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Abstract

Deep feedforward neural network models of vision dominate in both computational
neuroscience and engineering. However, the primate visual system contains abundant
recurrent connections. Recurrent signal flow enables recycling of limited computational
resources over time, and so might boost the performance of a physically finite brain or
model. In particular, recurrence could improve performance in vision tasks. Here we
find that recurrent convolutional networks outperform feedforward convolutional
networks matched in their number of parameters in large-scale visual recognition tasks.
By terminating recurrent computations once the output probability distribution has
concentrated beyond a predefined entropy threshold, we show that recurrent networks
can trade off speed for accuracy without employing additional parameters for deeper
computations. This enables balancing the cost of error against the cost of a delayed
response (and of greater energy consumption). In addition to better task performance,
recurrent convolutional networks better predict human reaction times than
parameter-matched and state-of-the-art feedforward control models. These results
suggest that recurrent models are preferable to feedforward models of human vision in
terms of their more realistic connectivity, improved performance and flexibility in vision
tasks, and their ability to explain human behavioural responses.

Author summary

Deep neural networks provide the best current models of biological vision and achieve
the highest performance in computer vision. Inspired by the primate brain, these
models transform the image signals through a sequence of stages, leading to recognition.
Unlike brains, however, these models do not process signals recurrently, with outputs of
a given component computation being fed back into the same computation. The ability
to recycle limited neural resources by processing information recurrently could explain
the robustness and flexibility of biological visual systems, which is not yet matched by
computer vision systems. Here we report that recurrent processing can improve

March 26, 2020 1/27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2020. ; https://doi.org/10.1101/677237doi: bioRxiv preprint 

https://doi.org/10.1101/677237
http://creativecommons.org/licenses/by/4.0/


recognition performance compared to similarly complex feedforward networks.
Recurrent processing also enabled models to behave more flexibly and trade off speed
for accuracy. Like humans, the recurrent network models can compute longer when an
object is hard to recognise, which boosts their accuracy. The model’s recognition times
correlated with human recognition times for the same images. The performance and
flexibility of recurrent neural network models illustrates that modeling biological vision
can help us improve computer vision.

Introduction 1

Neural network models of biological vision have a long history [1–3]. The recent success 2

of deep neural networks in computer vision has led to a renewed interest in neural 3

network models within neuroscience [4–6]. Contemporary deep neural networks not only 4

perform better in computer-vision tasks, but also provide better predictions of neural 5

and behavioural data than previous, shallower models [7–11]. The dominant model class 6

in both computer vision and visual neuroscience is the feedforward convolutional neural 7

network (fCNN). 8

Inspired by the primate brain, fCNNs employ a deep hierarchy of linear-nonlinear 9

filters with local receptive fields. However, they differ qualitatively from their biological 10

counterparts in terms of their connectivity. Notably they lack the abundant recurrent 11

connectivity that characterises the primate visual system. In terms of recognition 12

behaviour, fCNNs and primates do show similar patterns of image classifications at the 13

level of object categories, but their behaviour diverges when the comparison is made at 14

the level of individual images [12]. Moreover, it has been shown that fCNNs heavily rely 15

on texture in image classification, whereas humans more strongly rely on larger-scale 16

shape information [13]. 17

The initial computations supporting rapid recognition in primates can be modeled as 18

a feedforward process [14]. However, neuroanatomical studies have shown that the 19

primate visual system has a highly recurrent connectivity [15–17]. Recordings of 20

neuronal activity further indicate that the recurrent connections are utilised during 21

object recognition [18–25]. 22

Motivated by the neuroanatomical and neurophysiological evidence, recent modeling 23

work has focused on introducing recurrence into the framework of convolutional neural 24

networks. Recurrent neural networks naturally lend themselves to the processing of 25

temporal sequences, such as dynamic visual sensations. However, even for recognition of 26

static images, recurrent convolutional neural networks (rCNNs) have been shown to 27

bring advantages [26–30]. Recurrence brings performance benefits in object recognition 28

tasks, with recurrent networks outperforming feedforward networks of similar 29

complexity (typically measured by the number of parameters) [26–29]. Moreover, 30

rCNNs are better able to explain neural and behavioural data than their feedforward 31

counterparts [24,25,29,31,32]. However, performance gains associated with recurrent 32

architectures have previously been shown only for small-scale visual tasks [26–28] or 33

using specialised forms of recurrence [29]. Here we investigated whether rCNNs can 34

outperform feedforward control models matched in their number of parameters on 35

large-scale recognition tasks and on predictions of human reaction times. 36

Beyond the number of parameters, we must consider the computational cost of 37

recognition. A recurrent network might outperform a feedforward network with a 38

similar number of parameters, but require more cycles of computation and more time to 39

arrive at an accurate answer. Primate brains employ a flexible mechanism that can take 40

more more or less time and energy for computations, depending on the difficulty of 41

recognition. This aligns with computational theories of perceptual decision making in 42

primates, which posit that evidence is accumulated until a threshold is reached before 43
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making a decision [33]. For some images, fast feedforward computations may be 44

sufficient [24]. If the network converges on a decision in the initial feedforward sweep, 45

then recurrent computation might not be required. For more difficult images, recurrent 46

computation might be essential to ensure accurate recognition. Threshold-based 47

decision making might allow an rCNN to save time and energy on average by only 48

running for the number of time steps required for a given level of confidence. 49

Threshold-based decision making enables the flexibility of a speed-accuracy trade-off 50

(SAT), explaining an important feature of biological object recognition [34]. A recurrent 51

network can run until it reaches a predefined level of confidence, with the threshold set 52

lower if there is time pressure. The reaction time, then, will reflect both the time 53

pressure (which depends on the situation) and the difficulty of recognition (which 54

depends on the image). 55

In engineering, a speed-accuracy trade-off might alternatively be implemented using 56

a range of separate neural network models of varying scale [35,36]. However, using 57

multiple models to implement a SAT has three disadvantages: (1) It requires more 58

storage. (2) It requires the selection of the appropriate model for each scenario at the 59

start of the process. (3) Once the model is chosen the reaction time is fixed and the 60

model cannot flexibly choose to compute longer for harder images. Threshold-based 61

decisions in a recurrent architecture, thus, appear advantageous for both biological and 62

artificial vision, which similarly face limitations of space, time, and energy. 63

To better understand the role of recurrent computations, we compared rCNNs to 64

feedforward (fCNN) control models in terms of their object-recognition performance and 65

their ability to account for human visual recognition behaviour. We trained our 66

networks on the ImageNet Large Scale Visual Recognition Challenge (referred to as 67

