age and sex. Machine learning revealed low model performance for classifying patients 

from controls and predicting symptom loads for depression and anxiety, but high age 

prediction accuracy. 

Conclusion: Multimodal fusion of brain imaging data alone may not be sufficient for 

dissecting the clinical and neurobiological heterogeneity of depression. Precise clinical 

stratification and methods for brain phenotyping at the individual level based on large 

training samples may be needed to parse the neuroanatomy of depression.     
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Introduction 

With an estimated prevalence of 4.4%, depression affects more than 300 million worldwide 

(World Health Organization, 2017) and is a substantial contributor to disability and health 

loss (Friedrich, 2017). Identifying useful imaging based and other biomarkers to aid detection 

of individuals at risk for depression and facilitating individualized treatment is a global aim 

(Cuthbert & Insel, 2012; Insel, 2014, 2015). 

A host of studies across a range of neuroimaging modalities have implicated various 

brain regions and networks in depression. Meta-analyses of structural magnetic resonance 

imaging (MRI) studies have suggested thinner orbitofrontal (OFC) and anterior cingulate 

cortex (ACC) in patients with depression compared to healthy controls (Lai, 2013; Schmaal 

et al., 2017; Suh et al., 2019). A large-scale meta-analysis comprising 2148 patients and 7957 

controls from 20 different cohorts reported slightly smaller hippocampal volumes in patients 

with depression compared to controls (Schmaal et al., 2016), but the overall pattern of results 

suggested substantial heterogeneity and otherwise striking similarity across groups for all 

other investigated subcortical structures (Fried & Kievit, 2016). A meta-analysis of diffusion 

tensor imaging (DTI) studies including 641 patients and 581 healthy controls reported 

fractional anisotropy (FA) reductions in the genu of the corpus callosum and the anterior limb 

of the internal capsule (Chen et al., 2016), implicating interhemispheric and frontal-striatal-

thalamic connections among the neuronal correlates of depression. Supporting the relevance 

of brain connectivity in mood disorders, resting-state fMRI studies have reported aberrant 

connectivity within the default mode network (DMN) in patients with depression compared 

to healthy controls (Kaiser, Andrews-Hanna, Wager, & Pizzagalli, 2015; Mulders, van 

Eijndhoven, Schene, Beckmann, & Tendolkar, 2015; Yan et al., 2019). 

However, despite meta-analytical evidence suggesting brain aberrations in large 

groups of patients with depression, the reported effect sizes are small and the direct clinical 
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utility is unclear (Müller et al., 2017; Paulus & Thompson, 2019). One explanation for the 

lack of robust imaging-based markers in depression may be that previous studies have either 

focused on a single imaging modality or have analyzed different imaging modalities along 

separate pipelines and thus failed to model the common variance across features. In contrast, 

linked independent component analysis (LICA: Groves, Beckmann, Smith, & Woolrich, 

2011; Groves et al., 2012) offers an integrated approach by fusing different structural and 

functional imaging modalities (Groves et al., 2012). LICA identifies modes of variation 

across modalities and disentangles independent sources of variation that may account both for 

large and small parts of the total variance, that may otherwise be overlooked by conventional 

approaches. By decomposing the imaging data into a set of independent components, LICA 

enables an integrated perspective that may improve clinical sensitivity compared to unimodal 

analyses (Alnæs et al., 2018; Doan, Engvig, Persson, et al., 2017; Francx et al., 2016; Wu et 

al., 2019). 

Apart from the predominantly unimodal approaches in previous imaging studies, large 

individual differences and heterogeneity in the configuration and load of depressive 

symptoms represent other factors that could explain the lack of robust imaging markers. 

Symptom-based approaches have revealed more than 1000 unique symptom profiles among 

3703 depressed outpatients based on only 12 questionnaire items (Fried & Nesse, 2015), 

suggesting large heterogeneity. Additionally, depression is highly comorbid with anxiety, 

with reported rates exceeding 50% (Johansson, Carlbring, Heedman, Paxling, & Andersson, 

2013; Lamers et al., 2011). Furthermore, depression can be conceptualized along a continuum 

including individuals of the general, healthy population that may experience transient 

symptoms to varying degrees, and thus warrants a dimensional approach. 

The main aim of the current study was to determine whether fusion of neuroimaging 

modalities would capture modes of brain variations which discriminate between patients with 
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a history of depression (n = 170) and healthy controls with no history of depression (n = 71), 

and which are sensitive to current symptoms of depression and anxiety across groups. To this 

end, we used LICA to combine measures of cortical macrostructure (cortical surface area and 

thickness, and grey matter density), white matter diffusion properties (DTI-based FA, MD 

and RD), and resting-state fMRI DMN amplitude.  

There is evidence of sex and age differences in the prevalence and clinical 

characteristics of depression, including lower age at onset of first major depressive episode in 

women compared to men (Marcus et al., 2005), and longer duration of illness and different 

symptoms in older compared to younger patients (Husain et al., 2005), which may reflect 

differential neuronal correlates. Therefore, we tested for main effects of age and sex and their 

interactions with the resulting brain components’ subject weights on group and symptoms.  

