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Abstract 

Confidence intervals (CIs) depict the statistical uncertainty surrounding evolutionary divergence 

time estimates. They capture variance contributed by the finite number of sequences and sites 

used in the alignment, deviations of evolutionary rates from a strict molecular clock in a phylogeny, 

and uncertainty associated with clock calibrations. Reliable tests of biological hypotheses demand 

reliable CIs. However, current non-Bayesian methods may produce unreliable CIs, because they 

do not incorporate rate variation among lineages and interactions among clock calibrations. Here, 

we present a new analytical method to calculate CIs of divergence times estimated using the 

RelTime method, along with an approach to utilize multiple calibration uncertainty densities in 

these analyses. Through empirical data analysis, we show that the new methods produce CIs 

that overlap with Bayesian highest posterior density (HPD) intervals. These developments will 

encourage broader use of computationally efficient, non-Bayesian relaxed clock approaches in 

molecular dating analyses and biological hypothesis testing.  
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Introduction 

Reliable inference of the confidence intervals around the estimates of divergence times is 

essential for testing biological hypotheses (Burbrink and Pyron 2008; Kumar and Hedges 2016). 

Multiple sources contribute to the uncertainty of molecular divergence time estimates (Rannala 

and Yang 2007; Zhu et al. 2015; Kumar and Hedges 2016). One of them is the error associated 

with branch length estimation in a phylogeny due to the limited number of sites and substitutions 

in the sequence alignment (Kumar and Hedges 2016; Warnock et al. 2017). The stochastic nature 

of the substitution process (e.g., Poisson process) and the uncertainty involved in accounting for 

the unobserved substitutions (multiple-hit correction) result in errors in branch length estimates, 

which lead to imprecise time estimates (Kumar and Hedges 2016). However, this error decreases 

with an increase in the number of sampled sites (Rannala and Yang 2007; dos Reis and Yang 

2013; Zhu et al. 2015) and becomes negligible for large phylogenomic datasets. A second source 

of error is the variation of evolutionary rates among branches and lineages (Zhu et al. 2015; 

Kumar and Hedges 2016). Because rates and times are confounded, the variation of rates will 

naturally result in uncertainty of time estimates (Ho 2014; Zhu et al. 2015). This confounding effect 

cannot be eliminated by sampling more sites or genes in a dataset (Zhu et al. 2015; Kumar and 

Hedges 2016), so it contributes more uncertainty to time estimates than errors in branch length 

estimation for a large dataset. The uncertainty associated with clock calibrations due to the 

equivocal nature of fossil record presents a third source of error in divergence time estimation 

(Zhu et al. 2015; dos Reis et al. 2016; Warnock et al. 2017). The exact placement of fossil record 

in a phylogeny and the correct assignment of calibration constraints, especially the maximum 

constraint, are often difficult to justify, resulting in great uncertainty in estimation of divergence 

time (Bromham et al. 2018).     

In Bayesian analyses, the highest posterior density (HPD) intervals usually represent the 

uncertainty of inferred divergence times (Drummond et al. 2006). Bayesian methods compute 

HPD intervals directly from the density distribution of posterior times estimated using priors for 

rate heterogeneity, substitution process and fossil calibrations (dos Reis et al. 2016; Bromham et 

al. 2018), so sources contributing to the uncertainties of time estimates are automatically 

incorporated in the HPD intervals. Currently, Bayesian HPDs are considered reliable estimates of 

uncertainties surrounding divergence time estimates. However, the large computation burden 

imposed by Bayesian approaches has hindered their applications to analyze many phylogenomic 

datasets (Pyron 2014; Mello et al. 2017; Li et al. 2019).  
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In contrast, non-Bayesian methods can analyze large-scale datasets quickly and generate 

accurate time estimates (Smith and O’Meara 2012; Tamura et al. 2012; Tamura et al. 2018). 