ImageNet for brevity) [37], and a more ecologically valid recognition task called 68

ecoset [38]. We investigated whether recurrence improves recognition accuracy in these 69

tasks. We further modelled threshold-based decision making in the rCNNs, varying the 70

threshold to control the SAT [34], and compared reaction times to different images 71

between rCNNs and human observers. 72

Results 73

We trained a range of deep convolutional neural networks on two large-scale visual 74

object-recognition tasks, ImageNet [37] and ecoset [38]. The networks trained included a 75

feedforward network, referred to as B (for bottom-up only), and a recurrent network, 76

referred to as BL, with bottom-up and lateral recurrent connections (recurrent 77

connections within a layer). We focus our investigation on lateral connections, which 78

constitute a form of recurrence that is ubiquitous in biological visual systems and 79

proved more powerful than top-down recurrent connections on simple tasks in our 80

earlier work [28]. 81

The rCNNs were implemented by unrolling their computational graphs for a finite 82

number of time steps (see Methods). Each model was trained to produce a readout at 83

each time step, which predicts the category of the object present in the image. 84

Adding recurrent connections to a feedforward model increases the number of 85

parameters. We therefore used three larger feedforward architectures that were 86

approximately matched in the number of parameters (Fig. 1) as control models. 87

Control models were matched in the number of parameters by increasing (1) the size of 88

the convolutional kernels, (2) the number of feature maps, and (3) the depth of the 89

network (referred to as B-K, B-F and B-D, respectively, where the B indicates that 90

these models had only bottom-up connections). Parameter matching is important 91

because parameters are costly. Both engineering and biology must consider two main 92

costs that scale with the number of parameters: the space requirements for storing the 93
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parameters and the data requirements for setting the parameters. 94
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Fig 1. Schematic representation of the parameter-matched networks. White
boxes represent convolutional layers, with the width representing the spatial dimensions
of the convolutional layers and the height representing the number of feature maps.
Models were matched in the number of parameters by increasing (1) the size of the
convolutional kernels (B-K), (2) the number of feature maps (B-F), and (3) the depth of
the network (B-D). Example units (black dots) are linked to coloured regions
representing their input kernels (which differ in width in B-K). The extents are
illustrative and not drawn to scale.

A major benefit of recurrent models is that they can run more computations without 95

requiring more parameters. The computational graph of a recurrent model grows with 96

the number of time steps the model runs for. The total number of computations 97

(whether performed in parallel or sequentially) and the maximum number of sequential 98

nonlinear transformations (which we refer to as the computational depth), therefore, are 99

limited by the number of time steps, not by the number of layers, in a recurrent model. 100

However, a feedforward architecture can also achieve any prespecified number of 101

computations and computational depth by including enough units and layers. This 102

raises the question of how a feedforward model with a matched computational graph 103

compares to an rCNN. We therefore trained a further feedforward control model whose 104

architecture was defined by unrolling the rCNN. This model (referred to as B-U, for 105

bottom-up unrolled) has an identical computational graph (and thus the same number of 106

computations and computational depth), but unique parameters for each convolution 107

(i.e. no weight sharing across time). As a result, B-U has more than seven times as 108

many parameters as BL (212.7 million for B-U, 28.9 million for BL). B-U was trained 109

with category readouts at regular intervals throughout the network (matching the 110

readouts at the end of each time step in BL). Including multiple readouts allows B-U to 111
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explain variability in human reaction times by terminating at different stages. 112

It is possible to alter the number of parameters and computations in the networks by 113

including other architectural features such as adding Inception modules [39]. However, 114

to ensure a meaningful comparison, we aimed to maintain as close a similarity as 115

possible between recurrent and feedforward architectures. The pros and cons of the 116

different control models are outlined in Table 1 (see Methods for a detailed description 117

of the models and training procedures). 118

Table 1. Pros and cons of different control models

Control model matched in number of parameters

Larger kernels (B-K) Pro: Matches the number of units in each
layer and the number of layers.

Con: Inefficient use of parameters in relation
to object recognition performance.

More feature maps (B-F) Pro: Matches the number of layers and better
performance gains than increasing kernel size.

Con: Does not match the number of feature
maps in each layer and has worse object recog-
nition performance than making the network
deeper.

Greater depth (B-D) Pro: Tends to yield best improvement in per-
formance for additional parameters.

Con: Does not match the number of layers in
the recurrent model.

Control model matched in computational graph

Feedforward network
matching the unrolled
recurrent network (B-U)

Pro: Matches the computational graph and
thus, in particular, the number of computa-
tions and the computational depth.

Con: The number of parameters grows pre-
cipitously with the number of time steps of
the recurrent model, and ends up being much
larger than in the recurrent model.

Recurrent networks outperform parameter-matched 119

feedforward models 120

We compared the performance of the recurrent BL architecture to the baseline 121

feedforward, and parameter-matched control architectures. For each architecture, we 122

trained and tested separate models on the ImageNet and ecoset visual recognition tasks. 123

For the recurrent BL networks, we defined the prediction of the model as the average of 124

the category readout across all time steps, which we refer to as the cumulative readout. 125

The cumulative readout tends to produce superior performance (see Methods). Top-1 126

accuracies are used throughout. 127

The recurrent models outperformed the baseline and all parameter-matched 128

feedforward models (Fig. 2B). BL showed a performance benefit of about 1.5 percentage 129

points relative to the best parameter-matched feedforward model, B-D, on both 130

datasets (Table 2). 131
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Fig 2. ImageNet and ecoset task performance for rCNN and
parameter-matched controls. Our rCNN model (red) achieves higher validation
accuracy than parameter-matched control models (shades of blue). (A) Training and
validation accuracies across training epochs for all networks (top-1). (B) Performance of
networks on held-out data using the fully-trained networks. All pairwise differences in
model performance were significant (p ≤ 0.05, McNemar test, Bonferroni corrected for
all pairwise comparisons).

Both B-D (deeper network) and B-F (more feature maps) outperformed the baseline 132

model, B. B-K has a worse test accuracy than the baseline model but a higher training 133
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Table 2. Accuracies on held-out data for parameter-matched models

models ImageNet ecoset parameters

B (baseline) 58.42% 64.25% 11.0 million

B-K (larger kernels) 56.46% 62.81% 39.8 million

B-F (more feature maps) 60.34% 66.54% 40.0 million

B-D (deeper network) 62.68% 68.36% 28.9 million

BL (recurrent) 64.37% 69.98% 28.9 million

The number of parameters are calculated for ImageNet models, ecoset models have
slightly fewer parameters due to fewer categories in the final readout layer.

accuracy (Fig. 2A). This suggests that using additional parameters to increase the 134

kernel size in our models leads to overfitting rather than a generalisable increase in 135

performance. 136

Pairwise McNemar tests [40,41] showed all differences in model performance to be 137

significant (p ≤ 0.05, corrected). Bonferroni correction was used to correct for multiple 138

comparisons in order to control the family-wise error rate at less than or equal to 0.05. 139

