
Enabling stable coexistence by modifying the environment

Alejandro Pastor1, Juan Carlos Nuño2,*, José Olarrea1, Javier de Vicente1,
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Abstract

In this work coexistence is studied using a model based on two classical population
models: the quasispecies of Eigen [1] and the daisyworld presented by Watson and
Lovelock [2]. It is assumed that species are able to modify the environment. We show
that this ability enables the coexistence between, at most, two species in equilibrium.
Given an initial population, the problem arises as to determine which of the many
equilibrium populations, i.e. extinction, only one species or coexistence of two species,
will be reached as a function of the species characteristics, specifically their capacity to
modify the environment and the optimal growth rate. These results are obtained under
general assumptions, which broadens its applicability to other fields as evolutionary
biology and social sciences.

1 Introduction 1

The question of whether an initial population formed by different species will persist on 2

time is of great relevance in Ecology and Evolutionary Biology [3–5]. However, to get 3

conclusive results seems to be elusive because of the so many factors that are involved 4

in the dynamic behavior of the population [6]. Besides, the individual properties of the 5

species have to be confronted with initial and boundary conditions. 6

From a dynamical point of view, this question is translated to which asymptotic 7

equilibrium the population will attain when multiple stable equilibria exist. Classical 8

qualitative analysis, using local properties of equilibria, is not enough to solve this 9

question [7, 8]. Finding its solution requires a global approach that considers the 10

properties of all the species as well as the possible interactions among them and the 11

influence of the environment. Unfortunately, despite the large number of papers devoted 12

to study the relationship between biodiversity and stability in ecosystems [3, 5], there 13

are no standard techniques to analyse this kind of complex systems [9]. 14

Our model is founded on two classical models: the Quasispecies model introduced by 15

Eigen in the earlies seventies [1] and the so called Daisyworld model presented by 16

Watson and Lovelock in 1983 to study the homeostatic properties of ecosystems [2, 10]. 17

From the first, we use the dynamic description, the concept of species fitness and the 18

population constraint that brings about a selective process. From the second, the 19

hypothesis that the individuals have the ability to influence their environment. The 20

model we present here belongs to a different category of those where the environment 21

changes independently of the population (see, for instance, [11,12]) 22
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There are several examples where the species ability to modify their environment are 23

specially relevant. Tumor cells are able to modify the surrounding tissues by segregating 24

chemical substances that increase the fitness of malign cells [13]. Soil modification by 25

microbial communities is being reported as one of the main driving factors of these 26

ecosystems [14]. Finally, climate change caused anthropogenically, i.e. induced by 27

human actuations, constitutes a dramatic example of the effect of modifying the 28

temperature by the species that inhabit the planet [15]. 29

In this paper we study a population of replicators that are able to modify their 30

environment [16]. The environment is here described by an unique scalar variable, that 31

we will call temperature. We assume that species fitness depend on this temperature 32

that changes over time as a function of the population distribution. Maximum fitness 33

for each species is reached at a particular optimal temperature value, decreasing when 34

temperature departs from this value. Species influence on temperature can be either 35

positive or negative and it is not coupled with their optimal temperature. Besides, total 36

population is bounded by a carrying capacity of the system. As a consequence, the 37

initial population undergoes a selective proccess that ends in an equilibrium population 38

formed by the survival species, if any. 39

It is worth noting that, as a consecuence of the feedback between the population and 40

its environment, the fitness of each species varies with time. There is no proper way to 41

rank the species out of the particular context they are placed. 42

For the sake of clarifying, the main assumptions of the model are listed below: 43

(i) A carrying capacity exists that bounds the total population, 44

(ii) The environment is described by a unique scalar function, its temperature, that is 45

a function of time, 46

(iii) The influence of each species on the temperature is proportional to its population 47

size, 48

(iv) The fitness of each species is a symmetrical function of temperature with a single 49

peak at its optimal temperature, 50

(v) Species only interact with each other indirectly through this temperature and the 51

resource (space) constraint. 52

The next section presents in detail the mathematical model. Results concerning with 53

the stability analysis of population of low diversity are obtained in the third section. 54