Unfortunately, the broad utility of these methods is still reduced by lack of reliable calculation of 

the uncertainty surrounding divergence times, which are represented by confidence intervals 

(CIs). Non-Bayesian approaches require the use of analytical formulations or bootstrap 

approaches to estimate CIs (Sanderson 2003; Xia and Yang 2011; Tamura et al. 2013). However, 

site-resampling bootstrap approaches do not capture the error caused by rate heterogeneity, 

leading to false precisions of time estimates. Recognizing the need for incorporating lineage rate 

variation into CIs, Tamura et al. (2013) formulated analytical equations for the RelTime method, 

a non-Bayesian approach that relaxes the molecular clock. However, this approach may 

overestimate the amount of variance and produce overly wide confidence intervals (see below), 

resulting in low power for statistical testing (Kumar and Hedges 2016).  

Bayesian and non-Bayesian methods also use different strategies to account for the 

uncertainty of fossil record. Non-Bayesian methods are limited to the use of minimum boundaries 

only, maximum boundaries only, or minimum and maximum boundary pairs as calibration 

constraints (Sanderson 2003; Tamura et al. 2013), while Bayesian methods allow the usage of 

informative probability densities as calibrations and automatically accommodate interactions 

among them (Inoue et al. 2010; Ho and Duchêne 2014). Mello et al. (2017) presented a simple 

procedure to derive minimum and maximum boundaries from the density distributions, but this 

strategy does not consider interactions among calibrations and may lead to overestimates of the 

variance of divergence times (see below). 

Here, we present an analytical approach to estimate CIs for divergence times estimated 

with RelTime, accounting for variance associated with the branch lengths estimation and variance 

due to rate heterogeneity. We also present a simple approach to derive minimum and maximum 

boundaries from multiple calibration densities and accommodate calibration interactions. Both 

methods have been implemented in MEGA X for use in graphical and command line interfaces 

(Kumar et al. 2012; Kumar et al. 2018). The 95% CIs produced by RelTime in empirical analyses 

are compared with the 95% HPD intervals produced by Bayesian methods to examine the 

performance of the new approaches. The approach presented here may be used to improve 

variance calculation of time estimates for other non-Bayesian methods, e.g., penalized likelihood 

methods (Sanderson 2003; Smith and O’Meara 2012). 
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New Methods 

An analytical method to estimate confidence intervals 

Considering a tree with three ingroup sequences (Fig. 1), relative time (t) for each node and 

relative rate (r) for each lineage are functions of branch lengths (b) in RelTime, e.g., r1, r2, r3, r4, 

t4, and t5 are given by the following equations when the geometric means are used (similar 

equations can be derived when the arithmetic mean is used) (Tamura et al. 2018): 

𝑟1 = √𝑏1√√𝑏1𝑏2 + 𝑏4/√𝑏2𝑏3,      [eq. 1] 

𝑟2 = √𝑏2√√𝑏1𝑏2 + 𝑏4/√𝑏1𝑏3,       [eq. 2] 

𝑟3 = √𝑏3 √√𝑏1𝑏2 + 𝑏4⁄ ,       [eq. 3] 

𝑟4 = √√𝑏1𝑏2 + 𝑏4/√𝑏3,      [eq. 4] 

𝑡4 = √𝑏1𝑏2𝑏3/√√𝑏1𝑏2 + 𝑏4,       [eq. 5]   

𝑡5 = √𝑏3√√𝑏1𝑏2 + 𝑏4.       [eq. 6]  

The variance of the estimated time (ti) for node i, denoted by 𝑣(𝑡𝑖), can be estimated by 

the delta method, assuming that there is no covariance among branch lengths (bj’s):  

𝑣(𝑡𝑖) = ∑ (
𝜕𝑓𝑡𝑖

(𝑏1,…,𝑏𝑁)

𝜕𝑏𝑗
)

2

𝑗 𝑣(𝑏𝑗),       [eq. 7] 

where 𝑓𝑡𝑖
(𝑏1, … , 𝑏𝑁) stands for the analytical function of bj’s to compute ti (e.g., eq. 5  and eq. 6 

for t4 and t5, respectively), and 𝑣(𝑏𝑗)  stands for the variance of branch length for branch j. 

