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Abstract

Deep feedforward neural network models of vision dominate in both computational
neuroscience and engineering. However, the primate visual system contains abundant
recurrent connections. Recurrent signal flow enables recycling of limited computational
resources over time, and so might boost the performance of a physically finite brain. In
particular, recurrence could improve performance in vision tasks. Here we find that
recurrent convolutional networks outperform feedforward convolutional networks
matched in their number of parameters in large-scale visual recognition tasks. Moreover,
recurrent networks can trade off accuracy for speed, balancing the cost of error against
the cost of a delayed response (and the cost of greater energy consumption). We
terminate recurrent computation once the output probability distribution has
concentrated beyond a predefined entropy threshold. Trained by backpropagation
through time, recurrent convolutional networks resemble the primate visual system in
terms of their speed-accuracy trade-off behaviour. Moreover, their learned lateral
connectivity patterns are consistent with those observed in primate early visual cortex.
These results suggest that recurrent models are preferable to feedforward models of
vision, both in terms of their performance at vision tasks and their ability to explain
biological vision.

Author summary

Deep neural networks (DNNs) provide the best current models of biological vision and
achieve the highest performance in computer vision. Although originally inspired by the
primate brain, these models are still missing important functional elements of their
biological counterparts. One biological feature typically absent from models for visual
object recognition is the ability to recycle limited neural resources by processing
information recurrently. We report that including connections that let information flow
in cycles can improve performance, even as the total number of connections is held
constant. Recurrent processing also enabled DNNs to behave more flexibly and trade off
speed for accuracy. Similar to the primate brain, the networks can compute longer to
boost accuracy for objects that are more difficult to recognise. This work shows how a
known feature of the primate brain contributes to its computational function and
suggests that taking inspiration from biology can help us further improve artificial
vision systems.
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Introduction 1

Neural networks have a long history as models of biological vision [1–3] and the recent 2

success of deep neural networks (DNNs) in computer vision has led to a renewed 3

interest in neural network models within neuroscience [4–6]. Contemporary deep neural 4

networks not only perform better in machine learning challenges but also provide better 5

predictions of neural and behavioural data than previous, shallower models [7–11]. 6

While deep neural networks have provided better models of biological vision, there 7

are significant discrepancies between models and brains in terms of both computational 8

mechanisms and recognition behaviour. In terms of recognition behaviour, networks and 9

primates do show similar patterns of image classifications at the level of object 10

categories, but their behaviour diverges when the comparison is made at the level of 11

individual images [12]. Moreover, it has been shown that DNNs heavily rely on texture 12

in image classification, whereas humans more strongly rely on larger-scale shape 13

information [13]. 14

In terms of computational mechanisms, DNNs diverge from biology in that they are 15

typically rate-coded rather than spiking, feedforward rather than recurrent, and trained 16

using backpropagation on millions of labelled images. While some degree of abstraction 17

is necessary when modelling complex systems such as the brain, it is important to 18

understand which features of biology are essential to the computations as reflected in 19

task performance [6]. 20

One area that has received particular interest within machine learning and 21

neuroscience has been the lack of recurrence in deep neural networks for object 22

recognition. Although core object recognition has typically been viewed as a 23

feedforward process in primates [14], it is known from neuroanatomy that the visual 24

system is highly recurrent [15–17]. Functional evidence also indicates that recurrent 25

computations are utilised during object recognition [18–25]. 26

Recent work has focused on introducing recurrence into the framework of 27

convolutional neural networks for processing static images, with a particular focus on 28

object recognition [26–30]. These recurrent convolutional neural networks (RCNNs) are 29

better able to explain neural and behavioural data than their feedforward 30

counterparts [24,25,29,31,32]. Additionally, recurrence brings performance benefits in 31

object recognition tasks, with recurrent networks outperforming feedforward networks of 32

similar complexity (typically measured by the number of parameters) [26–29]. 33

Performance gains have previously been shown for small-scale tasks [26–28] or using 34

specialised forms of recurrence [29]. An important open question, which we address 35

here, is whether simple recurrent extensions of the convolutional framework can bring 36

performance gains on large-scale recognition tasks when the number of parameters is 37

matched to feedforward control models. 38

Beyond the number of parameters, we must consider the computational cost of 39

recognition. A recurrent network might outperform a feedforward network with a 40

similar number of parameters, but require more computation (and time) to arrive at an 41

accurate answer. If we look to how the brain performs object recognition, we see a more 42

flexible mechanism: Extensive recurrent computations are not always required. For 43

some images, fast feedforward computations are sufficient [24]. This aligns with our 44

current understanding of biological decision-making, where evidence about a decision is 45

accumulated until a threshold is reached and a decision made [33]. If the network 46

converges on a decision in the initial feedforward sweep, then recurrent computation is 47

not required. Using threshold-based decision making might allow RCNNs to save time 48

and energy by only running for the number of time steps required for a given level of 49

confidence. 50

A further benefit of threshold-based decisions is the ability to implement 51

speed-accuracy trade-offs (SATs), another feature of biological object recognition [34]. 52
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In engineering, this has been implemented using a range of separate neural network 53

models of varying scale (e.g. [35]). However, a threshold-based mechanism would allow a 54

range of SATs to be implemented by a single RCNN without any need for additional 55

training. This appears advantageous for both biological and artificial object recognition, 56

which similarly face limitations of memory, time, and energy. 57

To better understand the role of recurrent computations in artificial and biological 58

visual systems, we explore how recurrent DNNs that trade off speed and accuracy 59

compare to feedforward control models in terms of performance, and how their learned 60

recurrent connectivity and behaviour compares to primate brains. We train these 61

networks on the ImageNet Large Scale Visual Recognition Challenge (referred to as 62

