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Abstract 

Summary: Segmentation of single cells in microscopy images is one of the major challenges in computational biology. It is 

the first step of most bioimage analysis tasks, and essential to create training sets for more advanced deep learning approaches. 

Here, we propose 3D-Cell-Annotator to solve this task using 3D active surfaces together with shape descriptors as prior 

information in a fully- and semi-automated fashion. The software uses the convenient 3D interface of the widely used Medical 

Imaging Interaction Toolkit (MITK). Results on 3D biological structures (e.g. spheroids, organoids, embryos) show that the 

precision of the segmentation reaches the level of a human expert. 

Availability and implementation: 3D-Cell-Annotator is implemented in CUDA/C++ as a patch for the segmentation module 

of MITK. The 3D-Cell-Annotator enabled MITK distribution can be downloaded at: www.3D-cell-annotator.org. It works 

under Windows 64-bit systems and recent Linux distributions even on a consumer level laptop with a CUDA-enabled video 

card using recent NVIDIA drivers. 

Contacts: filippo.piccinini@irst.emr.it and horvath.peter@brc.mta.hu 
 

1 Introduction 

Multicellular 3D biological models, the so-called “-oids” 

(e.g. spheroids, organoids) are increasingly used as cellular 

models for drug screening and toxicology studies, since they 

represent physiological proxies of human tissues and can 

replace animal models (Zanoni et al., 2016). Light-Sheet 

Fluorescence Microscopy (LSFM), confocal and multiphoton 

systems allow an in-depth observation of tissues in the size 

range of a few hundred microns. Despite the exponentially 

growing popularity of 3D models and systems to visualize -

oids, few tools are available to analyse large aggregates at a 

single cell level (Carragher et al. 2018). In this work, we are 

focusing on the nuclei segmentation problem of multicellular 

aggregates as one of the most fundamental tasks of bioimage 

analysis, and the starting point of further phenotype-based 

statistics. Recently it has been shown that deep learning-

based systems highly outperform classical image processing 

methods in 2D nuclei segmentation (Hollandi et al., 2019). 

However, these methods need accurate and large training 

sets, i.e. 3D annotated spheroids and embryos in our special 

case. Creating such ground truth datasets in 2D is mostly 

straightforward by drawing the contours of each cell on a 2D 

canvas. Similarly, the obvious extension of this approach to 

3D would involve the annotation of each slice of the volume 

data. However, it is quite evident that this oversimplified 

method is not only time-consuming, but also leads to 

discontinuous object surfaces, while the quality of 

segmentation strongly depends on the chosen (orthogonal) 

plane. To overcome these problems, we designed 3D-Cell-

Annotator. It provides an alternative for precise outlining of 

3D shapes using a special type of active surface model 

(Molnar et al., 2017). 
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2 The proposed software 

Instead of the classical slice-by-slice manual annotation 

approach, we propose a real 3D active surface-based solution 

with shape priors called 3D selective segmentation to obtain 

accurate single-cell annotation (Molnar et al., 2017). Because 

of the pure 3D nature of our method, the spatial dependencies 

across all dimensions are considered by the algorithm, thus 

most of the time-consuming hand-drawing work may be 

eliminated. 3D-Cell-Annotator is distributed as a module of 

the widely used Medical Imaging Interaction Toolkit (MITK, 

Nolden et al., 2013). Active surface models are 

computationally complex and expensive, therefore our model 

was targeted to Graphic Processing Unit (GPU), 

implemented in the NVidia CUDA framework to provide a 

speed increase of several orders of magnitude compared to 

classical CPU implementations. Annotation can be provided 

cell-by-cell manually or automatically by placing initial 

Fig. 1: (a) 3D-Cell-Annotator Graphical User Interface (GUI). (b) Flow-chart of the segmentation approach. 3D-Cell-Annotator requires 

a 3D input image, typically a z-stack of sections acquired with a confocal/multiphoton/LSFM system. A label for each object is provided 

to start contour evolution. The user may adjust some parameters (e.g. volume, sphericity) in real time. Finally, the obtained segmentation 

can be exported as a 3D binary mask. (c) Manual segmentation dataset of single cells acquired by a confocal microscope, annotated by 

three experts. Despite the fact that the annotators are all experts in the field, the obtained segmentations slightly differ (green contours). 

However, those obtained by the proposed software does not vary significantly (red contour). (d) 3D segmentations of a cancer-derived 

multicellular spheroid, imaged with an LSFM at a single cell level. The segmentations were obtained by using 3D-Cell-Annotator. For 

visual purposes, we distinguish the cells in the inner core that in large aggregates are typically senescent/necrotic cells (shown in red), 

from the cells in the outer shell that are the highly proliferative ones (shown in green). (e) 3D-Cell-Annotator can be used to extract 

cells with a special phenotype, such as mitosis or apoptosis, as shown in the magnified cell (red). (f) Jaccard Indices (JI), comparing the 

3D masks obtained manually by the human expert annotators, by four other freely available tools and by the proposed algorithm on the 

datasets shown in (c), (d) and (e). 3D-Cell-Annotator outperformed every other software and reached an expert-like precision. A1 stands 

for Annotator 1; JI for Jaccard Index. 
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seedpoints. While the general active surface algorithm may 

output clusters of objects when multiple cells share 

boundaries, the proposed selective active surface applies 

forces to fulfil shape descriptor values provided by the user 

(Molnar et al., 2017). Two such descriptors are used: 

sphericity and the volume of the object. Mathematical 

foundations are explained in Supplementary Material 1. 