Therefore, 𝑣(𝑏𝑗) is required for computing 𝑣(𝑡𝑖).  

As mentioned before, the uncertainty of time is related to the number of sampling sites 

and the degree of rate heterogeneity. We consider the total variance of branch lengths, 𝑣(𝑏𝑗), 

which is required to compute 𝑣(𝑡𝑖), as a summation of the variance due to site sampling, 𝑣𝑆(𝑏𝑗), 

and the variance due to rate heterogeneity, 𝑣𝑅(𝑏𝑗): 

𝑣(𝑏𝑗) = 𝑣𝑆(𝑏𝑗) + 𝑣𝑅(𝑏𝑗).       [eq. 8]  
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The value of 𝑣𝑆(𝑏𝑗)  can be estimated by using analytical formulations or a site-resampling 

approach. For example, an approximate estimate of this variance can be obtained by the 

curvature method when the maximum likelihood method is used (Edwards 1992; Tamura et al. 

2013).   

However, it is more complex to estimate 𝑣𝑅(𝑏𝑗), so we do it indirectly. We first compute 

the variance of observed evolutionary rates for all the lineages, 𝑉𝑜𝑏𝑠(𝑅): 

 𝑉𝑜𝑏𝑠(𝑅) = (1/𝑁) ∑ (𝑟𝑗  −  𝑟̅)
2𝑁

𝑗 ,     [eq. 9]  

where R is a random variable representing all relative rates, rj is the relative rate for each branch 

j, and 𝑟̅ is the average of rj‘s. It is important to note that the relative rate for branch j is estimated 

as the relative rate for lineage j (Tamura et al. 2018). For example, RelTime computes the relative 

rate for b4 as the geometric mean of r1 and r2, which is assigned to be the rate for lineage l4 in 

Figure 1. 

The variance of observed rates includes not only the variance introduced by rate 

heterogeneity, 𝑅𝑉(𝑅) , but also the sampling variance associated with the branch length 

estimation, 𝑆𝑉(𝑅), because the observed relative rate rj is calculated from branch lengths (bj’s) 

(e.g., equations 1 - 4). So, 

𝑉𝑜𝑏𝑠(𝑅) =  𝑅𝑉(𝑅) +  𝑆𝑉(𝑅),       [eq. 10]  

The value of 𝑆𝑉(𝑅) is obtained by summing the sampling variance of relative rate rj for each 

branch j, denoted by 𝑠𝑣(𝑟𝑗):  

 𝑆𝑉(𝑅) = ∑ 𝑠𝑣(𝑟𝑗).𝑁
𝑗        [eq. 11] 

𝑠𝑣(𝑟𝑗) can be estimated by the delta method, assuming that there is no covariance among bj’s: 

𝑠𝑣(𝑟𝑗) = ∑ (
𝜕𝑓𝑟𝑗

(𝑏1,…,𝑏𝑁)

𝜕𝑏𝑗
)

2
𝑁
𝑗 𝑣𝑆(𝑏𝑗),     [eq. 12] 

where 𝑓𝑟𝑗
(𝑏1, … , 𝑏𝑁) stands for the analytical function of bj’s to compute rj (e.g., equation 1, 2, 3 

and 4 for r1, r2, r3, and r4, respectively). 