ImageNet for brevity) [36], and a more ecologically valid recognition task called 63

ecoset [37]. We look to see whether recurrence brings performance gains in these tasks 64

and integrate threshold-based decision making in RCNNs, varying the threshold to 65

control the SAT [34]. Finally, we look to see whether the computations performed in 66

RCNNs capture properties of biological visual systems by testing whether the dynamics 67

of RCNNs predict human object recognition behaviour and by comparing the learned 68

lateral connectivity of RCNNs to connectivity in primate early visual cortex. 69

Results 70

We trained a range of deep convolutional neural networks on two large-scale visual 71

object-recognition tasks, ImageNet [36] and ecoset [37]. The networks trained included a 72

feedforward network, referred to as B (for bottom-up only), and a recurrent network, 73

referred to as BL, with bottom-up and lateral recurrent connections (recurrent 74

connections within a layer). We focus our investigation on lateral connections, which 75

constitute a form of recurrence that is ubiquitous in biological visual systems and proved 76

more powerful than top-down recurrent connections on simple tasks in earlier work [28]. 77

The recurrent networks are implemented by unrolling the computational graph of 78

the recurrent network for a finite number of time steps (see Methods). The model is 79

trained to produce a readout at each time step, which predicts the category of the 80

object present in the image. 81

As the addition of recurrent connections adds more parameters to the models, we 82

use three larger feedforward architectures that are approximately matched in the 83

number of parameters (Fig. 1) as control models. The first of these architectures 84

(referred to as B-K) uses larger kernel sizes. This has the benefit of having the same 85

number of units in each layer as B and only changes the number of incoming 86

connections for each unit. However, increasing the kernel size may be an unconventional 87

way to spend additional parameters in a feedforward network. We therefore also 88

included control models with a larger number of features (referred to as B-F) in each 89

layer. These models have a larger number of units than B, but keep the number of 90

layers fixed. Finally, we trained a deeper feedforward network (referred to as B-D), 91

approximately matching the number of parameters to BL by doubling the number of 92

layers. Increasing the number of layers is, arguably, the most common and effective way 93

to make a feedforward network larger and more powerful. 94

Recurrent networks outperform parameter-matched 95

feedforward models 96

We compared the performance of recurrent networks and the feedforward networks, 97

including the parameter-matched controls on both tasks. For the recurrent networks, 98

BL, we defined the prediction of the model as the average of the category readout across 99
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Fig 1. A schematic representation of the networks trained. White boxes
represent convolutional layers, the width represents spatial dimensions of the
convolutional layers and height represents the number feature maps. Example units are
shown with coloured regions representing the extent of the layer acting as input to the
unit. The areas represented in these diagrams are illustrative and are not drawn to scale.

all time steps, referred to as the cumulative readout. The cumulative readout tends to 100

produce the best results (see Methods). 101

The recurrent models performed best, outperforming both the baseline feedforward 102

model, B, and the parameter-matched controls, on both data sets (Fig. 2B). BL showed 103

a performance benefit of over 1.5 percentage points relative to the best feedforward 104

model, B-D, on both tasks (Table 1). 105

Table 1. Accuracies on held-out data and number of parameters for each
model

models ImageNet ecoset parameters

B (baseline) 58.42% 64.25% 11.0 million

B-K (larger kernels) 56.46% 62.81% 39.8 million

B-F (more feature maps) 60.34% 66.54% 40.0 million

B-D (deeper network) 62.68% 68.36% 28.9 million

BL (recurrent) 64.37% 69.98% 28.9 million

The number of parameters are calculated for ImageNet models, ecoset models have
slightly fewer parameters due to fewer categories in the final readout layer.
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Fig 2. ImageNet and ecoset task performance. (A) Training and validation
accuracies across training for all networks. (B) Performance of networks on held-out
data using the fully-trained networks.

Both B-D (deeper network) and B-F (more feature maps) outperformed the baseline 106

model, B. B-K has a worse test accuracy than the baseline model but a higher training 107
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accuracy (Fig. 2A). This suggests that using additional parameters to increase the 108

kernel size in our models leads to overfitting rather than a generalisable increase in 109

performance. 110

Pairwise McNemar tests [38,39] showed all differences in model performance to be 111

significant (p ≤ 0.05). Bonferroni correction was used to correct for multiple 112

comparisons by controlling the family-wise error rate at less than or equal to 0.05. 113

Single recurrent models span speed-accuracy trade-offs of 114

multiple feedforward models 115

We compared the computational efficiency of feedforward and recurrent networks by 116

measuring the accuracy as a function of the number of floating-point operations (Fig. 117

3). The number of floating-point operations of a model reflects the energy cost, which 118

might be related to the metabolic cost in a biological system. A feedforward model has 119

a fixed computational cost, whereas a recurrent model can flexibly terminate 120

computations when confidence passes a threshold, trading off accuracy for speed. 121