In addition, we assessed the overall clinical sensitivity of all measures combined using 

machine learning to classify patients and controls and to predict symptom loads for 

depression and anxiety, which we compared with age prediction. Based on the above 

reviewed studies and current models we anticipated 1) that brain variance related to 

depression would be captured in components primarily reflecting the previously extended 

functional neuroanatomy of depression, including limbic and fronto-temporal networks and 

their connections. Irrespective of having a history of depression, we hypothesized 2) several 

strong age and sex differences, reflecting well documented age and sex-related variance in 

brain structure, including global thickness and volume reductions with increasing age, and 

larger brain volume and surface area in men compared to women. To the extent that having a 

history of depression interacts with sex and age-related processes in the brain, we 

hypothesized 3) interactions between the age-related trajectories and sex differences 

identified above with case-control status or symptoms of depression. To increase robustness 
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and generalizability we corrected for multiple comparisons across all univariate analyses and 

performed cross-validation and robust model evaluation in the machine learning analyses.    

 

Materials and Methods 

Sample 

Patients (n = 194) were primarily recruited from outpatient clinics, while healthy controls (n 

= 78) were recruited through posters, newspaper advertisements and social media. The patient 

group was drawn from two related clinical trials (ClinicalTrials.gov ID NCT0265862 and 

NCT02931487). All participants were evaluated with the Mini International Neuropsychiatric 

Interview (M.I.N.I 6.0: Sheehan et al., 1998). Exclusion criteria for all participants were MRI 

contraindications and a self-reported history of neurological disorders. The study was 

approved by the Regional Ethical Committee of South-Eastern Norway (REK Sør-Øst), and 

we obtained a signed informed consent from all the participants. Symptom loads for 

depression and anxiety were evaluated using the Becks Depression Inventory (BDI-II; Beck, 

1996) and the Becks Anxiety Inventory (BAI; Beck & Steer, 1993) respectively. The 

demographics for the final sample (after exclusions, see below) are shown in table 1. The 

range of symptom load for depression and anxiety for the control group was from 0 to 20 and 

0 to 19 respectively, while the range for the patient group was from 0 to 51 and 0 to 45 

respectively (see Figure 1 for the distributions). 

 

Image Acquisition  

MRI data was obtained on a 3T Philips Ingenia scanner (Phillips Healthcare) at the Oslo 

University Hospital using a 32-channel head coil. The same protocol was used for all 

participants, but there was a change in the phase-encoding direction during the course of 
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study recruitment and data collection which affected the T1-weighted data for 4 controls and 

95 patients, and resting-state fMRI data for 64 patients. 

 T1-weighted data was collected for 74 controls and 194 patients using a 3D turbo field 

echo (TFE) scan with SENSE using the following parameters: acceleration factor = 2; 

repetition time (TR)/echo time (TE)/ flip angle (FA): 3000 ms/3.61 ms/8°; scan duration: 3 

min 16 s, 1 mm isotropic voxels. 

 Diffusion weighted data was collected for 72 controls and 184 patients using a dual 

spin echo, single-shot EPI sequence with the following parameters was used: TR/TE = 

7200/86.5ms, FOV = 224 × 224 mm2, 112 × 112 matrix, 2.0mm isotropic voxels; 32 volumes 

with non-collinear directions (b = 1000s/mm2). Additionally, we acquired two b = 0 volumes 

with opposite phase polarity (blip up/down volumes). 

 Resting-state fMRI data was collected using a T2* weighted single-shot gradient echo 

EPI sequence was acquired for 72 controls and 178 patients with the following parameters: 

TR/TE/FA = 2500ms/30ms/80°; 3.00 mm isotropic voxels; 45 slices, 200 volumes; scan time 

≈ 8.5 min. Participants were instructed to have their eyes open, and refrain from falling 

asleep.  

 

Structural MRI preprocessing 

Vertex-wise cortical thickness and surface area measures (Dale, Fischl, & Sereno, 1999; 

Fischl, Sereno, & Dale, 1999) were estimated based on the T1-weighted scans using 

FreeSurfer (http://surfer.nmr.mgh.harvard.edu) (Fischl et al., 2002). Details are described 

elsewhere (Dale et al., 1999; Fischl et al., 1999) but in short, after gray/white boundary and 

pial reconstruction, cortical thickness was defined as the shortest distance between the 

surfaces vertex-wise (Dale et al., 1999), before resampling to the Freesurfer common 

template (fsaverage, 10,242 vertices; Fischl et al., 1999). The vertex-wise expansion or 
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compression was used to calculate vertex-wise maps of arealization. None of the thickness 

nor surface area data for healthy control (n = 74) nor patients (n = 194) were excluded after 

visual QC. 