Using equations 9 – 12, we compute the variance introduced by rate heterogeneity: 

 𝑅𝑉(𝑅) =
1

𝑁
∑ (𝑟𝑗  − 𝑟̅)

2
−  ∑ ∑ (

𝜕𝑓𝑟𝑗
(𝑏1,…,𝑏𝑁)

𝜕𝑏𝑗
)

2

𝑣𝑆(𝑏𝑗).𝑁
𝑗

𝑁
𝑗

𝑁
𝑗   [eq. 13] 
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Then, we can compute the rate heterogeneity variance for each branch j as being proportional to 

its branch length: 

𝑣𝑅(𝑏𝑗) =
𝑏𝑗

2

∑ 𝑏𝑗
2𝑁

𝑗

𝑅𝑉(𝑅).       [eq. 14] 

Using equations 8, 13 and 14, we can compute the total variance of branch length for 

branch j, denoted by 𝑣(𝑏𝑗). Then 𝑣(𝑏𝑗) can be used to compute the variance of time, 𝑣(𝑡𝑖), using 

equation 7. For example, the variance of t4 and t5 are given by the following equations: 

 𝑣(𝑡4) =
𝑏2𝑏3(√𝑏1𝑏2+2𝑏4)

2

16𝑏1(√𝑏1𝑏2+𝑏4)
3 𝑣(𝑏1) +

𝑏1𝑏3(√𝑏1𝑏2+2𝑏4)
2

16𝑏2(√𝑏1𝑏2+𝑏4)
3  𝑣(𝑏2)  

+ 
𝑏1𝑏2

4𝑏3(√𝑏1𝑏2+𝑏4)
𝑣(𝑏3) +

𝑏1𝑏2𝑏3

4(√𝑏1𝑏2+𝑏4)
3 𝑣(𝑏4),           [eq. 15] 

𝑣(𝑡5) =
𝑏2𝑏3

16𝑏1(√𝑏1𝑏2+𝑏4)
𝑣(𝑏1) +

𝑏1𝑏3

16𝑏2(√𝑏1𝑏2+𝑏4)
𝑣(𝑏2)   

           +
√𝑏1𝑏2+𝑏4

4𝑏3
𝑣(𝑏3) +  

𝑏3

4(√𝑏1𝑏2+𝑏4)
𝑣(𝑏4).     [eq. 16] 

For larger numbers of taxa, such analytical formulations become complicated to derive, 

especially for deeper nodes. Thus, we compute the variance of divergence times for deeper nodes 

from tips to the root recursively. For example, using equations 15 and 16, we can derive  

𝑣(𝑡5) =
(√𝑏1𝑏2+𝑏4)

2

(√𝑏1𝑏2+2𝑏4)
2 [𝑣(𝑡4) +

𝑏4

𝑏3
𝑣(𝑏3) +

𝑏3𝑏4

(√𝑏1𝑏2+𝑏4)
2 𝑣(𝑏4)].   [eq. 17]  

Therefore, the calculation of 𝑣(𝑡5) requires only 𝑣(𝑡4), 𝑣(𝑏3) and 𝑣(𝑏4), which are the variance for 

node t4 and branches b3 and b4, respectively. Variance of branches that do not directly connect to 

node 5, i.e., 𝑣(𝑏1) and 𝑣(𝑏2) in this case (Fig. 1) is not needed, if the value of 𝑣(𝑡4) is computed 

beforehand. Thus, for any node in a phylogeny, we can compute the variance of divergence time 

recursively from tips to the root by using the variance of times for direct descent and ancestral 

nodes and the variance of direct connected branches. This procedure extraordinarily simplifies 

the computation of the variance of inferred time for each internal node in a tree with a large 

number of taxa.  

It is important to note that times in the equations listed above are relative times, not 

absolute times because no calibrations are involved in the above equations. When one or multiple 

calibrations (minimum boundaries only, maximum boundaries only, or minimum and maximum 

boundary pairs) are given, RelTime will compute a global time factor (f) by altering relative times 
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such that all calibration constraints are satisfied. When a range of f values can satisfy all 

calibration constraints, RelTime selects the midpoint of the range to be the best estimate of f. 

When one or more of the absolute times computed using the f value falls outside the calibration 

constraints, then RelTime adjusts relative times and f such that the deviations of absolute times 

from the calibration constraints are minimized. This process requires local alteration of relative 

rates and re-optimization of all other node times in the tree recursively (Tamura et al. 2013). For 

example, if the minimum age constraint of a node is violated, i.e., the age estimated using f is 

younger than the minimum constraint, RelTime decrease its estimate of the evolutionary rate 

proportionally in that lineage to adjust the age of this node to be higher, such that the divergence 

time becomes the same as the minimum age constraint. The resulting slowdown is transmitted to 

all the descendant nodes, and it affects the ancestral rates as well. 