In the context of a particular recurrent model, the computational cost is 122

proportional to the number of time steps that the model runs for and thus to the 123

reaction time. When interpreted as models of brains, our recurrent models therefore 124

make predictions about speed-accuracy trade-offs. Note that reaction time and 125

computational cost may diverge when comparing architectures that employ parallel 126

processing to different degrees (trading off speed for fewer units). However, the trade-off 127

between parallel physical resources (connections and units) and time is beyond the 128

scope of this paper. We focus on comparisons between models matched in their numbers 129

of parameters, where computational cost is proportional to reaction time. 130

For the recurrent models, we used cumulative readouts with entropy thresholding. 131

The network runs until the entropy of its cumulative readout falls below a predefined 132

threshold. The final cumulative readout is then taken as the network’s prediction. This 133

effectively takes an internal estimate of the networks’ confidence in the decision and 134

terminates once a desired confidence level is reached. Entropy thresholding has the 135

benefit of being economical, as it uses the minimum number of time steps to reach the 136

required level of confidence for an image. Moreover, it closely corresponds to theories of 137

biological decision making, where evidence is accumulated until it reaches a bound [33]. 138

A recurrent model may choose to compute longer for harder images. The number of 139

time steps required to pass the entropy threshold varies across the test set. For a given 140

entropy threshold, we define the computational cost for a recurrent model as the 141

average across the test set of the number of operations used. We plot the accuracy of 142

the model as a function of the computational cost (Fig. 3). For a given recurrent model, 143

the resulting plot reflects the speed-accuracy trade-off, because the reaction time is 144

proportional to the computational cost. Feedforward models are represented by single 145

points because their computational cost and reaction time are constant across images. 146

When comparing the recurrent models to feedforward models we see a remarkable 147

correspondence between the two classes of architecture (Fig. 3): The accuracy of the 148

recurrent models as a function of the computational cost passes through the points 149

describing the feedforward control models. This means that the different architectures 150

yield the same accuracy for a given computational budget. However, the computational 151

costs and accuracies of the feedforward models are fixed, whereas the recurrent models 152

can be left to compute longer so as to achieve higher accuracies. 153

To inferentially compare the performance of the feedforward and recurrent networks 154

at matched computational cost, we consider the performance of the recurrent networks 155

at a single entropy threshold. We select the threshold that minimises the absolute 156

difference between the average number of operations for the recurrent network and the 157
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number of operations for the feedforward network. McNemar tests were again used to 158

compare the performance of the networks. 159
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Fig 3. Relationship between computational cost and performance for
feedforward and recurrent models. The recurrent models are assessed using a
range of entropy thresholds, with the computational cost corresponding to the mean
number of floating-point operations used across the test set to reach the given entropy
threshold. The computational cost for feedforward models is the number of
floating-point operations in a single pass through the model. In all cases, performance is
assessed based on held-out data.

Across both datasets only one significant difference in performance was found 160

between recurrent and feedforward models. This difference was the between B and BL 161

in ImageNet, which achieved 58.42% and 57.71%, respectively, a difference of 0.70% 162

(p < 0.001). This comparison matches a pass through B to the initial feedforward pass 163

through BL. BL appears to slightly compromise its performance on the initial 164

feedforward pass to support later gains through recurrence. All other differences 165

between BL and feedforward networks were even smaller and not significant, ranging 166

between -0.37% and +0.32%, relative to the performance of BL. B-K was excluded from 167

this analysis because it had worse performance than the baseline feedforward model 168

(possibly due to overfitting). 169

These results suggest that recurrent models perform similarly to feedforward models 170

when matching the number of floating-point operations. This is surprising given that 171

recurrent networks operate under the additional constraint of having to use their 172

weights across multiple time steps, which does not apply to feedforward networks. We 173

may have expected the operations learned by recurrent networks to be less specialised 174

and less efficient with regards to performance achieved at a given computational cost. 175

Instead, we found that the computational efficiency of recurrent and feedforward 176

networks are well matched. The graceful degradation of performance of recurrent 177

models when the computational cost is limited may depend on training with a loss 178

function that rewards rapid convergence to an accurate output (see Methods). 179

Overall our results suggest that we can use a single recurrent network to span the 180

space of SATs covered by multiple feedforward networks. Furthermore, using the same 181

network we can achieve a higher performance than all of the parameter-matched 182

feedforward networks by running more recurrent computations. 183
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Network reaction times predict human recognition uncertainty 184

Recurrent connections endow a model with temporal dynamics. If the recurrent 185

computations in a model match those of the human brain during object recognition, 186

then model behaviour should be predictive of human behaviour. For example, images 187

that require the model to perform more extended recurrent computations for accurate 188

recognition should be more challenging also for humans. 189

To test this hypothesis we used data from an object categorisation task where 190

humans had to categorise 1,500 greyscale images as animate or inanimate [40]. For each 191

image we calculated the proportion of trials in which the image was classified correctly 192

across human participants. Some images were more consistently recognised by humans 193

(whether accurate or inaccurate) than others. Our goal was to quantify the extent to 194

which images more consistently recognised by humans were more rapidly recognised by 195

the models. 196

We computed a decision uncertainty index D based on the proportion correct, PC, 197

across humans. D was defined as 0.5− |0.5− PC|. This metric is largest when humans 198

are most inconsistent in their decision making (if PC = 0.5 then D = 0.5), and it is 199

smallest when all decisions across trials are the same (if PC = 1.0 or PC = 0.0 then 200