 

Voxel-based morphometry 

Grey matter density maps (GMD) were created based on voxel-based morphometry (VBM) 

using the computational anatomy toolbox (CAT12: http://www.neuro.uni-jena.de/cat/) within 

SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). This involved brain-extraction, gray matter-

segmentation, and then registration to MNI152 standard space. The resulting images were 

averaged and flipped along the x-axis to create a left-right symmetric, study-specific grey 

matter template. The modulated gray matter maps were smoothed with a sigma of 4 mm 

(FWHM = 9.4 mm). None of the GMD data for healthy control (n = 74) nor patients (n = 

194) were excluded after visual QC. 

 

DTI preprocessing 

Processing steps included correction for motion and geometrical distortions based on the two 

b = 0 volumes and eddy currents by using FSL topup 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TOPUP) and eddy  

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy). We also used eddy to automatically identify and 

replace slices with signal loss within an integrated framework using Gaussian process 

(Andersson & Sotiropoulos, 2016), which substantially improved the temporal signal-to-

noise ratio (tSNR: Roalf et al., 2016) (t = 24.139, p < 0.001, Cohen’s d = 2.13). We fitted a 

diffusion tensor model using dtifit in FSL to generate maps of fractional anisotropy (FA), 

mean diffusivity (MD) and radial diffusivity (RD). Based on manual QC, we excluded 3 

subjects due to insufficient brain coverage, and 3 subjects due to poor data quality. One 
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additional subject was flagged with a tSNR of > 2 SD lower than the mean and discarded 

after additional manual QC. This yielded a total number of DTI scans of 71 healthy controls 

and 178 patients. 

 

Resting-state fMRI preprocessing 

Resting-state fMRI data was processed using the FSL’s FMRI Expert Analysis Tool (FEAT). 

This included co-registration with T1 images, brain extraction, motion correction 

(MCFLIRT: Jenkinson, Bannister, Brady, & Smith, 2002), spatial smoothing (FWHM = 6 

mm), high pass filtering (100s), standard space registration (MNI-152) with FLIRT, and 

single-session independent component analysis (ICA; MELODIC). Automatic classification 

and regression of noise components was done using ICA-based Xnoiseifier (FIX: Griffanti et 

al., 2014; Salimi-Khorshidi et al., 2014), with a threshold of 60. FIX substantially improved 

tSNR (t = 20.89, p < 0.001, Cohen’s d = 1.95), and no fMRI scans from healthy controls (n = 

72) nor from patients (n = 178) were excluded. Group-level ICA with model order fixed at 40 

was performed on a balanced subset of healthy controls and patients (N = 72 from each 

group), which has been used in a previous study (Maglanoc et al., 2019). Dual regression 

(Nickerson, Smith, Öngür, & Beckmann, 2017) was used to estimate spatial maps and 

corresponding time-series of all components. We then identified an IC representing the 

canonical DMN (Supplemental Figure 1) and used the individual DMN spatial maps from 

dual regression in multimodal decomposition using LICA. 

 

LICA 

We used FMRIB’s LICA (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA) to perform data-driven 

multi-modal fusion, which evaluates shared inter-subject variations across the brain imaging 

measures (Groves et al., 2011, 2012). This produces spatial maps based on the commonalities 
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across features (e.g. GMD, DTI measures, DMN maps) and subjects, and corresponding 

subject weights (i.e. the degree to which a subject contributes to a LICA component). We 

included complete data from 70 patients and 171 controls in the decomposition. We chose a 

relatively low model order of 40 based on previous recommendation of estimating robust 

components (Wolfers et al., 2017), and the biological meaningfulness of the spatial maps. For 

transparency and comparison, we also performed similar analysis using a higher 

dimensionality (80, more details in Supplemental). For both model orders, we discarded 

components which were highly driven by one subject (threshold: > 20%) yielding a total of 

40 and 67 components respectively (Supplemental Figure 2). One component was strongly 

associated with phase encoding direction (IC4 in both decompositions, t = 33.07 and t = 

32.47, p < 0.001 respectively, Supplemental Figures 3 and 4) but not removed from the 

analyses because of the biologically meaningful spatial patterns. 

 

Table 1. Demographics of the final sample. 6 patients were missing information about ISCED level, 2 controls 

and 1 patient were missing Ham-D scores, 2 controls and 2 patients were missing AUDIT scores, and 2 controls 

and 4 patients were missing DUDIT scores. P denotes the p-value from group comparisons using Chi-Square 

test for sex, handedness, history of additional disorders, and current SSRI medication status while we used 

Mann-Whitney U tests for the rest. 