Fourth section presents the results obtained from the simulations of populations with 55

large initial biodiversity. We conclude and discuss these results, as well as their 56

implications, in the final section. 57

2 The mathematical model 58

We consider a population of error-free self-replicative species (replicators) Ii for 59

i = 1, . . . , S. The size of the total population at time t is N(t) and, can be determined 60

as the sum of the population of each phenotype Ni(t): 61

N(t) =
S∑

i=1

Ni(t) (1)

Species Ii has associated a fitness function fi that can be described by two real 62

numbers: Ti and αi. The first one, Ti, stands for its optimal growth temperature 63

whereas, αi denotes its influence on the environment. Both parameters, Ti and αi, give 64
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Fig 1. Examples of possible f(x) in fitness equation (2).

a measure of the survival probability of Ii in each generation. The relative fitness fi 65

depends on the rest of species of the population through the global temperature T . In 66

particular, we assume that the relative fitness of copy Ii is given by 67

fi(T (t)) = ri f(|T (t)− Ti|) (2)

where ri is a non-negative parameter and f(x) is a function that exhibits an unique 68

maximum at x = 0 and decreases monotonically to 0 as x→∞ (see Figure 1). 69

The intensive parameter T characterizes the environment. We suppose that each 70

species Ii has a linear influence on T , weighted by the real parameter αi. Assuming 71

that external perturbations that could modify the value of T are negligible, the time 72

evolution of the global temperature is given by: 73

Ṫ (t) =
S∑

i=1

αiNi(t)− T (t) (3)

In order to induce a selective process, we assume that the system has a maximum 74

carrying capacity K, the upper bound of the total population. Let the function of time, 75

s(t), be the available space at time t: 76

s(t) = K −N(t) (4)

then, the global fitness of species Ii is given by: 77

φi(s(t), T (t)) = s(t) fi(T (t)) (5)

At each time step, the reproduction rate of every species is a function of both the 78

population size and the external temperature and becomes null as the population size 79

approaches its maximum capacity K. 80

The time evolution of each species population Ni can be described by a system of 81

Ordinary Differential Equation (ODE): 82

Ṅi(t) = Ni(t)[φi(t)− δi] (6)

for i = 1, 2, . . . , S. The parameter δi is the death rate of species Ii. For sake of 83

simplicity, if not explicitely indicated, we will assume in what follows that ri = rj ≡ r 84

and δi = δj ≡ δ for all i, j. Under these assumptions, species differ each other by their 85

optimal temperature Ti and their capacity to modify the external temperature αi. 86

Notice that, as all species have the same r value, we can redefine the fitness function f 87

(see 2) including the common factor r in it, i.e. from now on: 88

fi(T (t)) = f(|T (t)− Ti|) (7)

It is convenient to normalize the equations with respect to the carrying capacity, K. 89

Let xi(t) = Ni(t)
K for i = 1, . . . , S. In so doing, we have to redefine the system 90

parameters adequately: r∗ = rK and α∗
i = αiK, although, we keep the same notation 91

in the equations: 92
ẋi = xi

([
1−

S∑
i=1

xi

]
fi(T )− δ

)

Ṫ =
S∑

i=1

αi xi − T

(8)
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The non-linear character of this ODE system prevents its analytical solution. 93

Nevertheless, a complete qualitative analysis for different cases has been carried out and 94

it is presented in the following. 95

First of all let us find the equilibrium points. There are two posibilities to cancel the 96

differential equation for species xi in system 8. Either xi = 0, or the parenthesis on the 97

right vanishes, i.e., 98



T̄ =
S∑

j=1

αj x̄j


S∑

j=1

x̄j =

(
1− δ

f(|T̄ − Tk|)

)
for every k such that x̄k 6= 0

x̄j = 0

(9)

The local stability character of each of these equilibrium points is given by the 99

Jacobian matrix associated to system 8, evaluated on them. 100

For every x̄l = 0, the l-row in the Jacobian matrix has only one non-null entry at the 101

diagonal position Jl, l. Consequently, the associated corresponding eigenvalues are: 102

λl =

1−
S∑

j=1

x̄j

 f(|T̄ − Tl|)− δ

In order to compute the rest of the eigenvalues, we only consider the ODEs that 103

correspond to the values x̄j 6= 0. If we arrange these variables in the m last equations, 104

we form a non-trivial box of dimension (m+ 1)× (m+ 1) in the lower right part of the 105