Briefly, sphericity is a measure of the degree to which an 

object’s shape is similar to a sphere. The volume prior is used 

to stop the surface to over-/undergrow. These prior 

parameters can be fine-adjusted with high precision during 

surface evolution to obtain segmentation at a single cell level. 

A fully automated batch segmentation mode is also available. 

3 Results 

To evaluate 3D-Cell-Annotator we used (a) a confocal dataset of 77 

z-stacks, each containing one single cell (Poulet et al. 2014); (b) an 

LSFM dataset used in Gole et al. 2016, representing a low intensity 

contrast multicellular spheroid composed of 52 cells; and (c) a 

mouse embryo dataset containing 56 cells acquired by a confocal 

microscope presented in Saiz et al. 2016. All the datasets we used 

in this work are publicly available (Supplementary Material 2). 

We computed the Jaccard Index (JI) for the segmentations obtained 

by 3D-Cell-Annotator compared to other tools, as well as to manual 

segmentations executed by expert annotators. Our binary masks 

were diluted by a 1 pixel radius sphere to overcome the problem of 

active surface discretisation. The MATLAB (The MathWorks, Inc., 

MA, USA) code to compute the JI for 3D binary masks for multiple 

objects is provided as Supplementary Material 3. 

3.1 Single-cell dataset 

To evaluate the segmentation quality of 3D-Cell-Annotator we used 

a dataset of 77 z-stacks, each containing a single cell. The masks 

obtained by 3D-Cell-Annotator were compared with manual 

“ground truth” segmentation. In order to obtain the ground truth for 

this dataset, we asked three expert annotators to segment the 77 z-

stacks. For each stack we averaged their 3D segmentations by 

utilizing ReViMS (Piccinini et al. 2017, De Santis et al. 2019), a 3D 

extension of STAPLE (Warfield et al. 2004). We segmented the 

cells in a semi-automatic way by manually initializing with three 

contours on the three orthogonal axes, and then visually adjusting 

the parameters during surface evolution. The time spent by each 

human annotator on manually segmenting the 77 z-stacks was 

approximately 8 hours, whilst the time needed to obtain the same 

segmentations with 3D-Cell-Annotator was around 4 hours. The 

average JI between the expert annotators was 0.76. The JI between 

the annotators’ average segmentations and 3D-Cell-Annotator was 

0.77. The accuracy of 3D-Cell-Annotator reaches the level of an 

expert human annotator. The JI values calculated for each z-stack 

are reported in Supplementary Material 4. 

3.2 Spheroid and embryo datasets 

To demonstrate the usability and accuracy of 3D-Cell-Annotator for 

the analysis of real multicellular aggregates, we used a spheroid 

dataset imaged with an LSFM. The spheroid is composed of 52 cells 

(Gole et al. 2016). We compared the segmentations presented by 

two expert annotators with those obtained using 3D-Cell-Annotator 

and other four freely available tools: MINS (Lou et al. 2014, Saiz et 

al. 2016), Pagita (Gul-Mohammed et al. 2014), XPIWIT (Bartschat 

et al. 2015), and OpenSegSPIM (Gole et al. 2016). A brief 

description of these tools is available in Supplementary Material 

5. The average JI for the comparison of the performance of human 

experts was 0.66; the average JI comparing 3D-Cell-Annotator to 

the human annotators separately was 0.68 and 0.69, respectively, 

whilst none of the other tools performed better than 0.57 

(Supplementary Material 6). Thus, it can be concluded that 3D-

Cell-Annotator outperforms the analysed tools and its accuracy 

reaches the level of human experts’. In order to confirm this latter 

claim, we tested the software on another publicly available dataset, 

namely on a dataset of a mouse embryo consisting of 56 cells. Two 

expert operators segmented the cells manually in approximately 6 

hours, whilst the time needed to obtain the same segmentations with 

3D-Cell-Annotator was 3 hours. The average JI between human 

experts was 0.78; between 3D-Cell-Annotator and both the human 

annotators was 0.80 (Supplementary Material 7). Again, these 

results confirm that 3D-Cell-Annotator offers an accuracy level 

reaching that of a human expert. 

4 Conclusions 

3D-Cell-Annotator provides a user friendly and precise solution for 

segmenting single cells in 3D cell cultures imaged with confocal 

microscope or LSFM, even for large datasets with touching cells and 

suboptimal imaging conditions, like in the case of spheroids, 

organoids and embryos. Reaching the accuracy of an expert human 

annotator, and permitting to save at least half of the time spent, 3D-

Cell-Annotator is an optimal solution for generating training tests 

for more advanced machine learning approaches. Further 

improvements will include the implementation of different 

approaches for cell splitting. User manual, video tutorials, and all 

the masks discussed in this work are available at: www.3D-cell-

annotator.org. 
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