 Controls (n = 70) Patients (n = 171) p 

Sex (female, %) 46 (66) 120 (70) 0.599 

Age (mean, SD) 41.8 (13.1) 38.7 (13.3) 0.092  

Education level ISCED (mean) 6.0 1.0) 5.9 (1.2) 0.932 

Depression symptoms 

 BDI-II (mean, SD) 1.6 (3.0) 11.6 (10.4) <0.001  

Anxiety symptoms    

 BAI (mean, SD) 1.7 (2.8) 8.1 (8.1) <0.001  

Other 

 AUDIT (mean, SD) 4.8 (3.3) 6.3 (5.0) 0.127  

 DUDIT (mean, SD) 0.5 (1.9) 0.8 (2.5) 0.123  

 Left Handedness (N) 7 6 0.087 

 History of anxiety disorder (N) 1 50 <0.001 

 History of (hypo)mania (N) 0 23 <0.001 

 History of other Axis-I disorders (N) 0 23 <0.001 

 No. of major depressive episodes 

(mean, SD) 

0 4.4 (5.9) <0.001 

 Currently medicated (SSRI, N) 0 52 <0.001 
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Fig. 1. Histogram of symptom loads of (A) depression based on BDI-II and (B) anxiety based on BAI. 

 

Statistical analysis 

Statistical analyses were performed in R version 3.5.1 (R Core Team, 2018) and Matlab 2014A (The 

MathWorks). We used linear models to test for main effects of clinical characteristics (case-

control status, symptoms), age, and sex on each LICA subject weight with each IC as the 

dependent variable. In additional models we tested for interactions between age or sex and 

clinical characteristics (case-control status, symptoms) on each IC. For the analyses involving 

symptoms, one healthy control was removed due to missing data. We included phase 

encoding direction as an additional covariate in all the univariate analyses, and we controlled 

the false discovery rate (FDR) across tests using p.adjust in R. 

 

Machine learning approach 

For group classification we submitted all LICA subject weights to shrinkage discriminant 

analysis (Ahdesmäki & Strimmer, 2010) in the R-package ‘sda’ 
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(http://www.strimmerlab.org/software/sda/). For the main analyses we used the residuals of 

each component’s subject weight after regressing out age and sex, and additionally, phase 

encoding for IC4. As a supplemental analysis, we used the residuals of the subject weights 

after regressing out age, sex and phase encoding direction from all the ICs. For robustness 

and to reduce overfitting, we performed cross-validation with 10 folds across 100 iterations. 

We calculated area under the receiver operating curve (AUC) as our main measure of model 

performance using the R-package ‘pROC’ (Robin et al., 2011), but also accuracy, sensitivity 

and specificity. The relative feature importance was determined by calculating correlation-

adjusted t-scores (CAT scores: Ahdesmäki & Strimmer, 2010). We determined statistical 

significance based on AUC using permutation-based testing across 10,000 iterations. We 

used the same framework to predict depression and anxiety symptoms, but by implementing 

shrinkage linear estimation (Schäfer & Strimmer, 2005) in the R-package ‘care’ 

(http://strimmerlab.org/software/care). Here, we computed root mean squared error (RMSE) 

between the raw and predicted scores as our main measure of model performance, but also 

mean absolute error (MAE), spearman’s rho, and R2. In this case, the relative feature 

importance was determined by computing the mean correlation-adjusted marginal correlation 

(CAR) scores (Zuber & Strimmer, 2011). Here, statistical significance was based on RMSE 

and permutation testing. As a comparison, we also predicted age using the same framework, 

using residuals of the subject weights after regressing out phase encoding direction in the 

methods shown above (using Pearson’s r instead of spearman’s rho). 

 

Results 

LICA 

Figure 2A shows the degree of fusion across MRI measures for each component. Figure 2B 

shows the percentage of the total variance explained by each IC. Most of the components 
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were characterized by region-specific features that were mainly bilateral, with the exception 

of 4 global components shown in Figure 3. Briefly, there was no substantial fusion between 

DMN maps and the other modalities, except for IC26 (Supplemental Figure 5). 

 

 

Fig 2. (A) The degree of fusing across MRI measures. (B) Explained percentage variance of each IC 
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Fig 3. ICs that are mainly dominated by global features. For each IC, only measures that have an interpretable 

spatial pattern are presented. A z-score threshold of >= | 3 | was used for illustration. For visualization of the 

skeleton-based ICs, we used tbss_fill. IC1: global GMD and surface area. IC2: global white matter 

microstructure. IC5: DMN amplitude. IC7: global thickness. 
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Univariate analyses 

Table 2 shows results from linear models testing for main effects of group, age, sex, and 

symptom load for depression and anxiety on each IC. Supplemental Table 1 shows results 

from linear models testing for interactions between group or symptom loads for depression or 

anxiety with age or sex. Briefly, after corrections for multiple comparisons, the analysis 

revealed no significant associations between ICs and group, nor symptom load for depression 

and anxiety. There were significant main effects of age and sex on 10 and 5 LICA 

components (see Figure 4), respectively, but no significant main effects of group, with similar 

results for the decomposition with 80 components (see Supplemental Tables 2 and 3). Figure 

3 shows the global LICA components associated with age and sex (see Supplemental Figure 

6 for associations with additional LICA components). Age was negatively associated with 