Jacobian. The equilibrium points of this subsytem verify: 106

T̄ =
m∑
j=1

αj x̄j

m∑
j=1

x̄j =

(
1− δ

f(|T̄ − Tk|)

)
k = 1 . . .m

(10)

Note that this system of algebraic equations is inconsistent for large values of m. In 107

practice, coexistence of more than two species is impossible, except in degenerate cases 108

of species with the same optimal temperature, which we will consider indistinguishable. 109

It is straightforward to prove that if Tr = Ts for a pair of species we can redefine the 110

system using linear combinations of xr and xs in such a way that one of the 111

combinations is stationary and the other behaves as a new species with an α value that 112

is a combination of αr and αs and the system behaves exactly as the one we are 113

studying with one variable less. 114

When a solution exists, the associated Jacobian is straightforwardly computed. The 115

entry Jk, j para k, j = 1 . . .m is given by: 116

Jk, j = −xkf(|T̄ − Tk|) = − x̄k δ

1−
m∑
j=1

x̄j

= Fk

The entries of the last column are (∀k = 1, . . . ,m): 117
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Jk, m+1 = x̄k

1−
m∑
j=1

x̄j

 d

dT
fk(T )

∣∣∣∣
T=T̄

= δx̄k
d

dT
ln[fk(T )]

∣∣∣∣
T=T̄

= Ck

and the last row: 118

Jm+1, k = αk ∀k = 1 . . .m, Jm+1, m+1 = −1

With this notation, the structure of the Jacobian is: 119

J =


F1 F1 · · · F1 C1

F2 F2 · · · F2 C2

...
...

. . .
...

...
Fm Fm · · · Fm Cm

α1 α2 · · · αm −1

 (11)

In the following sections we will study separately each of the equilibria and 120

determine their stability conditions over the parameters, particularly, on Ti and αi. 121

3 Fixed environment: αi = 0 for all i 122

The reference case, that reduces the ODE system (8) to the classical error-free 123

quasispecies model, corresponds to the situation when the species have no capacity to 124

modify the temperature, i.e. αi = 0 for all i. According to equation (8) temperature 125

decreases exponentially from its initial condition to zero. When the stationary value has 126

been reached, the fitness of all the species remains constant in time: fi = f(|Ti|) and 127

our model replicates the quasispecies model. It can be proven that asymptotic 128

coexistence is not possible and only two non-degenerate equilibria exist: (i) Extinction, 129

i.e. all the species of the population die out and (ii) Selection of only one species, 130

whereas the rest disappear. The equilibrium of m different species requires the m 131

species to comprise the same fitness, i.e. fi = fj , which is a degenerate situation. 132

Obviously, neutral situations in which more than one species have the same fitness are 133

possible but these species are considered as indistinguishable in this paper. 134

The largest fitness corresponds to the species with optimal temperature Ti closer to 135

zero, f(min|Ti|) and, therefore this species (lets assume index k) is the only one that 136

can take over the whole population. Its equilibrium size is given by: 137

x̄k = 1− δ

f(|Tk|)
= 1− δ

f(min|Ti|)
(12)

From the qualitative analysis explained in previous section one can inferred that, as 138

αi = 0 for all i, the last row of the Jacobian has only one non-null entry, JS+1,S+1 = −1. 139

Besides, for x̄i = 0, (i 6= k) the corresponding rows in the jacobian matrix have again 140

only a non-null entry, Ji,i. So the eigenvalues directly emerge: 141

λi = (1− x̄) f(|Ti|)− δ = δ

[
f(|Ti|)

f(min|Ti|)
− 1

]
As f is a monotonically decreasing function, all these eigenvalues are negative. 142

The row of the Jacobian corresponding to each surviving species reads as follows: 143

Jk,j = −x̄ f(min|Ti|) ∀j
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and the corresponding eigenvalue is then: 144

λ = δ − f(min|Ti|)

If f(min|Ti|) < δ all eigenvalues are negative ant this is the asymptotically stable 145

state, whereas if δ < f(min|Ti|), the final system tends towards extintion. 146

4 Promoting coexistence by modifying the 147

environment 148

Let us consider the case when the species are able to modify the environment (αi 6= 0) 149

and analyze the different possible stationary states. As we stated before, contrary to the 150

quasispecies model, now coexistence equilibria of at most two species can occur. 151

