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Abstract 

The link between a protein’s primary sequence and its thermal stability and temperature 

dependent activity is central to an understanding of protein folding, stability, and 

evolution. However, the relationship between primary sequence and these biochemical 

properties can be difficult to quantify, due to the large sequence space and complexity 

of protein folding. Fortunately, evolution naturally explores both sequence space and 

temperature space through organismal adaptation to various thermal niches. Here, we 

use machine learning, in the form of multilayer perceptrons, to predict the originating 

species’ optimal growth temperatures from a protein family’s primary sequences. 

Trained machine learning models outperformed linear regressions in predicting the 

originating species growth temperature, achieving a root mean squared error of 3.34 °C. 

Notably, the models are protein family specific, and the predicted organismal growth 

temperatures are correlated with the proteins’ temperatures for melting and optimal 

activity. Therefore, this method provides a new tool for quickly predicting an organism’s 

optimal growth temperature in silico, which can serve as a convenient proxy for protein 

stability and temperature dependent activity. 

 

Introduction 

The relationship between a protein’s primary sequence and its biochemical properties is 

central to the study of protein evolution, folding, and stability. Of particular interest are a 

protein’s temperature dependent properties such as stability and enzymatic activity, as 

temperature represents the internal energy of a system. Increasing temperature leads to 
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greater protein flexibility, faster enzymatic kinetics, and eventual protein unfolding, while 

decreasing temperature reduces protein dynamics and lowers enzymatic activity. This 

relationship between a protein’s primary sequence and temperature dependent 

properties is also valuable clinically and industrially. For example, proteins which exhibit 

increased thermal stability are also more resistant to denaturants [1,2] or detergents 

[3,4] and have longer in vivo half-lives [5]. In contrast, pathogenic alleles can code for 

proteins with decreased thermal stability, leading to reduced expression [6], loss of 

enzymatic activity [7], and increased disease phenotype [8].  

 

While clearly valuable, it is currently difficult to quantatively describe the relationship 

between a protein’s sequence and its thermal stability or temperature dependent 

enzymatic activity. Studying this relationship experimentally is difficult due to the large 

potential sequence space, which grows exponentially with protein length. Therefore, 

reported experimental methods typically sample only a limited portion of sequence 

space [3,9], or apply high-throughput techniques [10]. However, these methods still 

require significant labor, are optimized to identify single point mutations, sample non-

native sequences, or are tailored to specific proteins.  

 

Various computational methods have also had success in describing protein stability 

from sequence. If a three-dimensional protein structure is available, the free energy of 

the folded sequence can be calculated [11,12]. However, calculating a protein’s 

potential energy in the absence of a structure is effectively equivalent to de novo protein 
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folding, and therefore limited by the vast possible conformational space that grows 

exponentially with sequence length. Comparative computational methods are available 

to describe protein stability using only the protein’s primary sequence [13–15]. However, 

these methods are trained with many protein families, and therefore of limited specificity 

in describing the stability of a particular protein family. 

 

Fortunately, for many protein families natural selection has already broadly sampled 

both sequence space and temperature space. Homologs belonging to many protein 

families can be found in organisms that grow at a wide range of temperatures. 

Organismal growth in each thermal niche places specific constraints on its proteins’ 

sequences such that the proteins are folded and active under native conditions. 

Accordingly, studies comparing homologus proteins from species with distinct growth 

temperatures have identified sequence differences which correlate to the native thermal 

environment of the originating organisms [16–20]. Introducing corresponding mutations 

into model proteins often result in altered temperature dependent activity or thermal 

stability, reflecting the role of these amino acids in thermoadaptation. Therefore, the 

large number of available homologus protein sequences and experimentally determined 

organismal growth temperatures provides a large dataset for analyzing temperature 

dependent protein properties, enabling novel methods of analysis. 

 

Here we report protMLP, a generalized method of quantatively predicting the originating 

organisms’ growth temperatures (TG) from the protein family’s primary sequences. 
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Further, we demonstrate the correlation of this predicted growth temperature to a 

protein’s experimentally determined melting temperature (TM) or temperature of optimal 

activity (TA). Notably, no assumptions are made about the chemical, structural, epistatic, 

or thermodynamic effects of any particular amino acid, and a protein structure is not 

used. Thus, predicted organismal growth temperature (TG) can serve as a convenient 

and easily calculable proxy for a protein’s thermal stability and temperature dependent 

activity. 