D = 0.0). 201

We fitted ImageNet and ecoset models to these human data and tested the fitted 202

models using cross-validation across images. Network reaction times were extracted by 203

training an additional readout for the animacy discrimination task and fitting an 204

entropy threshold to maximise the correlation with human uncertainty (see Methods). 205

We then tested the fitted models by predicting human uncertainty for different images 206

in crossvalidation (using Spearman correlation to measure prediction accuracy). As a 207

control, we ran the fitting procedure using a network with randomly initialised weights. 208

Model predictions could rely on category mean decision uncertainty to explain the 209

human data. To exclude this possibility we shuffled the images within each category 210

before fitting the entropy thresholds and recomputing the network reaction times. This 211

shuffling procedure was repeated 100 times. 212

Results show that reaction times obtained from both ImageNet and ecoset trained 213

networks significantly predicted human decision uncertainty. Furthermore, both trained 214

networks predicted human decision uncertainty better than a randomly initialised 215

network that was fitted using the same procedure (two-tailed paired permutation test, 216

p < 0.01) and when images were shuffled within categories (Fig. 4). There was no 217

significant difference between the correlation obtained for the ecoset- and 218

ImageNet-trained networks (two-tailed paired permutation test, p = 0.40). Overall, 219

images for which our recurrent networks took longer to converge were less consistently 220

recognised by humans. 221

Learned recurrent connectivity resembles that of primary visual 222

cortex 223

To understand the types of computations being performed by recurrent networks and 224

how they relate to our understanding of biological vision, we conducted an exploratory 225

analysis of the learned recurrent connectivity. We focus on the recurrent connectivity in 226

the first layer of the network. This has the benefit that weight templates are easier to 227

interpret in lower than in higher layers of networks. In addition, recurrent processing in 228

biological vision is arguably best understood in lower-level visual areas, which 229

correspond to early model layers. 230

Because the number of recurrent lateral connections in the model’s first layer is large 231

(over 450,000 connections), we use a technique similar to that of Linsley et al. [30] to 232

constrain the analysis. We use principal components analysis (PCA) to decompose the 233
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ImageNet-trained

ecoset-trained

Fig 4. Model reaction times are longer for images that humans are
uncertain about. (A) Scatter plot of network reaction times against network decision
uncertainty. For each network, a sigmoid animacy readout was trained to maximise
accuracy and an entropy threshold fitted so that network reaction times best predicted
human uncertainty ratings. Results shown are for images not used in fitting the models
or the entropy threshold (cross-validation). (B) Spearman correlations between network
reaction times and human decision uncertainty (red) alongside correlations obtained
when images were randomly shuffled within categories before fitting network reaction
times (grey).

lateral-weight templates into orthogonal components (see Methods). We then explore 234

these lateral-weight components, and the bottom-up features they connect, to compare 235

the lateral connectivity with that of primary visual cortex (Fig. 5). 236

We focus on the first five principal components of the lateral-weight templates of BL, 237

trained on ImageNet. These weight components capture approximately 43% of the 238

variance across all recurrent weights in the first layer of the ImageNet trained network 239

(Fig. 5). All five components are interpretable: inhibition/excitation (component 1), 240

vertical antagonism (component 2), centre-surround antagonism (component 3), 241

horizontal antagonism (component 4), and perpendicular antagonism (component 5). 242

June 21, 2019 9/22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2019. ; https://doi.org/10.1101/677237doi: bioRxiv preprint 

https://doi.org/10.1101/677237
http://creativecommons.org/licenses/by/4.0/


negative component loading positive component loading

variance explained = 0.13

component 1

(near inhibition/excitation)

variance explained = 0.09

component 2

(vertical antagonism)

variance explained = 0.08

component 3

(centre-surround antagonism)

variance explained = 0.08

component 4

(horizontal antagonism)

variance explained = 0.05

component 5

(perpendicular antagonism)

bottom-up features connected

with positive component

bottom-up features connected

with negative component

lateral-weight

components

Fig 5. Lateral-weight components for layer 1 of an RCNN trained on
ImageNet. Every feature is laterally connected to each other feature via a local
lateral-weight pattern. We used principal component analysis to summarise the lateral
weight patterns. The top five lateral-weight principal components are shown in both
their positive (centre right) and negative forms (centre left). Blue shading corresponds
to negative values and red to positive. The proportion of variance explained is given
beneath each lateral-weight component. Bottom-up feature maps connected by lateral
weights with the strongest positive (right) and negative loadings (left) on the weight
component are shown alongside. Arrows between bottom-up features indicate the
direction of the connection and the loading is given underneath each pair of bottom-up
features.
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Local inhibition/excitation 243