4.1 Extinction 152

We consider first the equilibrium point: x̄k = 0 for all k = 1, . . . , S and T̄ = 0, i.e. the 153

extiction of the whole population. The analysis is similar to the preceding case 154

αi = 0 ∀i and it is again straightforward to prove that this equilibrium point is 155

asymptotically stable if 156

f(min|Tk|) < δ

4.2 Only one survival 157

Let us assume that only one species has a population different from 0, for instance Ik. 158

That is, x̄k > 0 and x̄i = 0 for all i 6= k. The equilibrium point is obtained from the 159

system: 160
T̄ = αkx̄k

x̄k = 1− δ

fk(αk x̄k)
= 1− δ

f(|Tk − αk x̄k|)
As x̄k > 0 161

δ < fk(αk x̄k) (13)

The eigenvalues associated to i 6= k are 162

λi = (1− x̄k)fi(T̄ )− δ = δ

[
fi(T̄ )

fk(T̄ )
− 1

]
(14)

The condition for this equilibrium point to be asymptotically stable is: 163

fk(T̄ ) > fi(T̄ ) ∀i 6= k.

This last condition implies that: 164

f(|Tk − αk x̄k|) > f(|Ti − αk x̄k|) ∀i 6= k

which means that the value of T̄ = αk x̄k must be closer to Tk than any other Ti. 165

At this point, as we will see later, it is convenient to reorganize the species according 166

to their optimal temperatures, satisfying 167

T1 < T2 < ... < Tk < ...
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in a increasing succession as depicted in Figure 1. 168

The former condition reads now: 169

Tk + Tk−1

2
< αk x̄k <

Tk + Tk+1

2
(15)

The rest of eigenvalues are those of the submatrix in the Jacobian:

J =

 −x̄k fk(αk x̄k) δx̄k
d

dT
ln[fk(T )]

∣∣∣∣
T=T̄

αk −1


The associated characterisitic polynomial is:

λ2 + [1 + x̄k fk(αk x̄k)]λ+ x̄k

(
fk(αk x̄k)− αk δ

d

d T
ln(fk(T ))|T=T̄

)
The equilibrium point is asymptotically stable if the two roots have negative real parts. 170

This occurs when: 171

fk(αk x̄k) > αk δk
d

d T
ln(fk(T ))|T=T̄

4.3 Coexistence 172

Let us assume that the unique two survival species are Ik and Im. The values of the 173

equilibrium population are the solution of the algebraic system: 174
T̄ = αkx̄k + αmx̄m

x̄k + x̄m = 1− δ

fk(T̄ )
= 1− δ

fm(T̄ )

(16)

The first obvious condition that must be satisfied is δ < fk(T̄ ). 175

The right part of the second equation is satisfied if T̄ = 1
2 (Tk + Tm) or Tk = Tm. 176

The second case can be reduced to the case studied in the previous section, again by 177

using linear combinations of these two species. One of the new variables is stationary 178

and the other behaves as a new species with an α value that is a linear combination of 179

αk and αm. 180

Let us focus on the first one: T̄ = 1
2 (Tk + Tm). Eigenvalues associate to i 6= k,m are: 181

λi = (1− x̄k − x̄m)fi(T̄ )− δ = δ

[
fi(T̄ )

fk(T̄ )
− 1

]
(17)

Again, the condition for this equilibrium point to be asymptotically stable is: 182

fk(T̄ ) > fi(T̄ ) ∀i 6= k,m.