IC1, indicating lower GMD and cortical surface area globally with increasing age, positively 

associated with IC2, indicating lower FA globally with increasing age, negatively associated 

with IC5, indicating lower DMN amplitude with increasing age, and negatively associated 

with IC7, indicating thinner cortex globally with increasing age. The analyses revealed main 

effects of sex on IC1, indicating larger global surface area and higher GMD in men compared 

to women, and IC5, indicating that men had higher DMN amplitude. The analyses revealed 

no significant interaction effects between group or symptom loads for depression or anxiety 

with age or sex with any of the ICs. 
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Table 2. main effects of age, sex, group, symptom loads for depression and anxiety on ICs 

IC Age (t, p) Sex (t, p) Group (t, p) BDI-II (t, p) BAI (t, p) 

IC0 7.69 (<0.001) 1.48 (0.287) 0.98 (0.883) 0.96 (0.853) -0.04 (0.973) 

IC1 -8.46 (<0.001) 10.85 (<0.001) 0.32 (0.883) -0.59 (0.969) 0.308 (0.965) 

IC2 -10.21 (<0.001) -6.95 (<0.001) 0.57 (0.883) -0.42 (0.969) -0.29 (0.965) 

IC3 -1.70 (0.202) -1.87 (0.208) 0.86 (0.883) 1.10 (0.853) 1.40 (0.965) 

IC4 -4.88 (<0.001) 1.41 (0.307) 0.86 (0.883) -0.14 (0.976) 0.33 (0.965) 

IC5 -6.34 (<0.001) 3.45 (0.005) -1.25 (0.883) -0.42 (0.969) -0.75 (0.965) 

IC6 -3.89 (0.001) 0.28 (0.841) 1.34 (0.883) -2.23 (0.516) -2.49 (0.536) 

IC7 -3.56 (0.002) -0.54 (0.759) 1.00 (0.883) 0.51 (0.969) 1.00 (0.965) 

IC8 -1.64 (0.215) 0.35 (0.83) 1.32 (0.883) 0.31 (0.976) 1.06 (0.965) 

IC9 0.81 (0.551) -1.87 (0.208) -0.62 (0.883) 0.55 (0.969) 0.35 (0.965) 

IC10 -0.61 (0.62) -1.76 (0.245) -0.21 (0.925) 0.47 (0.969) -0.07 (0.973) 

IC11 1.34 (0.33) 0.40 (0.83) -1.26 (0.883) 0.11 (0.976) -0.99 (0.965) 

IC12 -2.06 (0.101) 0.84 (0.578) 0.37 (0.883) -1.40 (0.853) -0.94 (0.965) 

IC13 -5.90 (<0.001) -4.24 (<0.001) -0.04 (0.968) -0.32 (0.976) -0.37 (0.965) 

IC14 -1.11 (0.397) 1.17 (0.404) 0.21 (0.925) 0.08 (0.976) 0.62 (0.965) 

IC15 0.10 (0.932) 5.25 (<0.001) -0.85 (0.883) -0.42 (0.969) -1.08 (0.965) 

IC16 0.64 (0.62) 3.09 (0.015) 1.24 (0.883) 0.74 (0.969) 0.20 (0.965) 

IC17 -0.97 (0.478) 1.27 (0.372) -0.38 (0.883) 0.11 (0.976) -0.42 (0.965) 

IC18 0.51 (0.677) -0.33 (0.83) -0.90 (0.883) -0.540 (0.969) -0.51 (0.965) 

IC19 -2.68 (0.026) 1.25 (0.372) 2.84 (0.198) -1.79 (0.6) 0.51 (0.965) 

IC20 -2.47 (0.044) 0.15 (0.925) 0.72 (0.883) 1.02 (0.853) 0.11 (0.973) 

IC21 0.88 (0.527) 0.69 (0.653) 0.97 (0.883) -0.95 (0.853) -0.42 (0.965) 

IC22 -0.63 (0.62) -1.71 (0.254) 0.97 (0.883) -0.14 (0.976) -0.12 (0.973) 

IC23 2.21 (0.075) -1.62 (0.286) 0.45 (0.883) -1.09 (0.853) -1.29 (0.965) 

IC24 1.18 (0.38) -0.05 (0.96) 0.61 (0.883) 0.57 (0.969) 0.36 (0.965) 

IC25 -0.27 (0.832) 1.48 (0.287) 0.54 (0.883) -0.35 (0.976) 0.37 (0.965) 

IC26 1.20 (0.38) -0.44 (0.83) 0.60 (0.883) -1.18 (0.853) -0.40 (0.965) 

IC27 0.09 (0.932) 0.32 (0.83) -0.88 (0.883) -1.45 (0.853) -1.53 (0.965) 

IC28 0.48 (0.68) 1.52 (0.287) 0.52 (0.883) 1.01 (0.853) 0.69 (0.965) 

IC29 0.80 (0.551) -1.98 (0.198) -0.07 (0.968) 0.98 (0.853) 0.27 (0.965) 

IC30 3.64 (0.002) 0.72 (0.653) 0.52 (0.883) 0.63 (0.969) -0.03 (0.973) 

IC31 -2.99 (0.011) 1.52 (0.287) 0.36 (0.883) -0.11 (0.976) -0.22 (0.965) 