A recurrent model with entropy thresholding predicts a 140

speed-accuracy trade-off 141

Across recurrent computations in our rCNNs, the probability mass of the output 142

distribution tends to concentrate, indicating that the network’s confidence in its 143

classification is rising. We used the entropy of the output distribution to measure the 144

network’s confidence. Zero entropy would indicate that the network is certain, with all 145

probability mass concentrated on a single class. The network runs until the entropy of 146

its cumulative readout falls below a predefined entropy threshold. The final cumulative 147

readout is then taken as the network’s classification. 148

Entropy thresholding has the benefit of being economical, as it uses the minimum 149

number of time steps to reach the required level of confidence for an image. Moreover, 150

entropy thresholding is related to neuroscientific theories of decision making, where 151

evidence is accumulated until it reaches a bound [33]. 152

At a given entropy threshold, a recurrent model may choose to compute longer for 153

harder images. The model’s reaction time (i.e. the number of time steps required to 154

reach the entropy threshold) thus varies across images. For a given rCNN, the reaction 155

time is proportional to the computational cost of recognising an image (i.e. the number 156

of floating-point operations), and thus to the energy cost, which might be related to the 157

metabolic cost in a biological neural network. 158

For each setting of the entropy threshold, we estimated the accuracy and the 159

computational cost. We estimated the accuracy as the overall test-set accuracy at this 160

threshold. We estimated the expected computational cost as the average, across the test 161

set, of the number of floating-point operations used. We plotted the accuracy of the 162

model as a function of the computational cost (Fig. 3). For a given recurrent model, the 163

resulting plot reflects a speed-accuracy trade-off, because the reaction time is 164

proportional to the computational cost. Across thresholds, the accuracy rises with the 165

average time taken (and average computational cost), until it saturates. 166
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A single rCNN matches the accuracies of different fCNNs when 167

given a matched computational budget 168

We also assessed the accuracy and computational cost of the feedforward models. 169

Results are shown in the context of those for the recurrent models in Fig. 3. 170

Feedforward models are represented by single points because their computational cost is 171

constant. 172

When comparing the recurrent models to the feedforward models, we see a 173

remarkable correspondence between the two classes of architecture: The points 174

describing the feedforward models fall on the line describing how the recurrent model 175

trades off speed and accuracy: Given the computational budget of a particular 176

feedforward model, the recurrent model achieves the same accuracy. However, the 177

computational costs and accuracies of the feedforward models are fixed, whereas 178

recurrent models can be left to compute longer. Given a larger computational budget, 179

the recurrent model will achieve higher accuracy than any of the feedforward models. 180
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mean number of floating-point operations

Fig 3. Validation accuracy as a function of computational cost for
feedforward and recurrent models. Each feedforward model (squares in shades of
blue) requires a fixed number of floating-point operations for a single sweep of
computation. Feedforward models requiring more computation had higher validation
accuracy. The recurrent models (yellow-to-red line) could be set to terminate at
different levels of confidence, specified as the entropy of the softmax output. For each
entropy threshold (color bar), the computational cost (mean number of floating-point
operations) and the validation accuracy (proportion correct) were computed across the
test set. The recurrent models could flexibly trade speed for accuracy. They achieved
the same accuracy as each feedforward control model when given a matched
computational budget, and greater accuracy than any of the feedforward models when
run longer.

To inferentially compare the performance of the feedforward and recurrent networks 181

at matched computational cost, we considered the performance of the recurrent 182

networks at a single entropy threshold. We selected the threshold that minimises the 183

absolute difference between the average number of operations for the recurrent network 184

and the number of operations for the feedforward network. McNemar tests were again 185

used to compare the performance of the networks. 186

Across both datasets only one significant difference in performance was found 187

between recurrent and feedforward models. This difference was the between B and BL 188
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in ImageNet, which achieved 58.42% and 57.71%, respectively, a difference of 0.70% 189

(p < 0.001, uncorrected). This comparison matches a pass through B to the initial 190

feedforward pass through BL. BL appears to slightly compromise its performance on the 191

initial feedforward pass to support later gains through recurrence. All other differences 192

between BL and feedforward networks were even smaller and not significant, ranging 193

between -0.37% and +0.32%, relative to the performance of BL. B-K was excluded from 194

this analysis because it had worse performance than the baseline feedforward model 195

(possibly due to overfitting). 196

These results suggest that recurrent models perform similarly to feedforward models 197

when allowed the same number of floating-point operations. This may be surprising 198

given that recurrent models must use the same weights across multiple time steps, 199

whereas feedforward models do not face this constraint. We may have expected the 200

operations learned by recurrent models to be less efficient with regard to performance 201

achieved at a given computational cost. Instead, we found that the computational 202

efficiency of recurrent and feedforward networks are well matched. The graceful 203

degradation of performance of recurrent models when the computational cost is limited 204

may depend on training with a loss function that rewards rapid convergence to an 205

accurate output (see Methods). Recurrent models may benefit from the fact that they 206

can save computation on easy images, enabling them to expend greater computational 207

cost than their feedforward competitors on harder images, while matching the average 208

computational cost. 209

Overall our results suggest that we can use a single recurrent network to flexibly 210

emulate the accuracies achieved by different feedforward models. Matching the accuracy 211

of a given feedforward model will come at a computational cost that approximately 212

matches the computational cost of the feedforward model on average. The recurrent 213

model will terminate faster for easy images and compute longer for harder images. The 214

recurrent model can also be set to run more recurrent computations enabling it to 215

achieve higher performance than the parameter-matched feedforward networks. 216

Reaction times from recurrent networks better explain human 217

reaction times 218

Recurrent connections endow a model with temporal dynamics. If the recurrent 219

computations in a model resemble those of the human brain at some level of abstraction, 220

then model behaviour should be predictive of human behaviour. For example, images 221

that take longer for the model to recognise should also take longer for humans to 222

recognise. 223

To test this hypothesis we used data from an object categorisation task where 224

humans had to categorise 96 full-colour images as animate or inanimate. Reaction times 225

were recorded from 20 human participants. Our goal was to quantify the extent to 226

which model reaction times predicted human reaction times. 227

We fitted recurrent and feedforward models to these human data and tested the 228

fitted models using cross-validation across images and subjects. Feedforward models 229

were included in this analysis to test the competing hypothesis that varying reaction 230

times could be explained by halting computations part way through the feedforward 231

sweep. The feedforward models tested included a deep feedforward control model 232

matched to BL in terms of the computational graph (B-U). B-U is identical to a BL 233

network unrolled across time, except for the fact that it is not constrained to recycle its 234

parameters across time steps. The B-U model had category readouts at intermediate 235

layers, matching BL’s readouts at multiple time steps. Additional feedforward models 236

were also used including, B-D (trained on ImageNet and ecoset) and feedforward models 237

pre-trained on ImageNet that are popular in the machine learning literature [43–48]. 238
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The models were fitted to the human data in two stages: (1) An animacy 239