Then,

f(|Tk −
1

2
(Tk + Tm)|) = f(|Tm −

1

2
(Tk + Tm)|) > f(|Ti −

1

2
(Tk + Tm)|)

which means that the value of T̄ = 1
2 (Tk + Tm) must be closer to Tk and Tm than any 183

other Ti and, therefore, Tm y Tk must be consecutives, i.e. m = k + 1 (Hence the 184

convenience of arranging the species according to their optimal temperatures, as we 185

stated before). 186
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Now, the resulting linear system: 187
x̄k + x̄k+1 = 1− δ

fk(T̄ )

αk x̄k + αk+1 x̄k+1 = T̄

(18)

can be straightforwardly solved yielding: 188

x̄k =
1

αk+1 − αk

[
αk+1

(
1− δ

fk(T̄ )

)
− T̄

]

x̄k+1 = − 1

αk+1 − αk

[
αk

(
1− δ

fk(T̄ )

)
− T̄

] (19)

For these two concentrations to be simultaneously positive T̄ must have a value in 189

between αk+1

(
1− δ

fk(T̄ )

)
and αk

(
1− δ

fk(T̄ )

)
. 190

As it will be proven next, asymptotical stability is discarded in the case αk+1 > αk. 191

For αk > αk+1, as both values in equation 19 must be positive 19, equation 18 implies: 192

αk(x̄k + x̄k+1) >
1

2
(Tk + Tk+1) > αk+1(x̄k + x̄k+1)

The remaining three eigenvalues associated to this coexistence equilibrium are 193

obtained from the reduced Jacobian matrix: 194

J2 =


−x̄k A −x̄k A x̄k B

−x̄k+1A −x̄k+1A −x̄k+1B

αk αk+1 −1


where 195

A = fk(T̄ ) = fk+1(T̄ ).

and 196

B = δ
d

d T
fk(T )|T=T̄ .

Notice that A > 0 and B < 0 as fk is a decreasing function at T̄ (see Figure 1). 197

The characteristic polynomial associated to J2 is: 198

λ3 + [1 +A(x̄k + x̄k+1)]λ2 +

+ [A(x̄k + x̄k+1) +B(αk+1 x̄k+1 − αk x̄k)]λ+ 2ABx̄kx̄k+1(αk+1 − αk) (20)

The Routh-Hurwitz criterion requires the following conditions to assure three roots with 199

negative real parts: 200

1. All coefficients are positives. 201

This implies that: αk > αk+1 as stated before. In addition, 202

A(x̄k + x̄k+1) +B(αk+1 x̄k+1 − αk x̄k) > 0

2.

[1 +A(x̄k + x̄k+1)] [A(x̄k + x̄k+1) +B(αk+1 x̄k+1 − αk x̄k)] +

+2ABx̄kx̄k+1(αk − αk+1) > 0 (21)
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Table 1. 4-species model 1

α Top

-0.6 -0.9
-1 -0.8
0.1 -0.1
-0.2 0.2

Fig 2. In order to describe the basins of attraction of the two 2-coexistence equilibrium
solutions in the four species model with the parameter setup given in Table 1, we show
a set of 1500 initial conditions and mark with red circles those that converge to the
2-coexistence between species I3 and I4 and with blue circles those initial conditions
that converge to the 2-coexistence of species I1 and I2. The rest of the parameter values
are r = 1 and δ = 0.1.

These general conditions can be applied to seek examples where species coexistence 203

exist. In particular, as shown in the next section, we will find examples where 204

multi-stability between equilibria of coexistence appear and, consequently, the final 205

population depends on the initial conditions. 206

4.4 Four species model 207

In order to illustrate the results obtained in this section, we explore the numerical 208

solution of several four species cases where multi-stability appears. This model of four 209

initial species exhibits, among others, two kind of multi-stabilities that do not occur in 210

the classical models: (i) bi-stability between two different coexistence equilibrium points 211

and (ii) tri-stability among two single species equilibria and one coexistence point. 212

The first situation occurs for the species described in Table 1. The rest of parameters 213

are r = 1 and δ = 0.1. The fitness function chosen for all the cases from now on reads 214

fk(T ) = r exp [−(T − Tk)2]

Among other equilibria, this model has the following two asymptotically stable 215

equilibrium populations: (x̄1 = 0, x̄2 = 0, x̄3 = 0.7651, x̄4 = 0.1325, T = 0.05) and 216

(x̄1 = 0.1243, x̄2 = 0.7753, x̄3 = 0, x̄4 = 0, T = −0.85). The final equilibrium these four 217

species will achieve depends on the initial population. In Figure 2 we show the 218

projection on the plane Π (whose coordinate axis are x1 + x2 and x3 + x4) of the 219

solution obtained for 1500 initial conditions, all with T (0) = 0. As it can be seen, the 220

basin of attraction of each 2-coexistence is diffusively separated by the hyperplane 221

x1 + x2 = x3 + x4 that is projected as a line in the plane Π. 222

Another example of a case with four species that exhibits tri-stability is depicted in 223