IC32 -1.72 (0.202) -2.44 (0.078) 0.38 (0.883) 1.94 (0.542) 1.27 (0.965) 

IC33 -5.16 (<0.001) -1.00 (0.488) 0.33 (0.883) -0.001 (0.999) 0.65 (0.965) 

IC34 -0.72 (0.587) 2.30 (0.1) 0.10 (0.965) 0.57 (0.969) 0.20 (0.965) 

IC35 1.25 (0.373) -0.05 (0.96) 0.15 (0.952) 1.16 (0.853) 1.73 (0.965) 

IC36 1.44 (0.291) -1.54 (0.287) 0.39 (0.883) -2.26 (0.516) -0.74 (0.965) 

IC37 -1.45 (0.291) -2.70 (0.044) -1.01 (0.883) 0.06 (0.976) -0.59 (0.965) 

IC38 2.25 (0.073) 1.13 (0.418) 0.52 (0.883) -2.08 (0.516) -1.42 (0.965) 

IC39 -1.16 (0.38) 0.98 (0.488) -1.03 (0.883) -0.25 (0.976) -0.74 (0.965) 
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Fig. 4. Significant effects of age and sex on ICs (p < 0.01). A: Scatter plots of the significant (linear) effects of 

age on ICs, sorted by the strength of the association. For visualization purposes we plotted LOESS and 

separated based on case-control status. The IC subject weights in the plot have been residualized for group, sex 

and phase encoding direction. B: Violin plots showing the distribution of the subject weights within men and 

women for each of the components showing a significant main effect of sex. The subject weights in the plot 

have been residualized for group, age and phase encoding direction 

 

Machine learning analyses  

Figure 5 shows the results of the machine learning analyses, with the spatial maps of a select 

few top features for each model shown in Supplemental Figure 7. Model performance was 

low for classifying patients and controls using residualized IC features (AUC = 0.5702, p = 

0.06135, accuracy = 0.6169, sensitivity = 0.4292, specificity = 0.3009). The feature 

importance based on CAT-scores identified IC19 as the most important feature for classifying 

group. IC19 represents a covarying pattern of high GMD in most cerebellar regions, low 

GMD in cerebellar crus II, and high GMD in the angular gyri.  

Model performance was low for predicting depression symptoms using residualized 

IC features (RMSE = 10.72, p = 0.9236, MAE = 8.498, R2 = -0.3302, spearman’s rho = 
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0.009). IC0 had the highest feature importance based on CAR-scores (positive association). 

IC0 is characterized by a complex covarying pattern including low GMD in temporal regions, 

the thalamus and cingulate, and low thickness in the cingulate and fronto-temporal regions. In 

terms of white matter diffusion properties, IC0 is characterized by high FA in several 

pathways including the posterior thalamic radiation and low FA in the anterior thalamic 

radiation and fornix, with mostly the reverse pattern for MD and RD.  

Model performance was low when predicting anxiety symptoms using residualized IC 

features (RMSE = 8.181, p = 0.8946, MAE = 6.262, R2 = -0.424, Spearman’s rho = -0.064). 

IC6 had the highest feature importance based on CAR-scores (negative association). IC6 is 

mainly characterized by a complex covarying pattern of high FA in the splenium of the 

corpus callosum, high FA and low MD and RD in the fornix, high MD and RD in the 

thalamus, in addition to high GMD in the thalamus, and low GMD in hippocampal and 

amygdala regions. Model performance was slightly lower when regressing out phase 

encoding from all the IC features, and also suggested a different order of feature importance 

(see Supplemental Results and Supplemental Figure 8). Using the decomposition with higher 

model order revealed similar results in terms of feature importance, albeit slightly lower 

model performance for group classification, and symptom prediction (see Supplemental 

Results and Supplemental Figure 9). In contrast, model performance was high when 

predicting age (RMSE = 6.764, p < 0.0001, MAE = 5.530, R2 = 0.712, r = 0.861) using 

residualized features, with feature importance generally in line with the univariate results (see 

Figure 6). Model performance for predicting age was high but slightly lower when regressing 

out phase encoding from all the IC features (see Supplemental Results and Supplemental 

Figure 10), and when using the decomposition with higher model order (see Supplemental 

Results and Supplemental figure 11). 
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Fig. 5. The results of the main analyses of the machine learning approach using 10-fold cross-validation across 

100 repetitions for (A) classifying group (B) prediction symptom load for depression and (C) symptom load for 

anxiety. Here, phase encoding direction was only regressed out of the subject weights in IC4, while age and sex 

were regressed out from the subject weights of all the ICs. The figures on the left show prediction accuracy 

based on various model performance metrics. The barplots on the right show the most important features for 

each model based on CAT-scores (A) or CAR-scores (B and C). 
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Fig. 6. Age prediction regressing out phase encoding from the subject weights in IC4. (A) model performance 

results and (B) feature importance 

 

Discussion 

The distributed functional and structural neuroanatomy of complex traits and disorders 

warrants integrated perspectives and analytical approaches. To this end, we probed the 

neuronal correlates of depression using multimodal fusion across cortical macrostructure, 

white matter diffusion properties and DMN amplitude based on resting-state fMRI. LICA 

yielded 40 components with various degree of multimodal involvement and different 

anatomical distributions, including both global and regionally specific patterns. Univariate 

analyses revealed strong associations with age and sex for several components’ subject 

weights after multiple comparison correction, but no robust group differences between 

patients with a history of depression and healthy controls, and no significant interactions 

between group and sex nor between group and age. Likewise, we observed no robust 

associations with symptom loads for depression or anxiety, nor interactions with age or sex. 

