Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Motility induced fracture reveals a ductile to brittle crossover in the epithelial tissues of a simple animal

View ORCID ProfileVivek N. Prakash, Matthew S. Bull, View ORCID ProfileManu Prakash
doi: https://doi.org/10.1101/676866
Vivek N. Prakash
1Department of Bioengineering, Stanford University, Stanford, California 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Vivek N. Prakash
Matthew S. Bull
2Department of Applied Physics, Stanford University, Stanford, California 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Manu Prakash
1Department of Bioengineering, Stanford University, Stanford, California 94305, USA
3Chan Zuckerberg Biohub, San Francisco, California 94158, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Manu Prakash
  • For correspondence: manup@stanford.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

ABSTRACT

Animals are characterized by their movement, and their tissues are continuously subjected to dynamic force loading while they crawl, walk, run or swim1. Tissue mechanics fundamentally determine the ecological niches that can be endured by a living organism2. While epithelial tissues provide an important barrier function in animals, they are subjected to extreme strains during day to day physiological activities, such as breathing1, feeding3, and defense response4. How-ever, failure or inability to withstand to these extreme strains can result in epithelial fractures5, 6 and associated diseases7, 8. From a materials science perspective, how properties of living cells and their interactions prescribe larger scale tissue rheology and adaptive response in dynamic force landscapes remains an important frontier9. Motivated by pushing tissues to the limits of their integrity, we carry out a multi-modal study of a simple yet highly dynamic organism, the Trichoplax Adhaerens10–12, across four orders of magnitude in length (1 µm to 10 mm), and six orders in time (0.1 sec to 10 hours). We report the discovery of abrupt, bulk epithelial tissue fractures (∼10 sec) induced by the organism’s own motility. Coupled with rapid healing (∼10 min), this discovery accounts for dramatic shape change and physiological asexual division in this early-divergent metazoan. We generalize our understanding of this phenomena by codifying it in a heuristic model, highlighting the fundamental questions underlying the debonding/bonding criterion in a soft-active-living material by evoking the concept of an ‘epithelial alloy’. Using a suite of quantitative experimental and numerical techniques, we demonstrate a force-driven ductile to brittle material transition governing the morphodynamics of tissues pushed to the edge of rupture. This work contributes to an important discussion at the core of developmental biology13–17, with important applications to an emerging paradigm in materials and tissue engineering5, 18–20, wound healing and medicine8, 21, 22.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted June 19, 2019.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Motility induced fracture reveals a ductile to brittle crossover in the epithelial tissues of a simple animal
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Motility induced fracture reveals a ductile to brittle crossover in the epithelial tissues of a simple animal
Vivek N. Prakash, Matthew S. Bull, Manu Prakash
bioRxiv 676866; doi: https://doi.org/10.1101/676866
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Motility induced fracture reveals a ductile to brittle crossover in the epithelial tissues of a simple animal
Vivek N. Prakash, Matthew S. Bull, Manu Prakash
bioRxiv 676866; doi: https://doi.org/10.1101/676866

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Biophysics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4383)
  • Biochemistry (9599)
  • Bioengineering (7094)
  • Bioinformatics (24865)
  • Biophysics (12615)
  • Cancer Biology (9958)
  • Cell Biology (14354)
  • Clinical Trials (138)
  • Developmental Biology (7950)
  • Ecology (12107)
  • Epidemiology (2067)
  • Evolutionary Biology (15989)
  • Genetics (10926)
  • Genomics (14743)
  • Immunology (9870)
  • Microbiology (23676)
  • Molecular Biology (9485)
  • Neuroscience (50872)
  • Paleontology (369)
  • Pathology (1539)
  • Pharmacology and Toxicology (2683)
  • Physiology (4016)
  • Plant Biology (8657)
  • Scientific Communication and Education (1509)
  • Synthetic Biology (2397)
  • Systems Biology (6436)
  • Zoology (1346)