The lateral-weight component explaining the most variance in the network corresponds 244

to local inhibition and excitation. Near inhibitory connections could be used to generate 245

sparse representations, similar to visual cortex [41]. 246

To further understand how inhibitory connectivity relates to the properties of 247

bottom-up features, we correlated the bottom-up weight templates of features connected 248

by lateral-weights with strong negative loadings on the first component (defined as the 249

lowest percentile of loadings on the component). We found a median correlation of -0.16 250

between bottom-up features with local inhibitory recurrent connections. This value 251

significantly differed from zero (Wilcoxon signed-rank test, p < 0.001), suggesting that 252

dissimilar features inhibit each other in the network, possibly increasing the sparsity of 253

the representation. 254

Centre-surround antagonism 255

Centre-surround antagonism is a well-studied feature of biological vision and is most 256

often seen in the context of near excitation and far inhibition. In these arrangements, a 257

unit will be excited if a preferred stimulus is detected in the centre and suppressed if the 258

preferred stimulus appears in the surround. 259

In the lateral-weights of the network, we see centre-surround antagonism in both the 260

classical arrangement of near excitation and far inhibition and the non-classical 261

arrangement of near inhibition and far excitation (Fig. 5, component 3). However, 262

features connected with non-classical centre-surround connectivity (highest percentile of 263

loadings on component 3) had a median negative correlation of -0.04, which significantly 264

differed from zero (Wilcoxon signed-rank test, p = 0.003). Non-classical centre-surround 265

connectivity in the network, thus, could still lead to reduced responses if a preferred 266

stimulus is detected in the surround, like classic centre-surround connectivity, but due 267

to reduced excitation rather than increased inhibition. 268

Cardinal antagonism 269

Vertical and horizontal antagonism are also observed in the network (Fig. 5, component 270

2 and component 4). We collectively refer to vertical and horizontal antagonistic weight 271

templates as cardinal antagonism. This type of interaction leads to excitation if a 272

feature is detected to one side of a unit and leads to inhibition if that same feature is 273

detected on the opposite side. This type of asymmetry could be useful for developing 274

border ownership cells [42], which have varying levels of response, depending on which 275

side of an edge corresponds to an object or background surface. 276

A unit that detects an edge between two surfaces could show properties of border 277

ownership if it receives recurrent input carrying information about the spatial extent of 278

the two surfaces meeting at the edge. We see examples of this type of connectivity in 279

the network. For instance, feature 76 is sensitive to purple-green edges and it receives 280

input from feature 78, which prefers diffuse purple features (Fig. 5, component 4). The 281

recurrent connectivity between them is cardinally antagonistic such that the unit 282

detecting the purple-green edge is only excited if a diffuse purple feature is detected on 283

the purple side of the edge. 284

Perpendicular antagonism 285

Perpendicular antagonism is observed in this network where there are excitatory 286

recurrent connections along one orientation and inhibitory recurrent connections along 287

the orthogonal orientation (in both directions). This type of connectivity is consistent 288

with association fields that could support contour integration [43]. 289
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Studying the feature maps that most heavily load on these components, we find that 290

feature maps that detect gradients in similar orientations with edges in phase have 291

collinear inhibition and orthogonal excitation (Fig. 5, component 5). In comparison, we 292

see collinear excitation and orthogonal inhibition when feature maps are detecting 293

gradients that have similar orientations but opposite phases. 294

Collinear excitation may be expected between features detecting gradients in similar 295

directions because the presence of such features is consistent with a continuous contour. 296

However, collinear inhibition is consistent with end-stopping behaviour observed in 297

complex cells of visual cortex [44]. In this case, cells were observed that have suppressed 298

firing rates if edges extend beyond the classical receptive field of the cell. 299

Overall, the patterns of connectivity learned by recurrent convolutional networks 300

appear to be consistent with what is known about the connectivity of primary visual 301

cortex. 302

Discussion 303

Our results show that recurrent architectures can outperform parameter-matched 304

feedforward controls on a naturalistic visual recognition task. In addition to superior 305

performance, recurrent networks more closely resemble biological visual systems in both 306

structure and function. Structurally, biological visual systems exhibit ample recurrent 307

signal flow. Functionally, they exhibit greater robustness and flexibility than current 308

feedforward neural network models. 309

An important functional feature of our recurrent model is the flexibility to trade off 310

speed and accuracy, which the model shares with biological visual systems. A single 311

recurrent network can span the space of speed-accuracy trade-offs covered by multiple 312

feedforward models. One might have expected that there is a significant cost to the 313

added flexibility of recurrent computation. Among the models considered here, however, 314

we find only marginal costs to performance of recurrent models when the computational 315

budget is matched. 316

Recurrent models not only have the functional benefit of flexible speed-accuracy 317

trading, shared with human vision, but they also predicted human behaviour: their 318

reaction times were longer for images less consistently recognised by humans. 319

The performance of recurrent models, relative to feedforward, is consistent with 320

previous work using small-scale machine learning tasks [26,28]. However, it contrasts 321

with more recent results suggesting that specialised recurrent architectures, in the form 322

of reciprocally gated cells, are required for recurrent networks to outperform their 323

feedforward counterparts in naturalistic visual recognition tasks [29]. One potential 324

explanation of these diverging results is the scale of the feedforward control models 325

relative to the recurrent networks. In the experiments described here, the recurrent 326

networks had approximately 72-100% of the parameters of the feedforward control 327

models. In comparison, the baseline recurrent models “Vanilla RNN” (similar to BL) 328

had approximately 39% and 45% of the parameters of the feedforward control models 329

(“FF Deeper” and “FF Wider”, respectively) in [29]. While reciprocally gated cells 330

clearly produce better task performance, this difference in the number of parameters 331

could explain why our recurrent convolutional networks (without the addition of gating) 332

were able to outperform the parameter-matched feedforward models. It also highlights 333

the difficulty of defining appropriate feedforward control models. Here, we take the 334

approach of matching the number of parameters in feedforward and recurrent models. 335