Table 2. The rest of the parameters is fixed as before. 224

Table 2. 4-species model 2

α Top

-1 -0.9
-0.7 -0.85
0.1 -0.1
-0.2 0.2
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Fig 3. As in the previous figure, we show the basins of attraction of the three equilibria
that exist in the four species model presented in Table 2 a 2-coexistence and two
1-coexistence. A set of 1500 initial conditions are classified depending on their final
equilibrium population: blue circles correspond to the 2-coexistence formed by species
I3 and I4, red circles to the 1-coexistence of species I1 and green circles to the
1-coexistence of species I2. The other parameter values are: r = 1 and δ = 0.1.

Note that this example is a slight variation of the previous one, sharing the last two 225

species. Nevertheless, among others equilibria, this model exhibits an unusual 226

tri-stability among the following equilibrium points 227

(x̄1 = 0, x̄2 = 0.89, x̄3 = 0, x̄4 = 0, T = −0626), 228

(x̄1 = 0.89, x̄2 = 0, x̄3 = 0, x̄4 = 0, T = −0.9) and 229

(x̄1 = 0, x̄2 = 0, x̄3 = 0.7651, x̄4 = 0.1325, T = 0.05). This latter equilibrium already 230

exists in the previous example. 231

In both cases, depending on the initial conditions the population tends to one of 232

these equilibrium points. A tridimensional projection of 1000 initial conditions is 233

depicted in Figure 3 where the coordinates axis are: x1, x2 and x3 + x4. As it can be 234

observed, the coexistence equilibrum has the largest basin of attraction (blue points). 235

On the other extreme, the single species equilibrium with x̄1 > 0 has the smallest basin 236

of attraction (only seven red circles corresponding to 1-existence x̄1 ocurrences out of 237

1000 initial conditions). 238

5 Populations with a large number of species 239

In the previous section, we have studied the stability properties of a system formed by 240

few species, concretely, four. We have proven the existence of conditions that yield 241

multistability between single species and coexistence equilibria. Under these conditions, 242

the asymptotic equilibrium population depends on the initial populations of each of the 243

species that form the population. In this section, we explore further this dependence in 244

populations formed by a larger number of species. An important result to be pointed 245

out is that coexistence equilibria with more than two species does not exist. We want to 246

show in this section how the asymptotic behavior of this kind of populations depends on 247

three factors: (i) the number of species, (ii) the initial conditions and (iii) the confluence 248

of the properties of the species that initially form the population, i.e. their optimal 249

temperature Tk and the rate of influence, αk, over the environment temperature T . 250

5.1 Dependence with the number of species 251

In order to study the influence of the number of species that initially form the 252

population, we carry out a numerical integration of the system of differential equations 253

that describes the time evolution of each of the species population, xk(t) (see 8). As 254

before, we assume that each species Ik is characterized by Tk and αk. The values of 255

these parameters are taken randomly from intervals whose length is changed in each 256

case. The initial populations of all the species are equal and their sum reaches half of 257

the total population, i.e.
∑

k xk(t = 0) = 1/2. The rest of the parameters that define 258

the system are taken as before, i.e. r = 1, δ = 0.1. For each number of species and for 259

each α-interval and T -interval, we perform 30 numerical integrations and quantify the 260

equilibrium populations. The optimal temperature and the rate of influence of the 261

initial species are randomly chosen from two given intervals that are symmetric with 262

respect to 0: Ti ∈ [−Tmax, Tmax] and αi ∈ [−αmax, αmax]. 263

Figure 4 depicts the curves of the proportion of coexistence equilibria for the case 264
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Fig 4. Relative frequency of the coexistence equilibria as a function of the number of
initial species for different T -intervals. The interval of variation of αk is [−1, 1]. An
initial population of N species with random values of Tk and αk in these intervals is
considered. All the species are equally represented in the initial population that
occupies half of the carrying capacity. The initial external temperature is T (0) = 0.
Each point in the curves is the average over 30 realizations.