discrimination readout was fitted. (2) An entropy threshold was fitted to enable 240

measurement of model reaction times. To fit the animacy discrimination readout, eight 241

readouts were placed at regular intervals throughout the networks. The readouts were 242

trained to maximise performance on the animacy discrimination task using a separate 243

set of images from those used in the human behavioural task. The entropy threshold 244

was fitted to maximise the Pearson correlation between network and human reaction 245

times. We used a double leave-one-out cross-validation approach, ensuring that 246

thresholds were fitted using data from one set of images and subjects, and model 247

reaction times compared to human reaction times for an independent set of images and 248

subjects. The network reaction time was taken as the position of the readout that first 249

reached the entropy threshold. This procedure resulted in a predicted reaction time for 250

each subject-image pair. 251

To compare the ability of different models to predict human reaction times, we 252

computed the correlation between network reaction times and the reaction times for 253

individual subjects. A human consistency metric was also computed by correlating the 254

reaction times of a single human participant against the average of all other human 255

participants. This procedure provides a lower bound on the noise ceiling, i.e., a lower 256

bound on the performance that the true model would achieve given the noise and 257

intersubject variability [42]. Correlations between model and human reaction times, as 258

well as human consistency (lower bound of the noise ceiling), are shown in Fig. 4. 259

Paired two-tailed permutation tests were used to detect significant differences in 260

reaction time correlations between networks. The Benjamini-Hochberg procedure was 261

used to account for multiple comparisons by controlling the false discovery rate at 262

0.05 [49]. 263

The results show that reaction times extracted from BL trained on ecoset best 264

predicted human reaction times, outperforming all feedforward networks and the 265

untrained BL network (FDR q < 0.05). Notably, the explanatory benefit over the 266

feedforward architectures includes the control model B-U, which is highly similar to BL, 267

but requires the training and storage of a significantly larger number of parameters 268

(212.7 million for B-U compared to 28.9 million for BL, Fig. 5). While this significantly 269

larger model, perhaps not surprisingly, yields better overall task performance, it is 270

outperformed by BL in its ability to mirror human reaction times. 271

BL trained on ImageNet predicted the human reaction times better than all 272

feedforward networks (p < 0.05, FDR corrected) apart from Xception and B-D trained 273

on ecoset, where there was no significant difference. Relative to the randomly initialised 274

BL model, all feedforward models were either significantly worse at explaining human 275

reaction times or there was no significant difference in correlation (FDR q < 0.05). B-D 276

trained on ecoset had a significantly higher correlation than B-D trained on ImageNet 277

(FDR q < 0.05). All models had a significantly lower correlation that the human 278

consistency metric (FDR q < 0.05). 279

In summary, the comparison of model reaction times to human reaction times 280

demonstrated the benefits of recurrent processing compared to all other networks tested. 281

The recurrent BL model also explained reaction times better than the B-U model, 282

although B-U had the same computational graph and matched readouts at intermediate 283

stages. 284

Exploratory analysis of lateral connectivity patterns 285

To better understand the lateral connectivity patterns that emerge from category 286

training in our recurrent models, we analysed the recurrent connections in the first 287

network layer of a BL network trained on ImageNet. The focus on the lowest network 288

layer enabled us to visualise connectivity patterns in the pixel space. Our goal was to 289
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Fig 4. Reaction times from recurrent networks explain human reaction
times better than feedforward networks. Small grey dots represent the Pearson
correlation between the network and single subject reaction times. Large dots represent
the mean correlation across subjects. Human consistency (black circle) provides a lower
bound on the noise ceiling and is computed by correlating reaction times for a single
subject with the average reaction time for all other subjects. For each network, multiple
sigmoid animacy readouts were placed at even intervals throughout the networks.
Animacy readouts were trained to maximise accuracy using a separate set of images not
used in the human behavioural experiments. For each model, an entropy threshold was
fitted, using independent subjects and images, so that model reaction times best
predicted human reaction times (cross-validation).

qualitatively assess similarities to intra-area connectivity in primate V1. To summarise 290

the large number of lateral connections in the first network layer alone (over 450,000 291

connections), we used principal components analysis (PCA), decomposing the 292

lateral-weight templates into orthogonal components (similar to Linsley et al. [30], see 293

Methods for details). We then visualised these lateral-weight components together with 294

the bottom-up features that they connect. 295

Fig. 6 shows the first five weight components (capturing 43% of variance across all 296

recurrent weights). Interestingly, all five components are interpretable in terms of 297

biological phenomena: inhibition/excitation (component 1), vertical antagonism 298

(component 2), centre-surround antagonism (component 3), horizontal antagonism 299

(component 4), and perpendicular antagonism (component 5). These features could 300

relate to properties of biological visual systems such as border-ownership [50] and 301

contour integration [51] (explored further in S1 Text). 302

March 26, 2020 11/27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2020. ; https://doi.org/10.1101/677237doi: bioRxiv preprint 

https://doi.org/10.1101/677237
http://creativecommons.org/licenses/by/4.0/


Fig 5. Performance of ImageNet-trained models relative to the number of
parameters and number of floating point operations required to run the
full model. Proportion correct corresponds to the top-1 validation accuracy of the
trained models on ImageNet. The area of the coloured points is proportional to the
number of floating point operations required to run the model for the maximum number
of time steps.

Discussion 303

Our results show that recurrent convolutional neural network models can outperform 304

parameter-matched feedforward convolutional models of similar architecture on 305

large-scale naturalistic visual recognition tasks. In addition to superior performance, 306

rCNNs more closely resemble biological visual systems in both structure and function. 307

Structurally, biological visual systems and rCNNs share ample recurrent signal flow. 308

Functionally, biological visual systems and rCNNs both exhibit greater robustness and 309

flexibility than the fCNNs tested here. 310

An important functional feature of our rCNNs is the flexibility to trade off speed 311

and accuracy, which these models share with biological visual systems. The required 312

confidence can be specified in the form of the entropy of the model’s posterior. 313

Recurrent computation can then be terminated early for easy images, for which the 314

model quickly achieves a high-confidence classification. For harder images, recurrent 315

computation can proceed longer. A single rCNN with entropy thresholding matched the 316

accuracy of each of a range of smaller and larger fCNNs when the entropy threshold was 317

set such that the average computational cost of the rCNN matched the computational 318

cost of the fCNN. 319

We expected a significant cost in terms of accuracy to the added flexibility of 320

recurrent computation. However, we observed marginal costs of the flexible rCNN 321

architecture only when the rCNN (BL), after having been trained to compute 322

recurrently, was reduced to its feedforward sweep and compared to a matched 323

architecture (B) containing only the feedforward connections. When the rCNN was set, 324

via its entropy threshold, to use a larger mean computational budget, its accuracy 325