We also consider the performance of the networks at matched computational costs. 336

We showed additional practical benefits for recurrent networks by borrowing two 337

ideas from the literature on biological decision making: threshold-based decision 338

making [33] and speed-accuracy trade-offs [34]. First, using a fixed posterior-entropy 339
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threshold, networks were able take longer to recognise more difficult images. Second, by 340

varying the posterior-entropy threshold, networks could change their required 341

confidence, trading off accuracy for speed. These behaviours enable economical object 342

recognition, only spending the time (and energy) required by the given task or situation. 343

This type of flexible behaviour is useful in biological and artificial object recognition, 344

where both time and computational resources are often limited. RCNNs for vision may 345

be useful in artificial intelligence technologies, particularly those operating under 346

resource constraints (e.g. [35, 45,46]). 347

Our finding that RCNNs predicted human uncertainty for individual images suggests 348

an interesting direction for future models of biological decision making. RCNNs could 349

provide a unified basis for predicting image-specific distributions of errors and reaction 350

times. This would complement previous work on recurrent processing in the 351

decision-making literature. 352

Recurrent processing in human decision-making is typically viewed as the 353

accumulation of independent noisy samples of some underlying variable. This leads to a 354

stochastic drift toward a decision bound, depending on the noise of the sample [33]. In 355

real-world perceptual decisions, however, evidence may vary across time due to 356

non-random processes. Beyond evidence accumulation, recurrent processing might lead 357

to different decisions being favoured at different points in time. This could lead to more 358

exotic predictions that are not easily generated by drift diffusion models (such as class 359

A being favoured early in the trial, class B being preferred in the middle and class A 360

being preferred again at the end). 361

In addition, our exploratory analysis of recurrent connectivity in the network shows 362

evidence that RCNNs may learn recurrent computations resembling those in biological 363

vision. There is evidence of centre-surround computations as well as connectivity that 364

could help to support properties such as sparse representations [41], border 365

ownership [42], contour integration [43], and end-stopping [44]. These analyses of 366

recurrent connectivity offer a promising starting point for understanding recurrent 367

computations in artificial visual systems and should be followed up by a detailed 368

analysis of activity patterns in the models. 369

The observed lateral connections in our networks trained for object recognition also 370

show a resemblance to the lateral connections of networks trained for contour 371

integration tasks [30]. Given the different nature of these tasks, the similarity in lateral 372

connectivity is surprising. This leads to the interesting hypothesis that there might be a 373

subset of lateral computations that are useful across a range of visual tasks, at least in 374

low-level visual areas. This would be consistent with the fact that a large range of 375

objectives can be optimised to obtain simple-cell like features in feedforward templates 376

that are observed in low-level visual areas. Such objectives include image classification 377

performance [47], predictive coding [48], temporal stability [49], and sparsity [41]. 378

In general, the work described here adds to a growing body of research on RCNNs as 379

models of object recognition [25–29,31,32]. These models provide us with a white box, 380

a vision system that can be observed from input to behavioural response. 381

Understanding how these models perform object recognition might reveal the role of 382

recurrent processing in biological vision. 383

Methods 384

Deep neural network implementation 385

All deep neural networks in these experiments were implemented using TensorFlow [50]. 386

The different architectures used are specified in detail in Table 2. 387

Artificial recurrent neural networks are typically implemented with feedforward 388
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Table 2. Specification of network architectures

Model B B-K B-F B-D BL

Block 1 F = 96, K = 7 F = 96, K = 11 F = 192, K = 7
F = 96, K = 7

(F = 96, K = 7) × 2
F = 96, K = 7

Pool 1 2 × 2 max pooling

Block 2 F = 128, K = 5 F = 128, K = 7 F = 256, K = 5
F = 128, K = 5

(F = 128, K = 5) × 2
F = 128, K = 5

Pool 2 2 × 2 max pooling

Block 3 F = 192, K = 3 F = 192, K = 5 F = 384, K = 3
F = 192, K = 3

(F = 192, K = 3) × 2
F = 192, K = 3

Pool 3 2 × 2 max pooling

Block 4 F = 256, K = 3 F = 256, K = 5 F = 512, K = 3
F = 256, K = 3

(F = 256, K = 3) × 2
F = 256, K = 3

Pool 4 2 × 2 max pooling

Block 5 F = 512, K = 3 F = 512, K = 5 F = 1024, K = 3
F = 512, K = 3

(F = 512, K = 3) × 2
F = 512, K = 3

Pool 5 2 × 2 max pooling

Block 6 F = 1024, K = 3 F = 1024, K = 5 F = 2048, K = 3
F = 1024, K = 3

(F = 1024, K = 3) × 2
F = 1024, K = 3

Pool 6 2 × 2 max pooling

Block 7 F = 2048, K = 1 F = 2048, K = 3 F = 4096, K = 1
F = 2048, K = 1

(F = 2048, K = 1) × 2
F = 2048, K = 1

Readout
global average pooling

565 or 1000 category readout

Parameters 11.0 million 39.8 million 40.0 million 28.9 million 28.9 million

Each row in the table represents a convolutional layer. F specifies the number of feature maps in the layer and K represents
the height and width dimension of the convolutional kernel. For BL, “(...) × 2” indicates that the same size convolutional
kernel is applied twice, once to the bottom-up input (from the layer below )and once to the lateral input (from the same
layer). All convolutions are applied with 1× 1 stride and all max pooling is applied with 2× 2 stride. The number of
parameters are calculated for ImageNet models, ecoset models have slightly fewer parameters for the readout due to smaller
number of categories in ecoset.