In line with the univariate analyses, the machine learning approach revealed overall low 

prediction accuracy for group classification and prediction of symptom loads for depression 

and anxiety, but high prediction accuracy for age. 
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 Our univariate analyses revealed no main effects of history of depression or symptom 

load for depression on any of the LICA components. The he machine learning analyses here 

revealed overall low predictive value both for case-control status and symptoms of depression 

and anxiety, which is generally in line with the univariate analyses and an increasing body of 

literature suggesting small differences in brain structure between patients with MDD and 

healthy controls (Schmaal et al., 2017, 2016; Varoquaux, 2018; Wolfers, Buitelaar, 

Beckmann, Franke, & Marquand, 2015). While considering the overall low performance, the 

most important feature for classifying patients with a history of depression from healthy 

controls was a component encompassing covarying patterns of both high and low GMD in 

cerebellar regions (IC19). There is some evidence that depression is linked to cerebellar 

regions that communicate with networks related to cognitive and introspective processing 

(Depping, Schmitgen, Kubera, & Wolf, 2018). Cerebellar structural characteristics have 

recently been demonstrated to rank among the most sensitive brain features when comparing 

adult patients with schizophrenia and healthy controls (Moberget et al., 2018), and also for 

predicting psychiatric symptoms in youths (Moberget et al., 2019). The most important 

feature for predicting depression symptoms was IC0, which involves complex covarying 

patterns of low GMD and cortical thickness in mainly temporal but also frontal regions. This 

pattern is largely in line with previous research (Lai, 2013; Schmaal et al., 2017; Suh et al., 

2019). IC0 also encompassed high FA and low MD and RD in interhemispheric connections 

and frontal-striatal thalamic pathways, in line with previous studies, albeit in the opposite 

direction (Chen et al., 2016). One study reported a positive association between symptom 

load for depression and FA in the thalamus (Osoba et al., 2013), and another study suggested 

this association (although in the opposite direction) is related to late onset MDD, especially in 

the corpus callosum (Cheng et al., 2014). However, while the implicated brain patterns are in 
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line with previous reports, the overall poor model performance for predicting symptom load 

for depression warrants caution when interpreting this finding. 

 Higher age was related to lower global cortical thickness (IC7), in line with previous 

studies (e.g. Fjell et al., 2015). As hypothesized, higher age was also associated with lower 

global volume and smaller surface area (IC1), similar to previous studies using LICA (Doan, 

Engvig, Zaske, et al., 2017; Douaud et al., 2014), and a consistent finding in lifespan studies. 

Additionally, advancing age was negatively associated with IC2, indicating decreased FA 

globally, but also increased RD and to some extent MD, consistent with the aging literature 

(Davis et al., 2009; Sexton et al., 2014; Westlye et al., 2010). Higher age was associated with 

IC5, reflecting age-related decreases in DMN amplitude, in line with previous research 

(Damoiseaux et al., 2008; Mevel et al., 2013; Mowinckel, Espeseth, & Westlye, 2012; 

Razlighi et al., 2014; Vidal-Piñeiro et al., 2014). We observed high prediction accuracy for 

age in the machine learning approach, which shows the potential utility of LICA in 

estimating the gap between chronological and biological age (i.e. brain age gap). 

Men had larger global brain volume and surface area than women (IC1), which is 

consistent with previous studies (e.g. Ritchie et al., 2018). Additionally, women had higher 

subject weights in IC13, reflecting lower FA in the corticospinal tract, portions of the 

superior longitudinal fasiculi and posterior thalamic radiation compared to men, generally in 

line with a large-scale UK Biobank study (Ritchie et al., 2018). We also found that men had 

greater DMN amplitude (IC5) than women, which adds to previous inconclusive findings 

(Mowinckel et al., 2012; Weissman-Fogel, Moayedi, Taylor, Pope, & Davis, 2010) and 

contrasts a previous report suggesting effects in the opposite direction (Jamadar et al., 2018). 