March 26, 2020 12/27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2020. ; https://doi.org/10.1101/677237doi: bioRxiv preprint 

https://doi.org/10.1101/677237
http://creativecommons.org/licenses/by/4.0/


negative component loading positive component loading

variance explained = 0.13

component 1

(near inhibition/excitation)

variance explained = 0.09

component 2

(vertical antagonism)

variance explained = 0.08

component 3

(centre-surround antagonism)

variance explained = 0.08

component 4

(horizontal antagonism)

variance explained = 0.05

component 5

(perpendicular antagonism)

bottom-up features connected

with positive component

bottom-up features connected

with negative component

lateral-weight

components

Fig 6. Lateral-weight components for layer 1 of an rCNN trained on
ImageNet. Every unit receives lateral input from other units within and across feature
maps via a local lateral-weight pattern. We used principal component analysis to
summarise the lateral-weight patterns. The top five lateral-weight principal components
are shown in both their positive (centre right) and negative forms (centre left). Blue
shading corresponds to negative values and red to positive. The proportion of variance
explained is given beneath each lateral-weight component. Bottom-up feature maps
connected by lateral weights with the strongest positive (right) and negative loadings
(left) on the weight component are shown alongside. Arrows between bottom-up
features indicate the direction of the connection and the loading is given underneath
each pair of bottom-up features.
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matched each parameter-matched fCNN at matched computational budgets. An rCNN 326

trained to flexibly trade speed and accuracy might slightly comprise its performance at 327

a fixed number of time steps. However, its ability to terminate early for easy images 328

saves computation on average, enabling it to match different fCNNs in accuracy at 329

matched mean computational cost. 330

Recurrent models not only have the functional benefit of flexible speed-accuracy 331

trading, shared with human vision, but they also predicted human reaction times better 332

than feedforward models. This supports the hypothesis that the variability in human 333

reaction times is explained by varying amounts of recurrent, rather than feedforward, 334

computation. The performance of recurrent models, relative to feedforward, is 335

consistent with previous work using small-scale machine learning tasks [26,28]. However, 336

it contrasts with more recent results suggesting that specialised recurrent architectures, 337

in the form of reciprocally gated cells, are required for recurrent networks to outperform 338

their feedforward counterparts in naturalistic visual recognition tasks [29]. One 339

potential explanation of these ostensibly diverging results is the scale of the feedforward 340

control models relative to the recurrent networks. In the experiments described here, 341

the recurrent networks had approximately 72-100% of the parameters of the feedforward 342

control models. In comparison, the baseline recurrent models “Vanilla RNN” (similar to 343

BL) had approximately 39% and 45% of the parameters of the feedforward control 344

models (“FF Deeper” and “FF Wider”, respectively) in [29]. While reciprocally gated 345

cells clearly produce better task performance, this difference in the number of 346

parameters could explain why our recurrent convolutional networks (without the 347

addition of gating) were able to outperform the parameter-matched feedforward models. 348

It also highlights the difficulty of defining appropriate feedforward control models. Here, 349

we took the approach of matching the number of parameters in feedforward and 350

recurrent models. We additionally considered the performance of an fCNN model (B-U) 351

with the same computational graph as the rCNN. The latter approach has the 352

advantage of matching the number of computations and the computational depth, but it 353

has the disadvantage of a severe mismatch in the number of parameters (larger by factor 354

7 in the fCNN here). 355

Our rCNN models borrowed two ideas from the literature on biological decision 356

making: threshold-based decision making [33] and speed-accuracy trade-offs [34]. First, 357

using a fixed posterior-entropy threshold, networks were able take longer to recognise 358

more difficult images. Second, by varying the posterior-entropy threshold, networks 359

could change their required confidence, trading off accuracy for speed. These behaviours 360

enable economical object recognition, only spending the time (and energy) required by 361

the given task or situation. The type of flexible behaviour demonstrated here for rCNNs 362

is useful in both biological and artificial object recognition, where time and 363

computational resources for inference are often limited. Vision rCNNs may be useful in 364

artificial intelligence technologies, particularly those operating under resource 365

constraints (e.g. [36, 52,53]). 366

Reusing weights across time also reduces the passive costs of connections: In 367

biological systems, connections need to be developed, accommodated in the body, and 368

continually nourished, which requires energy and space, even when the network is idle. 369

In artificial systems, similarly there are costs of construction and space if neuromorphic 370

hardware is used, and costs of memory storage if the network is emulated on a 371

conventional computer. In both biological and articifical systems, the experiential data 372

and energy required for learning a large number of parameters constitute additional 373

costs. The need for large amounts data, energy, and time for learning, in fact, is among 374

the most significant drawbacks of current neural network models. Recurrent models 375

offer an avenue for limiting the number of parameters without limiting the 376

computational depth or total computational budget for an inference. 377
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Our finding that rCNNs predict human reaction times for individual images suggests 378

an interesting direction for future models of biological decision making. The rCNN 379

model class could provide a unified basis for predicting stimulus-specific distributions of 380

errors and reaction times in different sensory modalities and perceptual tasks. This 381

would complement previous work on recurrent processing in the decision-making 382

literature. 383

Recurrent processing in human decision-making is often interpreted as serving to 384

accumulate evidence. When the evidence consists in independent noisy samples that 385

reflect some latent variable of interest, the optimal inference procedure is to sum up the 386

incoming signals. This leads to a stochastic drift toward a decision bound [33]. In 387

real-world perceptual decisions, however, evidence may vary across time due to 388

non-random processes. Beyond summation of noisy samples, recurrent processing might 389

reflect an ongoing inference process where the dynamic sensory stream provides 390

qualitatively different pieces of evidence over time. Even for a static sensory input (as 391

in the present study), each step of inference might depend on preceding steps, with 392

sudden insights changing the course of the process. Recurrent neural network models 393

can capture such processes and may support interesting predictions for particular 394

stimuli (such as class A being favoured early in the trial, class B being preferred in the 395

middle, and class A being preferred again at the end). 396

As part of an exploratory analysis of the lateral connectivity in the BL networks, we 397

observed that these models may learn recurrent connectivity profiles that resemble 398

those in biological vision (see S1 Text). We found evidence for centre-surround 399

computations as well as connectivity that could help to support properties such as 400

sparse representations [54], border ownership [50], contour integration [51], and 401

end-stopping [55]. These analyses of recurrent connectivity offer a promising starting 402

point for understanding recurrent computations in artificial visual systems and should 403

be followed up by a detailed analysis of activity patterns in the models. 404

The observed lateral connections in our networks trained for object recognition also 405

show a resemblance to the lateral connections of networks trained for contour 406

integration tasks [30]. Given the different nature of these tasks, the similarity in lateral 407

connectivity is surprising. This leads to the interesting hypothesis that there might be a 408

subset of lateral computations that are useful across a range of visual tasks, at least in 409

low-level visual areas. This would be consistent with the fact that a large range of 410

objectives can be optimised to obtain simple-cell like features as observed in low-level 411

visual areas. Such objectives include image classification performance [56], predictive 412

coding [57], temporal stability [58,59], and sparsity [54]. 413

In summary, the work described here adds to a growing body of research on rCNNs 414

as models of object recognition [25–29,31,32]. Deep recurrent networks provide dynamic 415

models of brain computation that can be fully observed and perturbed from input to 416

behavioural response. Understanding how these models perform object recognition 417

might aid our understanding of the role of recurrent processing in biological vision. 418