Similarly, if the maximum age constraint of a node is violated, i.e., the age estimated using 

f is older than the maximum constraint, RelTime increases the estimated evolutionary rate 

proportionally in that lineage such that the divergence time matches the maximum age constraint. 

Effects of this rate change will be transmitted to the descendant and ancestral nodes 

automatically. Consequently, RelTime will ensure that the absolute times for calibrated nodes are 

consistent with the user-desired calibration constraints. In the final step, CIs are computed 

analytically using the final set of relative rates and the equations given above (e.g., equations 13-

17), such that the uncertainty associated with clock calibrations can be incorporated into the CI 

calculation in RelTime. If the lower or upper bounds of CIs fall outside the user-specified 

calibration constraints, then CIs are truncated based on the imposed calibration constraints. 

Therefore, RelTime uses “hard” minimum and maximum bounds, as in BEAST (Bouckaert et al. 

2014; Barba-Montoya et al. 2017).   

A method to derive effective calibration boundaries from calibration densities 

As stated above, calibration uncertainty is another critical source of uncertainties in divergence 

time estimates. Bayesian methods use various probability densities to accommodate the 

calibration uncertainty. However, the current non-Bayesian methods do not allow direct usage of 

probability densities and do not incorporate interactions among calibration constraints. Therefore, 

we developed a new procedure for use in the RelTime method to derive calibration boundaries 

from probability densities and account for calibration interactions.  

For each calibrated node with an associated probability density, we randomly sample two 

dates from the given probability density. We use these two sampled dates as the minimum and 
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maximum (min-max) constraints for that node and derive such a min-max constraint for every 

node for which a probability density is specified. Then, we use all of these min-max boundaries in 

the RelTime analysis. We save the RelTime time estimates only for the calibrated nodes. This 

random sampling and dating process is repeated 10,000 times. Therefore, we will have generated 

a distribution of 10,000 inferred dates for each calibrated node. In the final step, we derive the 

minimum bound at 2.5% and the maximum bound at 97.5% of the distribution of inferred dates 

for each calibrated node. We refer to these derived bounds as “effective bounds.” These effective 

bounds can be used together with the analytical approach described above to infer the divergence 

times and CIs in RelTime. It is important to note that effective bounds are used as calibration 

constraints, not densities. The actual distribution of 10,000 inferred dates does not impact the 

value of effective bounds and therefore, the final RelTime estimates of divergence times and CIs.  

 Our procedure is analogous to how Bayesian methods utilize calibrations, as both types 

of methods require resampling different sets of calibration constraints from user-specified 

densities, inference of divergence times using each set of sampled calibrations, and 

summarization of distributions of time estimates obtained from all sets of sampled calibrations. 

Therefore, the use of effective bounds allows RelTime to accommodate the interactions among 

calibration densities. However, it does not mean that RelTime and Bayesian methods are the 

same. Bayesian methods conduct calibration resampling and time inference steps simultaneously 

during the MCMC integration, whereas these steps are implemented sequentially in the RelTime 

method. 

We compare the effective bounds to calibration bounds derived using Mello et al. (2017)’s 

procedure (referenced as “Mello bounds” in the following) (Fig. 2), in which the minimum bound 

was placed at 2.5% of the density age, and the maximum bound was placed at 97.5% of the 

density age. Effective bounds are similar to the Mello bounds when the user-specified calibration 

density is reliable and informative (Fig. 2b, see Materials and Methods). When the user-

specified density is uninformative, e.g., a diffused uniform distribution, Mello bounds are often 

diffused and match the original density (Fig. 2c). However, our procedure generates narrower 

bounds due to the accommodation of the interactions among different calibration densities and 

constraints. These interactions reshape the original, wider distribution to be tighter (Fig. 2c). 