 In general, our analyses did not provide support for our hypothesis that a history of 

depression and symptoms of depression interact with age-related trajectories or sex 

differences of the LICA components. To the best of our knowledge, although studies have 
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found specific cortical abnormalities related to adults with MDD, adolescents with MDD 

(Schmaal et al., 2017) and age at onset of depression (Ho et al., 2019), few or no studies have 

reported age-by-group interactions. Although there have been some early reports of a sex-by-

group interaction in hippocampal volumes (e.g. Frodl et al., 2002), the recent large-scale 

ENIGMA MDD study reported no sex-by-group interactions in any subcortical volumes 

(Schmaal et al., 2016). Another recent study identified sex-by-group interactions using VBM, 

including higher GMD in the left cerebellum of male patients only, and lower GMD in the 

dorsal medial prefrontal gyrus in female patients only (Yang et al., 2017). However, the 

sample size was relatively small (less than 100 in the patient and control group each) which 

may affect the reproducibility of these findings. Despite separate reports of a link between 

resting-state DMN connectivity and rumination in depression (e.g. Hamilton, Farmer, 

Fogelman, & Gotlib, 2015) and evidence of sex-differences in rumination among adolescents 

(e.g. Jose & Brown, 2008), no studies have reported a sex-by-group interaction on DMN 

functional connectivity or amplitude. 

The lack of positive findings in the univariate analyses and low predictive accuracy in 

the machine learning approach can be attributed to at least two factors. First, as illustrated by 

the large-scale ENIGMA studies (Ho et al., 2019; Schmaal et al., 2017, 2016), the effect sizes 

in neuroimaging studies of mental disorders and depression are overall small (Paulus & 

Thompson, 2019). Similarly, small sample sizes may contribute to over-inflated estimates of 

prediction accuracy in machine learning approaches (Wolfers et al., 2015). This is one 

possible explanation why other multimodal fusion studies of depression have reached higher 

prediction accuracies for classifying patients with depression from healthy controls (He et al., 

2017; Ramezani et al., 2014; Yang et al., 2018), with patient groups consisting of no more 

than 60 individuals. Secondly, and also related to the small effect sizes, mental disorders 

including depression are clinically highly heterogenous. As an example, Müller and 
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colleagues (2017) partially attribute the lack of convergence in their meta-analysis of 

activation-based fMRI experiments involving 1058 MDD patients to clinical heterogeneity. 

As a result, future research probing the neurobiology of depression should aim for large 

sample sizes (Rutledge, Chekroud, & Huys, 2019), and more importantly, stratifying patients 

(Feczko et al., 2019) with depression at the individual level. Pursuant to this, there has been 

considerable interest in identifying clinically relevant subgroups based on brain imaging, with 

initially encouraging results (Drysdale et al., 2017). However, the robustness and 

generalizability of such studies have been brought into question (Dinga et al., 2019), which 

may be partly due to substantial brain heterogeneity within groups, which has been illustrated 

in terms of morphometry in schizophrenia (Alnæs et al., 2019). Alternatively, dimensional 

measures such as brain age prediction (Kaufmann et al., 2018) and normative modelling 

(Marquand et al., 2019; Marquand, Rezek, Buitelaar, & Beckmann, 2016) have shown 

promising results in elucidating brain heterogeneity in mental disorders such as schizophrenia 

(Wolfers et al., 2018) and attention deficit/hyperactivity disorder (Wolfers et al., 2019).  

 The current findings should be considered in light of relevant limitations associated 

with statistical power and study design. The relatively low number of severely depressed 

patients may have influenced the sensitivity and specificity of the machine learning approach, 

in particular for predicting symptom loads of depression and anxiety. The varied current use 

of antidepressants in the patient group may have impacted the classification accuracy, 

although it is undoubtedly difficult to get large samples of non-medicated patients. 

One weakness of this study is that the change in phase encoding direction may have 

introduced systematic differences in the MRI signal. However, only one component (IC4 in 

both decompositions) was strongly sensitive to phase encoding direction, suggesting that the 

remaining components were largely unaffected. Furthermore, we accounted for phase 

encoding direction in both the univariate and the machine learning analyses. This along with 
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previous studies (Doan, Engvig, Persson, et al., 2017; Doan, Engvig, Zaske, et al., 2017; 

Groves et al., 2012) provides additional evidence that LICA is a promising tool to account for 

various scanner effects, particularly relevant for multi-site and longitudinal studies. We used 

a model order of 40 for LICA decomposition in the main analyses. Even though we did find 

similar feature importance ranking in the decomposition with higher model order, prediction 

accuracy was slightly lower across all models. Although there is no consensus on the optimal 

model order, this may imply that we were modelling more noise components in the higher 

model order decomposition, which was also supported by the number of discarded 

components due to dominance by a single subject.  

 In conclusion, based on fusion of structural, diffusion-weighted and resting-state 

fMRI data from 241 individuals with or without a history of depression, we identified 

multimodal and modality specific components that revealed strong associations with age and 

sex. None of the components showed significant association with categorical or dimensional 

measures of depression, nor any interaction effects with age and sex. Similarly, machine 

learning revealed low prediction accuracy for classifying patients from controls and 

predicting symptom loads. This study supports accumulating evidence of small effect sizes 

when comparing brain imaging features between patients with a history of depression and 

healthy controls, and indicates the need for more precise methods of stratifying individuals 

with depression, as well as large samples sizes.   
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