Methods 419

Deep neural network implementation 420

Architecture descriptions 421

All deep neural networks in these experiments were implemented using TensorFlow [60]. 422

The baseline feedforward model (B), the recurrent model BL and the feedforward 423

models parameter-matched to BL (B-K, B-F, B-D) are specified in detail in Table 3. 424

The recurrent network (BL) is unrolled across time (Fig. 7) for eight time steps. At 425

each time point in BL, the network receives an input image at the first layer and a 426
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Table 3. Specification of network architectures

Model B B-K B-F B-D BL

Block 1 F = 96, K = 7 F = 96, K = 11 F = 192, K = 7
F = 96, K = 7

(F = 96, K = 7) × 2
F = 96, K = 7

Pool 1 2 × 2 max pooling

Block 2 F = 128, K = 5 F = 128, K = 7 F = 256, K = 5
F = 128, K = 5

(F = 128, K = 5) × 2
F = 128, K = 5

Pool 2 2 × 2 max pooling

Block 3 F = 192, K = 3 F = 192, K = 5 F = 384, K = 3
F = 192, K = 3

(F = 192, K = 3) × 2
F = 192, K = 3

Pool 3 2 × 2 max pooling

Block 4 F = 256, K = 3 F = 256, K = 5 F = 512, K = 3
F = 256, K = 3

(F = 256, K = 3) × 2
F = 256, K = 3

Pool 4 2 × 2 max pooling

Block 5 F = 512, K = 3 F = 512, K = 5 F = 1024, K = 3
F = 512, K = 3

(F = 512, K = 3) × 2
F = 512, K = 3

Pool 5 2 × 2 max pooling

Block 6 F = 1024, K = 3 F = 1024, K = 5 F = 2048, K = 3
F = 1024, K = 3

(F = 1024, K = 3) × 2
F = 1024, K = 3

Pool 6 2 × 2 max pooling

Block 7 F = 2048, K = 1 F = 2048, K = 3 F = 4096, K = 1
F = 2048, K = 1

(F = 2048, K = 1) × 2
F = 2048, K = 1

Readout
global average pooling

565 or 1000 category readout

Parameters 11.0 million 39.8 million 40.0 million 28.9 million 28.9 million

Each row in the table represents a convolutional layer. F specifies the number of feature maps in the layer and K represents
the height and width dimensions of the convolutional kernel. For BL, “(...) × 2” indicates that the same size convolutional
kernel is applied twice, once to the bottom-up input (from the layer below) and once to the lateral input (from the same
layer). All convolutions are applied with 1× 1 stride and all max pooling is applied with 2× 2 stride. The number of
parameters are calculated for ImageNet models, ecoset models have slightly fewer parameters for the readout due to the
smaller number of categories in ecoset.

readout is take from the last layer. 427

An additional feedforward model (B-U) was also trained. This model is identical to 428

a BL network unrolled across time (for eight time steps) but, instead of sharing 429

parameters across time, each convolution has unique parameters. Similar to BL, B-U 430

has multiple input and output layers directly mapping to the input and output layers of 431

BL at each time step. B-U has a total of 212.7 million parameters. 432

March 26, 2020 16/27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2020. ; https://doi.org/10.1101/677237doi: bioRxiv preprint 

https://doi.org/10.1101/677237
http://creativecommons.org/licenses/by/4.0/


la
y
e

rs
time
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Fig 7. Network unrolling through time. Unrolling is shown for engineering time
(left) and biological time (right). Each box represents a layer and the shading
corresponds to its label in engineering time. Connections with the same colour represent
shared parameters.

Unrolling recurrent networks across time 433

Artificial recurrent neural networks are typically implemented with feedforward 434

connections taking no time and recurrent connections taking a single time step, we refer 435

to this as “engineering” time. In comparison, all connections in biological neural 436

networks should incur some time delay. A more biologically realistic implementation of 437

a recurrent network may have every form of connection taking a single time step [25,29]. 438

We refer to this as “biological” time. Network unrolling in engineering time and 439

biological time yield distinct computational graphs in the presence of top-down 440

connections. However, for BL networks (which have lateral, but not top-down 441

connections), unrolling in engineering time and biological time produce equivalent 442

computational graphs (Fig. 7). Note that we neglect (1) computations that occur prior 443

to the first feedforward sweep and (2) computations that cannot reach the readout 444

before the final time step is reached. Based on the equivalent computational graphs for 445

BL networks, we chose to use “engineering” time for the recurrent networks here and 446

defined time as the number of complete feedforward sweeps that have occurred. 447

Note that in the unrolling scheme for BL (Fig. 7), each layer receives a time-varying 448

feedforward input. This means that feedforward and recurrent processing happen in 449

parallel. Alternatively, an rCNN could be unrolled such that all recurrent computations 450

are performed within a layer and only the final output is passed to subsequent layers 451

(e.g. [31]), resulting in recurrent and feedforward processing occurring in sequence. This 452

implementation suggests that the onset of responses at later stages will be delayed when 453

recurrence is engaged in earlier layers. However, experimental observations suggest that 454

response onset is not delayed in later stages of the ventral visual pathway when 455

recurrent processing is being utilised [24,25]. These experimental findings motivate our 456

unrolling scheme for BL, with recurrent and feedforward processing occurring in parallel. 457

Convolutional layers 458

We define the output from a standard feedforward convolutional layer at layer n on time 459

step t as 460

Ht,n = φ(W b
n ∗ η(Ht,n−1) + bn) (1)

Where W b
n are the bottom-up convolutional weights for the layer and bn are the 461
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biases. The convolution operation is represented as ∗. Optional max-pooling on the 462

bottom-up input is represented by η. All other operations applied after the convolution 463

are represented by the function φ. These operations include batch-normalisation [61] 464

and rectified linear units in that order. 465

For a recurrent BL layer, the output is defined as 466

Ht,n = φ(W b
n ∗ η(Ht,n−1) +W l

n ∗Ht−1,n + bn) (2)

Where W l
n are the lateral recurrent weights. 467

For the recurrent networks, batch-normalisation is applied independently across time. 468