Number of initial species
5 10 20 30 40 50 60 80 100

[-0.1, 0.1] 0.15 0.2 0.35 0.15 0.45 0.5 0.55 0.85 0.75
[-0.5, 0.5] 0.3 0.45 0.75 0.75 0.65 0.95 0.8 1 1

[-1, 1] 0.53 0.63 0.76 0.93 0.96 0.96 0.93 0.96 1
[-2, 2] 0.6 0.65 0.95 0.95 0.95 0.95 1 1 1

α
-i

n
te

rv
al

[-5, 5] 0.5 0.7 0.75 0.85 1 0.95 1 1 1
[-10, 10] 0.35 0.7 0.7 0.9 0.9 0.85 0.95 0.85 0.95

Table 3. Frequency of the 2-coexistence equilibrium point for different intervals of variation
[−α, α] as a function of the number of species S. The interval of variation of the optimal
temperatures of the species is [−10, 10]. An initial population is selected of S species with
random values of Tk and αk in these intervals. All the species are equally represented and the
sum of their sizes occupies half of the initial population and the initial external temperature is
T (0) = 0. Each value is the average over 30 realizations.

α-interval = [−1, 1] for different T -intervals. The rest of the proportion corresponds to 265

single species equilibria except for the large T -intervals and lower number of species 266

where the proportion of extinction is significant (see Figure 4). For the other T -intervals 267

this proportion is null. As it can be seen, the occurrence of 2-coexistence equilibria is 268

more probable for population formed initially by a large number of species. This 269

tendency is more effective when the T -interval is shorter. On the contrary, this 270

proportion is reduced to half when the T -interval is [−10, 10] even for large number of 271

species. 272

Similar results are obtained when the T -interval is fixed to [−10, 10] and we vary the 273

length of α-interval as it is summarized in Table 3. In that table the probability of 274

reaching a 2-coexistence equilibrium as a function of the number of initial species is 275

shown. In this case, the probability of extinction is null and, consequently, the 276

probability of survival of only one species for each number of initial species is 1 minus 277

the value given by the corresponding curve. As in the previous figure, it can be seen 278

that the coexistence equilibria are more likely to occur in populations with larger 279

number of species. This effect is more important when the α-interval is larger. 280

6 Discussion 281

The capability of some species to modify the environment has been postulated as a 282

factor of stabilization that can promote biodiversity [3]. The coupling between biota 283

and the environement could endowe the ecosystem with homeostatic properties that 284

enables a better adaptation [5, 17]. The Gaia hypothesis is mainly based on this 285

interaction [18,19]. Indeed, Evolution favours those species that are able to keep the 286

environment under specific conditions that are assumed good enough for Life. 287

A huge debate exists about the evolutionary occurrence of this kind of interactions 288

between evolving species and an environment governed by the Laws of Physics. 289

Hypothetically, biological species would be selected to fit particular environmental 290

conditions. This would require, of course, a certain stability of the environment that, in 291
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evolutionary time, has not always occurred. However, our planet Earth has abruptly 292

changed its physical properties from the origin of Life. Likely, most of the species that 293

were selected in a static environment could be later displaced by new environmental 294

conditions. Thus, it can be said that darwinian evolution is acting constrained by the 295

dynamics of the environement. As a consequence, evolution selects species with the 296

capability of controling the rapid and drastic changes of the environment in their own 297

benefit. The problem is how to explain the fixation of a systemic property from the 298

selective pressure on the individuals of the population [17,20–22]. Even more 299

challenging is to explain the existence of stable populations when mutation enables the 300

appearance of species that can drive the environment towards destabilization. 301

This paper shows that when species are able to modify the environment, coexistence 302

can be enhanced. As a matter of fact, for populations with a large number of species, 303

coexistence is the most probable equilibrium population. However, if this modification 304

is not coupled with the own species characteristics then, this capability does not assure 305

its own persistence. The question about which species will survive under specific 306

conditions can not be answered exclusively by carrying out a stability analysis. 307

Qualitative stability analysis, for instance, based on the linearization around equilibria 308

only provides local information about the dynamics of small perturbations: if the 309

perturbation decays the equilibrium points are said to be asymptotically stable. On the 310

contrary, if the perturbation increases over time the equilibrium point is said unstable. 311