connections taking no time and recurrent connections taking a single time step, we refer 389

to this as “engineering” time. In comparison, all connections in biological neural 390

networks should incur some form of time delay. A more biologically realistic 391

implementation of a recurrent network may have every form of connection taking a 392

single time step [25,29]. However, these two implementations produce equivalent 393

computations in BL networks if we do not consider computations that either: (1) occur 394

prior to the first feedforward sweep, or (2) cannot reach the readout before the final 395

time step is reached (Fig. 6). As such, we use “engineering” time for recurrent networks 396

in these experiments. Therefore, time in recurrent networks is defined as the number of 397
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complete feedforward sweeps that have occurred. 398

la
y
e

rs

time

unrolling in "engineering" time

time

unrolling in "biological" time

Fig 6. Network unrolling through time. Unrolling is shown for engineering time
(left) and biological time (right). Each box represents a layer and the shading
corresponds to its label in engineering time. Connections with the same colour represent
shared parameters.

We define the output from a standard convolutional layer at layer n on time step t as 399

Ht,n = F (W b
n ∗Ht,n−1 + bn) (1)

Where W b
n are the bottom-up convolutional weights for the layer and bn are the 400

biases. The convolution operation is represented as ∗. All operations applied after the 401

convolution are represented by the function F . These operations include 402

batch-normalisation [51] and rectified linear units in that order. 403

For a recurrent BL layer, the output is defined as 404

Ht,n = F (W b
n ∗Ht,n−1 +W l

n ∗Ht−1,n + bn) (2)

Where W l
n are the lateral recurrent weights. 405

For the recurrent networks, batch-normalisation is applied independently across time. 406

Whilst this means that the networks are not truly recurrent due to unique normalisation 407

parameters at each time step, this does not affect arguments related to parametric 408

efficiency, as the numbers of parameters added by batch-normalisation at each time-step 409

are negligible compared to the overall scale of the network. Approximately, 60,000 410

parameters are added across time due to batch-normalisation compared to 28.9 million 411

parameters for the network as a whole. 412

In addition, we tested whether the use of independent batch-normalisation across 413

time confers an additional performance advantage to recurrent networks by training 414

B-D and BL on ImageNet without batch-normalisation. In this case, networks were 415

trained using the same procedure but for only 25 epochs to prevent overfitting (as the 416

removal of batch-normalisation reduces stochasticity in training). B-D and BL achieved 417

a validation accuracy of 52.5% and 58.6%, respectively. This suggests that independent 418

batch-normalisation across time does not explain the performance difference between 419

feedforward and recurrent networks and even has a more beneficial effect for 420

feedforward networks than recurrent networks (approximately 10 percentage point 421

increase for B-D compared to a 6 percentage point increase for BL). 422

Before passing the images to the network, a number of pre-processing steps were 423

applied. First, a crop was taken from the image, which was resized to 128× 128 pixels. 424

During testing and validation, a centre crop was taken from the image. During training, 425

a random crop was taken covering at least one third of the image area. Further data 426
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augmentation was also applied in training, this included random left-right flips, and 427

small distortions to the brightness, saturation and contrast of the image. Finally, the 428

pixel values in the image were scaled from the range [0, 1] to be in the range [-1, 1]. 429

The networks were trained for a total of 90 epochs with a batch size of 100. The 430

cross-entropy between the softmax of the network category readout and the labels was 431

used as the training loss. For recurrent networks, we calculate the cross-entropy on each 432

time step and average this across time. Adam [52] was used for optimisation with a 433

learning rate of 0.005 and epsilon parameter 0.1. L2-regularisation was applied 434

throughout training with a coefficient of 10−6. 435

The code for models and weights for pre-trained networks are made available at 436

github.com/cjspoerer/rcnn-sat. 437

Defining accuracy in recurrent networks 438

As recurrent networks are unrolled across time, they have readouts at multiple time 439

steps. This means that we must map from many readouts for a single image to one 440

prediction. This leads to some ambiguity about how to produce predictions from 441

recurrent networks for object recognition. Therefore, we conducted initial analyses to 442

determine how to generate predictions from recurrent networks in the experiments 443

described here. 444

One decision is how to select the time step to readout from the network, which we 445

refer to as the network’s reaction time. A fixed time step could be chosen. For example, 446

the readout could always be taken at the final time step that the recurrent model runs 447

until. We refer to this as time-based accuracy. 448

Alternatively, we could select the readout to use based on when the model reaches 449

some threshold. For example, the prediction is taken from the network once a certain 450

level of confidence is reached. This confidence level could be defined by the entropy of 451

the readout distribution where a lower entropy corresponds to a higher confidence. If 452

the required confidence level is never reached then the final time step is selected as the 453

reaction time. This is referred to as threshold-based accuracy. It should be noted that 454

threshold-based accuracy can be implemented in recurrent networks using dynamic 455

computational graphs that only execute up to the desired threshold. However, for our 456