Whilst this means that the networks are not truly recurrent due to unique normalisation 469

parameters at each time step, this does not affect arguments related to parametric 470

efficiency, as the numbers of parameters added by batch-normalisation at each time-step 471

are negligible compared to the overall scale of the network. Approximately, 60,000 472

parameters are added across time due to batch-normalisation compared to 28.9 million 473

parameters for the network as a whole. 474

In addition, we tested whether the use of independent batch-normalisation across 475

time confers an additional performance advantage to recurrent networks by training 476

B-D and BL on ImageNet without batch-normalisation. In this case, networks were 477

trained using the same procedure but for only 25 epochs to prevent overfitting (as the 478

removal of batch-normalisation reduces stochasticity in training). B-D and BL achieved 479

a top-1 validation accuracy of 52.5% and 58.6%, respectively. This suggests that 480

independent batch-normalisation across time does not explain the performance 481

difference between feedforward and recurrent networks and even has a more beneficial 482

effect for feedforward networks than recurrent networks (approximately 10 percentage 483

point increase for B-D compared to a 6 percentage point increase for BL). 484

Network training 485

Before passing the images to the network, a number of pre-processing steps were 486

applied. First, a crop was taken from the image, which was resized to 128× 128 pixels. 487

During testing and validation, a centre crop was taken from the image. During training, 488

a random crop was taken covering at least one third of the image area. Further data 489

augmentation was also applied in training, this included random left-right flips, and 490

small distortions to the brightness, saturation and contrast of the image. Finally, the 491

pixel values in the image were scaled from the range [0, 1] to be in the range [-1, 1]. 492

B, BL and parameter-matched controls (B-K, B-F and B-D) were trained for a total 493

of 90 epochs with a batch size of 100. B-U was trained using the same procedure but 494

with a batch size of 64 due to its substantially larger number of parameters. 495

The cross-entropy between the softmax of the network category readout and the 496

labels was used as the training loss. For networks with multiple readouts (BL and B-U), 497

we calculate the cross-entropy at each readout and average this across readouts. 498

Adam [62] was used for optimisation with a learning rate of 0.005 and epsilon parameter 499

0.1. L2-regularisation was applied throughout training with a coefficient of 10−6. 500

The code for models and weights for pre-trained networks are made available at 501

github.com/cjspoerer/rcnn-sat. 502

Defining accuracy in recurrent networks 503

As recurrent networks are unrolled across time, they have readouts at multiple time 504

steps. This means that we must map from many readouts for a single image to one 505

prediction. This leads to some ambiguity about how to produce predictions from 506

recurrent networks for object recognition. Therefore, we conducted initial analyses to 507
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determine how to generate predictions from recurrent networks in the experiments 508

described here. 509

One decision is how to select the time step to readout from the network, which we 510

refer to as the network’s reaction time. A fixed time step could be chosen. For example, 511

the readout could always be taken at the final time step that the recurrent model runs 512

until. We refer to this as time-based accuracy. 513

Alternatively, we could select the readout to use based on when the model reaches 514

some threshold. For example, the prediction is taken from the network once a certain 515

level of confidence is reached. This confidence level could be defined by the entropy of 516

the readout distribution where a lower entropy corresponds to a higher confidence. If 517

the required confidence level is never reached then the final time step is selected as the 518

reaction time. This is referred to as threshold-based accuracy. It should be noted that 519

threshold-based accuracy can be implemented in recurrent networks using dynamic 520

computational graphs that only execute up to the desired threshold. However, for our 521

analyses we simply measure the time that it takes for the network to achieve a given 522

level of entropy. 523

Once the decision time has been selected, we need to decide how to reduce the 524

readout distribution across time. One method is to generate the prediction based solely 525

on the readout at the network reaction time. We refer to this as the instantaneous 526

readout. A second method is to generate the prediction from the cumulative readout up 527

to the decision time, allowing the network’s predictions to be explicitly aggregated 528

across time. 529

These different methods were compared using held-out data (Fig. 8). For ecoset the 530

held-out data corresponds to the test set and for ImageNet this corresponds to the 531

validation set, as the test set is not publicly available. 532

For time-based methods, we see that the accuracy of the readout tends to increase 533

across time. However, there is some drop-off in performance at later time steps if the 534

instantaneous readout is used. One explanation for this pattern is that, by training the 535

network to produce a readout at each time step, the network is encouraged to produce 536

accurate predictions more quickly at the cost of higher accuracy at later time steps. 537

If a cumulative readout is used then accuracy improves more steadily across time, 538

which is consistent with the smoothing effects expected from a cumulative readout. 539

However, cumulative readouts produce a higher overall level of accuracy than 540

instantaneous readouts. This suggests there is some benefit of accumulating evidence 541

across time for the performance of the network, even though the predictions themselves 542

are not independent across time. 543

Similar results are seen when threshold-based accuracies are used. This reflects the 544

fact that decreasing the entropy threshold will naturally lead to later time steps being 545

increasingly utilised. Threshold-based accuracies also show a decrease in accuracy for 546

instantaneous readouts at the lowest entropy levels. This is again due to worse 547

performance at later time steps but also highlights an assumption of threshold-based 548

accuracies that letting the network run for longer, to obtain higher confidence levels, 549

will generate better predictions. 550

As a result of these analyses, all reported accuracies for recurrent networks refer to 551

predictions based on cumulative readouts as these tend to produce the best performance. 552

Behavioural experiments 553

Participants 554

Twenty healthy participants (16 female) aged 22-35 years (mean 26.62 years ± 4.21) 555

were recruited from the Medical Research Council – Cognition and Brain Sciences Unit 556

volunteer panel. All participants had normal or corrected-to-normal vision, and 557
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instantaneous readout cumulative readout

ecoset

ImageNet

time-based accuracy threshold-based accuracy

time step entropy threshold (inverted) [nats]

A

B

Fig 8. Task performance using varied definitions of predictions for
recurrent models. Accuracies are given for models trained on (A) ImageNet and (B)
ecoset using both time-based (left) and threshold-based (right) methods. Accuracies
obtained from instantaneous readouts are shown with solid lines and results from
cumulative readouts are shown with dashed lines. Shaded areas represent 95%
confidence intervals obtained through bootstrap resampling.

reported no history of neurological or psychiatric disorders. The experimental procedure 558

was conducted in accordance with the Cambridge Psychology Research Ethics 559

Committee. Participants provided written informed consent and were compensated 560

financially for participation. 561

Materials 562

We used the experimental stimuli from (Kriegeskorte et al. [63]). The stimuli presented 563

to our participants were 96 colour photographs (250× 250 pixels) of isolated real-world 564

objects on a grey background. The objects included natural and artificial inanimate 565

objects as well as faces and bodies of humans and nonhuman animals. Forty-eight 566

pictures out of the 96 were animate objects, 12 human bodies, 12 animal bodies, 12 567

human faces and 12 animal faces. Twenty-four pictures out of the 48 inanimate objects 568

were depicting man-made objects while the remaining 24 depicted natural objects. 569