When the system exhibits multiple equilibrium points this analysis cannot solve the 312

aymptotic behaviour when the population starts from a particular initial condition. 313

Linear stability analysis says nothing about the attraction basin. Nevertheless, we have 314

got a useful result, proven in section 4, that states a necessary condition that must 315

satisfy two species that coexist in equilibrium: their temperatures must be consecutive. 316

Unfortunately, this condition is not conclusive and further investigation is required to 317

predict the species selected from a given initial population. 318

In order to solve this problem, we have applied a different approach that seeks to 319

determine the equilibrium point (asymptotically stable) which is achieved from an 320

initial population. In particular, we assume that the species optimal temperatures and 321

their rate of influence on the environment are randomly taken. The population starts 322

with a given number of species homogeneously populated and whose sum is well below 323

the carrying capacity of the system K. After a transient period large enough to assure 324

the system relaxation, we take note of the survival species and analyse their properties. 325

We check that all these equilibria are asymptotically stable by a qualitative analysis. As 326

expected, depending on the values of the external temperature the equilibrium 327

population may differ. We note that most of the equilibrium populations are 328

coexistence of two species that present a definite relationship between their optimal 329

temperature Tk and the rate of influence on the environment αk, concretely Tk αk < 0. 330

Few simulations yield with the survival of only one species. None, as expected, with 331

more than three species. 332

The deterministic description provided by Ordinaty Differential Equations (ODE) 333

assumes a negligible internal noise, i.e. a large population size. This is the case when 334

the carrying capacity K = 105 and the initial population sizes are xi(0) = 5× 102 for 335

i = 1, . . . , S, values that are applied in most of the computations. To check that this 336

approach is correct we have also simulated the dynamic of the population by using an 337

individual-based algorithm (data not shown). We simulate a discrete population in 338

which each inidividual can be chosen either to replicate or to die according to its 339

(global) fitness. We note that for this value of K the results of these simulations agree 340

in all cases with the numerical integration of the ODE system. On the contrary, we 341

have detected some differences for small values of K. This effect could be relevant when 342

considering mutation because mutants populations are very small at the first stages 343
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after appearance. 344

7 Concluding remarks 345

The stability of populations is a key issue in Ecology. Grimm and Wissel (1997) stressed 346

the large number of definitions that have appeared in Ecology [23]. These definitions 347

are classified into six classes that resume the concepts frequently used in this field: 348

constancy, resilience, persistence, resistance, elasticity, and domain of attraction [24]. In 349

some point or another all of them appear in this work. Specifically, we handle with 350

persistence when studying the species that remain in the population after a period of 351

time. Mathematical stability, as shown in section 2, provides information about the 352

local resilience and, in addition, enables to estimate the domain of attraction of 353

equilibria [7]. In contrast, this stability analysis does not inform about the persistence 354

of the species composition of an initial population that change over time due to the 355

existence of multiple stable equilibria [25]. In other words, this approach can not predict 356

the equilibrium point to which the system will tend. The consideration that species can 357

modify the environment and, as a consequence, the composition of the population, 358

includes an extra difficulty to perform a qualitative analysis and prevent an analytical 359

solution of the problem. Numerical integration and simulations are instead appropiate 360

tools for solving this problem as it is shown in this paper. 361

An important subject to be handled in a forthcoming paper concerns the 362

evolutionary properties of this kind of ecosystems. We have assumed that the mutation 363

rate of the species is null and consequently we have avoided the appearance of new 364

species in the population. In this kind of models that consider the ability of species to 365

modify the enviroment, the appearance of a new species with influence on the 366

environment can have important consequences on the equilibrium properties [16]. The 367

induced new conditions change the relative fitness of the species and, therefore, changes 368

the final outcome of the selective process. This modification can stabilized the 369

population by endowing the species with a larger survival probability or, on the 370

contrary, it can destabilize the population by pushing the external temperature out of 371

the limits of survival of the existing species. In the latter case, this induced-variation 372

can drive the population to extinction. In any case, absolute stability does not exist in 373

these models. The possibility of modifying the environment is an additional factor that 374

contributes to keep open forever the fate of evolution. 375
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