Consequently, the use of effective bounds is likely to produce more precise time estimates 

(narrower CIs). When the user-specified calibration is unreliable, our effective bounds turn out to 

be better than Mello bounds. For example, if the true time is located in the user-specified density 

with a low probability (< 2.5%), Mello bounds may not include the true time (Fig. 2d), resulting in 
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incorrect time estimates. In contrast, our method does not ignore the low probability regions since 

it samples 10,000 times from the user-specified density to ensure that dates with very low 

probabilities may be sampled. Thus, effective bounds should contain the true time (Fig. 2d), and 

the use of effective bounds in RelTime should improve the accuracy and precision of time 

estimates.  

Results and Discussion 

We applied our methods to three empirical datasets, including nucleotide or protein sequences 

from primates, spiders, and insects (Table 1). We begin with the primate dataset from Barba-

Montoya et al. (2017), which contains a relatively small alignment of 9,361 base pairs from nine 

primate species and one outgroup (Fig. 2a). However, all internal nodes were assigned with 

calibration densities. Barba-Montoya et al. (2017) used two calibration strategies in MCMCTree 

(Yang 2007) and BEAST (Bouckaert et al. 2014) and compared the results. We examined if the 

RelTime method produced estimates comparable to those obtained from Bayesian methods, 

when all analyses employed the same alignment, phylogeny, substitution model, and calibration 

uncertainty densities (e.g., uniform distributions).  

For analyses of primate datasets where uniform densities were used as calibrations, we 

observed a high concordance between RelTime and Bayesian time estimates. The linear 

regression slopes were 0.97 and 1.03 when Bayesian analyses were conducted in MCMCTree 

and BEAST, respectively (Fig. 3a and b). This a rather small difference. Although the width of 

RelTime CIs was slightly smaller than the width of Bayesian HPD intervals, RelTime CIs 

overlapped Bayesian HPD intervals for all the nodes (Fig. 4a and b). For primate datasets where 

a mixture of uniform and skewed densities were used as calibrations, RelTime estimates were 

again similar to Bayesian estimates, with a linear regression slope of 0.95 with MCMCTree (Fig. 

3c) and 1.00 with BEAST estimates (Fig. 3d). RelTime CIs overlapped with MCMCTree and 

BEAST HPD intervals for all the nodes (Fig. 4c and d).  

 We then analyzed spider and insect datasets to examine the performance of our methods 

for larger datasets (>40 species and >50,000 sites). These datasets consisted of protein 

sequences; 8 nodes had clock calibrations for the spider data, while 38 nodes of the insect 

phylogeny were assigned calibration values. We again observed strong concordance between 

RelTime and Bayesian time estimates, with a linear slope of 0.98 and 0.98 for spider and insect 

data, respectively (Fig. 3e and f). The high similarity between RelTime and Bayesian node times 

remained even after we excluded nodes on which user-specified calibrations were assigned 
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(slope = 0.97 and 0.98, respectively). CIs produced by RelTime were also comparable with HPD 

intervals produced by Bayesian methods, with more than 97% of the nodes in spider and insect 

datasets showing overlapping CIs and HPD intervals (Fig. 4e and f). When CIs and HPD intervals 

did not overlap, they were less than 5 million years apart. Therefore, we considered that RelTime 

CIs were similar to Bayesian HPD intervals for all datasets.   

 Our new methods allow RelTime to produce point time estimates and CIs similar to those 

inferred by Bayesian methods across all empirical analyses because our new methods effectively 

improve the CI calculation. We found that, on average, our analytical approach produced CIs that 

were 35% - 67% narrower than those produced by Tamura et al. (2013)’s method without any 

calibrations. However, time estimates remain very similar between these two methods with linear 

slopes ranging from 1.00 to 1.02. These results show that the use of the new analytical approach 

solely can effectively improve the precision of time estimates in RelTime while maintaining the 

same accuracy.  