Experimental procedure 570

The experiments were programmed using the Psychophysical Toolbox [64,65] in Matlab 571

(MathWorks, Natwick Inc) on a Dell Desktop PC computer. The participants were 572
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instructed to categorise “as quickly and as accurately as possible” objects according to 573

the animate vs. inanimate categorical dichotomy. For each stimulus presentation, the 574

participant had to press one of two keyboard keys as quickly as possible to indicate 575

from which one of the two categories the stimulus was drawn. Each stimulus was 576

presented exactly 6 times. Within the task, the order of the stimulus presentation was 577

pseudo-random controlling for potential confounds related to stimulus presentation 578

order. The trial onset asynchrony was 2 seconds and the stimuli were shown for a 579

duration of 500 ms, providing the participant with 2s (including stimulus duration) to 580

indicate the object’s category before the next object was presented. 581

Fitting network reaction times to human reaction times 582

A cross-validated procedure was used to fit network models to human reaction times in 583

the animacy discrimination task (as described in Behavioural experiments). The 584

network models tested included B-D (ImageNet-trained and ecoset-trained), B-U 585

(ImageNet-trained) and BL (ImageNet-trained, ecoset-trained and randomly initialised). 586

A range of networks pre-trained on ImageNet that are popular in the engineering 587

literature were also included [43–48]. The procedure involved two key steps, training the 588

animacy discrimination readout and fitting the entropy threshold. 589

Training the animacy discrimination readout 590

To explain the human reaction times, animacy discrimination readouts were trained at 591

eight points throughout the networks. The position of the first readout to reach a 592

specified entropy threshold was taken as the network reaction time. For networks with 593

multiple readouts (B-U and BL) readouts were trained in the same position as the 594

original readouts. For feedforward networks without multiple readouts (B-D and 595

pre-trained ImageNet models), a set of eight readouts were placed in an ordered 596

sequence so that a similar number of additional computations were performed between 597

any pair of adjacent readouts. Only a subset of layers were considered as candidate 598

readout layers for the feedforward models trained without multiple readouts (Table 4 599

summarises the layers considered for each model). 600

Table 4. Subset of layers considered for training animacy discrimination
readouts in single-readout feedforward models

Model layers considered for animacy readouts

B-D ReLU layers

Inception-ResNet v2 ReLU layers in the network stem, output of mixed concat
layers, output of ResNet blocks, final ReLU layer

Xception ReLU and add layers

NASNet concat layers

DesnseNet-201 concat layers

ResNet-50 ReLU layers

VGG16 ReLU layers

To train the animacy readout, activations for each of the eight selected readout 601

layers were taken in response to 899 training images (406 animate and 493 inanimate). 602

These images were taken from a stimulus set of 1024 cropped images on a mid-grey 603

background [66]. Images that also appeared in the behavioural experiment, or did not 604
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clearly depict animate or inanimate objects were removed from the training set. The 605

remaining images were labelled as animate or inanimate. 606

The extracted activations underwent a step of dimensionality reduction, using 607

principal components analysis (PCA), fitted on the training set, to project the 608

activations into a 512-dimensional space. For recurrent networks, PCA was fitted for all 609

time steps simultaneously. This simplified training the animacy readout as it reduces 610

the number of parameters to be optimised. It also has the benefit that all network 611

layers are reduced to the same dimensionality. Therefore, changes in the readout across 612

layers cannot be explained by changes in the dimensionality of the input or (as a 613

consequence) the number of the parameters in the readout. 614

A sigmoid animacy discrimination readout is then trained to maximise performance 615

using activations for the training images projected in 512 dimensions. For the recurrent 616

networks a recurrent sigmoid readout is trained across all time steps. The output of the 617

recurrent readout at time step t ∈ {1..8} is defined as 618

yt = σ(αyt−1 +WPt + b) (3)

Where Pt are the loadings on the principal components at each time step, α is a 619

recurrent parameter that allows evidence to be accumulated across time, W are the 620

weights for the linear readout, b is the bias and σ is the sigmoid non-linearity. The 621

initial readout state y0 was defined to neutral, such that y0 = 0.5. For feedforward 622

networks, there is no parameter sharing across the layers, therefore, a separate sigmoid 623

readout is trained for each readout layer. 624

The readout was optimised using batch gradient descent with Adam. The learning 625

rate was set to 0.001 and the readout was trained for 1000 iterations. The loss was 626

weighted for each class to account for the imbalance of classes in the training set. 627

This procedure was repeated 10 times, initialising the PCA and readout from 628

different random seeds (note that a randomised method for PCA is used given the size 629

of the original activation space [67]). For each random seed the PCA and animacy 630

readout were used to produce responses to each of the 96 images used in the 631

behavioural experiments, saving the results for each random seed. 632

Cross-validated procedure for entropy threshold selection 633

Entropy thresholds were used to extract reaction times for each of the 96 images used in 634

the behavioural experiments. A double leave-one-out cross-validation procedure was 635

used for fitting the entropy threshold. In each fold of the cross-validation procedure a 636

single image (across all subjects) and subject (across all images) were removed as the 637

test image and subject, respectively. The remaining 95 images across 19 subjects were 638

taken as the training set. 639

The entropy threshold was found that maximised the correlation between network 640

reaction times (averaged across random seeds) and human reaction times (averaged 641

across participants) on the training set. Using the entropy threshold fitted on the 642

training data, a predicted reaction time was extracted for the left out image and subject. 643

The predicted reaction time was recorded for later analysis. This procedure was 644

repeated until all subjects had a predicted reaction time for every image, fitted using 645

independent data. 646

The cross-validated network reaction times were then compared to human reaction 647

times for each subject individually using Pearson correlation. Pearson correlation was 648

used as we expect the relationship between human and network reaction times to be 649

linear. The correlation coefficient across human subjects was averaged and a paired 650

permutation test (with 10,000 permutations) was used to test for significant differences 651

in the mean. 652
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Extracting lateral-weight components 653

We analyse the lateral connectivity of the network by decomposing the lateral weights 654

in the network into lateral-weight components. To do this, we focus of the 7× 7 weight 655

templates that connect each of the feature maps within the first layer of the network. 656

There are 962 weight templates in total connecting every feature map to each other in 657

both directions (including self-connections from a feature map to itself). We focus on 658

the first layer of the network as the corresponding bottom-up weights are easier to 659

interpret and recurrence is arguably best understood in early regions of the visual 660

system (corresponding to early layers of the network). 661

Firstly, the weight templates are normalised such that the vector of the flattened 662

weight template has unit length. After normalisation, the lateral weights are processed 663

using principal components analysis (PCA) where each weight template is considered as 664

an individual sample. The first five components resulting from the PCA are used as the 665

lateral-weight components for the analysis. 666
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