analyses we simply measure the time that it takes for the network to achieve a given 457

level of entropy. 458

Once the decision time has been selected, we need to decide how to reduce the 459

readout distribution across time. One method is to generate the prediction based solely 460

on the readout at the network reaction time. We refer to this as the instantaneous 461

readout. A second method is to generate the prediction from the cumulative readout up 462

to the decision time, allowing the network’s predictions to be explicitly aggregated 463

across time. 464

These different methods were compared using held-out data (Fig. 7). For ecoset the 465

held-out data corresponds to the test set and for ImageNet this corresponds to the 466

validation set, as the test set is not publicly available. 467

For time-based methods, we see that the accuracy of the readout tends to increase 468

across time. However, there is some drop-off in performance at later time steps if the 469

instantaneous readout is used. One explanation for this pattern is that, by training the 470

network to produce a readout at each time step, the network is encouraged to produce 471

accurate predictions more quickly at the cost of higher accuracy at later time steps. 472

If a cumulative readout is used then accuracy improves more steadily across time, 473

which is consistent with the smoothing effects expected from a cumulative readout. 474

However, cumulative readouts produce a higher overall level of accuracy than 475

instantaneous readouts. This suggests there is some benefit of accumulating evidence 476
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instantaneous readout cumulative readout

ecoset

ImageNet

time-based accuracy threshold-based accuracy

time step entropy threshold (inverted) [nats]

A

B

Fig 7. Task performance using varied definitions of predictions for
recurrent models. Accuracies are given for models trained on (A) ImageNet and (B)
ecoset using both time-based (left) and threshold-based (right) methods. Accuracies
obtained from instantaneous readouts are shown with solid lines and results from
cumulative readouts are shown with dashed lines. Shaded areas represent 95%
confidence intervals obtained through bootstrap resampling.

across time for the performance of the network, even though the predictions themselves 477

are not independent across time. 478

Similar results are seen when threshold-based accuracies are used. This reflects the 479

fact that decreasing the entropy threshold will naturally lead to later time steps being 480

increasingly utilised. Threshold-based accuracies also show a decrease in accuracy for 481

instantaneous readouts at the lowest entropy levels. This is again due to worse 482

performance at later time steps but also highlights an assumption of threshold-based 483

accuracies that letting the network run for longer, to obtain higher confidence levels, 484

will generate better predictions. 485

As a result of these analyses, all reported accuracies for recurrent networks refer to 486

predictions based on cumulative readouts as these tend to produce the best performance. 487

Fitting network reaction times to human decision uncertainty 488

A cross-validated procedure was used to fit RCNNs to human decision uncertainty data 489

from Eberhardt et al. [40]. This data consists of human animacy judgements for 1,500 490

different images. A total of at least 50 unique responses were recorded for each image. 491

Firstly, images were split into training and tests sets, 10-fold cross-validation was 492

used such that there were 1350 training images and 150 testing images in each fold. 493

Using the training images, a fully-connected layer was trained to produce a readout, yt, 494
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predicting the label at each time step t ∈ {1, ..., 8}. The readout was defined as follows 495

yt = σ(αyt−1 +WHt,N + b) (3)

Where Ht,N are the flattened activations from the final convolutional layer at each 496

time step, α is a recurrent parameter that allows evidence to be accumulated across 497

time, W are the weights for the linear readout, b are biases and σ is the sigmoid 498

non-linearity. The initial readout state y0 was defined to neutral, such that y0 = 0.5. 499

The readout was optimised using batch gradient descent with Adam. The learning 500

rate was set to 0.001 and the readout was trained for 1000 iterations. 501

The readout for each of the images, yt, was then upsampled by linearly interpolating 502

across between all timesteps, excluding the initial state y0. This increased the fidelity of 503

the network readout from from the 8 original time steps to 800 samples. 504

Entropy thresholds were used to extract reaction times for each image using the 505

linearly interpolated readout. The entropy threshold was set using grid search to 506

maximise the correlation between network reaction times and human decision 507

uncertainty for the training set. Using the fitted readout and thresholds, reaction times 508

were extracted for the testing data. This procedure was repeated using 10-fold 509

cross-validation such that a reaction time was obtained for each image after fitting to 510

independent data. 511

As a control we also extracted reaction times when individual images where 512

randomly shuffled within the same category and train/test split. After every shuffle, the 513

cross-validated threshold fitting procedure was rerun and reaction times were extracted 514

for each image. This shuffling procedure was repeated 100 times for each trained 515

network. 516

Extracting lateral-weight components 517

We analyse the lateral connectivity of the network by decomposing the lateral weights 518

in the network into lateral-weight components. To do this, we focus of the 7× 7 weight 519

templates that connect each of the feature maps within the first layer of the network. 520

There are 962 weight templates in total connecting every feature map to each other in 521

both directions (including self-connections from a feature map to itself). We focus on 522

the first layer of the network as the corresponding bottom-up weights are easier to 523

interpret and recurrence is arguably best understood in early regions of the visual 524

system (corresponding to early layers of the network). 525

Firstly, the weight templates are normalised such that the vector of the flattened 526

weight template has unit length. After normalisation, the lateral weights are processed 527

using principal components analysis (PCA) where each weight template is considered as 528

an individual sample. The first five components resulting from the PCA are used as the 529

lateral-weight components for the analysis. 530
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