We also compared time estimates and CIs produced by the new analytical approach with 

effective bounds generated by our new procedure and calibration bounds generated by Mello et 

al. (2017)’s procedure. This comparison would illuminate how the use of effective bounds may 

improve the precision of divergence time estimates. Results showed that times estimated using 

two sets of calibration bounds were similar (linear slopes ranging from 0.99 to 1.02). However, 

the CI width was reduced by 7-29% when effective bounds were used. The decrease of CI widths 

occurred for both calibrated and uncalibrated nodes. It is because effective bounds reflect 

calibration interactions and reshape the original diffused calibration densities to generate 

narrower CIs, as discussed above. Therefore, both of our methods improve the precision of 

divergence time estimates produced by RelTime without sacrificing their accuracy.  

It remains important to note that reliable time estimates and CIs rely strongly on the 

assumption that calibrations and their densities are correct. The incorrect specification of 

calibration constraints or densities can greatly impact the accuracy and precision of time 

estimates (Warnock et al. 2017). Our empirical analyses showed that RelTime and Bayesian 

methods generated similar estimates of divergence times and their surrounding uncertainties 

when the same alignment, phylogeny, and calibration densities were used. These patterns 

indicate that RelTime can serve as a reliable alternative to Bayesian approaches for dating the 

tree of life and conducting biological hypothesis testing, especially for large-scale molecular data, 

because RelTime is computationally efficient, requiring only a fraction of the time and resources 

demanded by Bayesian approaches (Tamura et al. 2012; Tamura et al. 2018). We also anticipate 
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that our method of deriving effective bounds from calibration densities can be applied to other 

non-Bayesian dating methods, e.g., penalized likelihood methods (Sanderson 2003; Smith and 

O’Meara 2012).  

 

Materials and Methods 

Comparisons of user-specified calibration density, Mello bounds, and effective bounds 

We used the BEAST-generated primate timetree published in Barba-Montoya et al. (2017) as the 

true tree (Fig. 2a) and simulated an alignment of 9361 sites under HKY+G (Hasegawa et al. 1985) 

model in SeqGen with parameters derived from the empirical molecular data. Branch-specific 

rates were sampled from an uncorrelated lognormal distribution with a mean rate of 0.0069 

substitutions per site per Ma and a standard deviation of 0.4 (log-scale). The simulated alignment 

was used to derive effective bounds. 

We tested the performance of using effective bounds and Mello bounds under two calibration 

scenarios: reliable and unreliable scenarios. An informative exponential density was used at homo 

sapiens – Callithrix jacchus split (true age = 44.8Ma) and an uninformative uniform density were 

used at homo sapiens – Otolemur gamettii split (true age = 68Ma) under both scenarios. In the 

reliable calibration scenario, we assumed that a minimum age of 40Ma at homo sapiens – 

Callithrix jacchus split and maximum age of 130Ma at homo sapiens – Otolemur gamettii split are 

known. Therefore, we used an exponential density (mean = 4Ma and offset = 40Ma) and a uniform 

density (min = 40Ma, max = 130Ma) at homo sapiens – Callithrix jacchus split and at homo 

sapiens – Otolemur gamettii split, respectively. The true ages of both nodes located in their 

densities with high probabilities. Under the unreliable calibration scenario, we assumed that a 

minimum age of 30Ma at homo sapiens – Callithrix jacchus split and maximum age of 130Ma at 

homo sapiens – Otolemur gamettii split are known. Therefore, we used an exponential density 

(mean = 3Ma and offset = 30Ma) and a uniform density (min = 40Ma, max = 130Ma) at homo 

sapiens – Callithrix jacchus split and at homo sapiens – Otolemur gamettii split, respectively. This 

results in the true age of homo sapiens – Callithrix jacchus split located in its density with a low 

probability (< 2.5%), while the true age of homo sapiens – Otolemur gamettii split located in its 

density with a high probability. 

Empirical analysis 
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We obtained four empirical datasets that employed different calibration strategies from three 

published studies (Table 1) (Bond et al. 2014; Tong et al. 2015; Barba-Montoya et al. 2017).  

Molecular data were obtained from supplementary files of original studies. Calibration densities 

and Bayesian timetrees (including credibility intervals) of Barba-Montoya et al. (2017) and Tong 

et al. (2015) were provided by authors. For Bond et al. (2014)’s data, we obtained the Bayesian 

timetree (including HPD intervals) from Mello et al. (2017). In RelTime analyses, we used the 

same alignments, substitution models, tree topologies, and calibration densities as the original 

studies to ensure comparability with Bayesian results. RelTime analyses were conducted in 

MEGA X (Kumar et al. 2018). We compared RelTime time estimates and CIs with Bayesian time 

estimates and HPD intervals. We did not test whether the slope between RelTime and Bayesian 

time estimates was one because of two reasons. First, p-value will always reject the hypothesis 

of slope of one when the data sample size is large. Second, the uncertainty surrounding time 

estimates prevents time estimates from two types of methods to be identical. We also compared 

the performance of our methods and the previous CI calculation method for RelTime. We first re-

analyzed all empirical datasets using Tamura et al. (2013)’s method in MEGA 7 (Kumar et al. 

2012; Kumar et al. 2016) and using our analytical method in MEGA X without calibrations. We 

then re-analyzed all empirical datasets in MEGA X using the effective calibration bounds 

generated by our new method and by Mello et al. (2017)’s procedure.  
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Table 1. Empirical datasets analyzed in this article  

Taxonomic 
Group 

Data typea 
Sequence 

countb 
Sequence 

length 
Substitution 

model 
Calibrationsc Softwared Reference 

Primate (A) M 9 9,361 HKY + G
5
 8 uniform 

MCMCTree 
BEAST 

Barba-Montoya et al. (2017) 

Primate (B) M 9 9,361 HKY + G
5
 4 uniform 

4 skewed 
MCMCTree 

BEAST 
Barba-Montoya et al. (2017) 

Spider A 40 55,447 WAG + G
5
 8 uniform MCMCTree 

Bond et al. (2014); Mello et al. 
(2017)  

Insect A 143 220,091 LG + G
6
 38 uniform MCMCTree Tong et al. (2015) 

aM = mitochondrial DNA; A = nuclear amino acids. 
bSequence count excludes the outgroup. 
cA Cauchy density distribution and an exponential density distribution are used as the skewed 
density in MCMCTree and BEAST, respectively. 
dSoftware used in the original study for estimating divergence times. 
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Figure Legends 

Figure 1. An evolutionary tree of three tips showing node times (ti’s), branch lengths (bj’s), and 

branch rates (rj’s).   

Figure 2. (a) A primate phylogeny with a user-specified uniform calibration density (gray shade) 

and an exponential calibration density (green shade). Red dots are the nodes shown in panels b-

d. Effective bounds derived using our method (solid blue line) and bounds derived using Mello et 

al. (2017) procedure (solid orange line) are compared (b and c) when user-specified calibrations 

are reliable and (d and e) when user-specified calibration of Homo-Callithrix split is unreliable. 

The dashed red line represents the “true simulated age.”   

Figure 3. Comparisons of RelTime and Bayesian estimates of divergence times and the 

associated uncertainties. Gray bar represents the Bayesian 95% HPD intervals (x-axis) and 

RelTime 95% CIs (y-axis). Black dashed line represents 1:1 line. Each graph contains the slope 

and coefficient of determination (R2) values of the linear regression through the origin. Calibrated 

nodes are shown in blue. The dataset name inside each panel refers to table 1. 

Figure 4. Comparisons of RelTime 95% CIs (dark red), MCMCTree 95% HPD intervals (gray) 

and BEAST 95% HPD intervals (blue).  Dots are point estimates of divergence times. The dataset 

name inside each panel refers to table 1. 
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Figure 2  
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