 

Results 

Construction of multi- layer perceptrons 

Setting out, we aimed to devise a method to predict organismal growth temperatures 

from a protein family’s primary sequences. As a part of making the method 

generalizable, we also wanted to avoid an explicit protein structure or description of the 

forces underlying protein folding and thermostability. We therefore chose machine 

learning, which has been demonstrated to be particularly useful when the relationship 

between the input and output is complex or unknown [21,22]. Machine learning has 

been successful applied to predicting a protein’s fold from the primary sequence [23], 

the genotype of cancers from histopathology images [24], and the antimicrobial activity 

of a peptide sequence [25]. Similarly, here we apply machine learning in the form of 

multilayer perceptrons (MLPs) to quantatively predict the originating organism’s growth 

temperature using protein primary sequences.  
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Generally, a MLP is a form of artificial neural network, a mathematical construct 

modeled on the structure and behavior of biological neural networks. As with a 

biological neural network, individual units (nodes or neurons) each accept and process 

input signals before producing an output. In an MLP these nodes are arranged into 

layers, termed “hidden layers”, with signals passed between consecutive layers, again 

mimicking the structure of biological neural networks (Fig. S1A). Starting from the input 

layer, the value of each node in the hidden layers is the result of an activation function 

applied to the weighted sum of the preceding layer’s nodes plus a layer specific bias 

value. The output is then the weighted sum of the final hidden layer and an additional 

bias value. 

  

The activation function of a MLP node is typically non-linear, mimicking the threshold 

potential and non-linear response of biological neurons. Central to its application here, 

MLPs with nodes which apply a non-linear activation function can act as universal 

approximators [26]. Therefore, we reasoned a sufficiently complex non-linear MLP could 

describe non-linear interactions, such as electrostatics and van der Waal’s contacts. 

Further, a non-linear MLP can model logical operators, such as AND and OR, and 

therefore could likely capture a protein’s epistatic interactions [27–29]. We therefore 

trained MLPs with nodes that applied the non-linear, leaky rectifier activation function 

(rMLPs) (Fig. S1B).  
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As MLPs are mathematical models, the inputs are necessarily numerical. The inputs 

here are amino acid sequences from a particular protein family. We converted the 

aligned protein sequences to sequences of Boolean variables (one-hot encoding), 

where one or zero indicates the presence or absence of a particular amino acid at each 

position, respectively (Fig. S2). We further removed one-hot encoded amino acids that 

were absolutely conserved, as these would not contribute to the regression. Therefore, 

one-hot encoding preserves the chemical sequence of a polypeptide in a numerical 

sequence of ones and zeroes. Notably, one-hot encoding does not contain a description 

of the chemical or physical properties of the amino acid. This minimizes any 

assumptions as to the relevant properties of each side chain, which may be important 

for regression accuracy as apparently minor changes in side-chain chemistry have been 

show to result in large changes in a protein’s folding and function [30].  

 

For accurate prediction it is necessary to optimize the weight and bias parameters of the 

MLP. Through a machine learning process termed “training” these values are iteratively 

refined using homologus protein sequences with known originating organisms’ optimal 

growth temperatures. However, it is essential to have mechanisms to avoid over-fitting 

and to independently evaluate accuracy [32]. Therefore, we used only 70% of the 

sequence-TG pairs in the training process to refine the MLP weight and bias 

parameters. We used the remaining 30% of the sequence-TG pairs for evaluating the 

regressions, assigning the pairs to test (20%) and validation (10%) datasets. We used 

the validation dataset to avoid over-fitting by calculating the Mean Square Error (MSE) 
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between true and predicted growth temperatures after each iteration of training, with 

training stopping when the MSE no longer decreases. The test dataset is then used to 

calculate final MLP accuracy. 

 

The MLP’s optimal number of nodes, and their arrangement into layers - collectively the 

MLP’s “topology” - are not known a priori, and are likely specific to the protein family 

selected. Therefore, for each protein family we considered all possible MLP topologies 

with the restrictions that: the number of nodes in any hidden layer could range between 

two and twice the one-hot encoded protein length, the network can have at-most 5 

hidden layers, and the network must be over-determined. The number of possible 

topologies is very large, up to (2L - 1)5, where L is the one-hot encoded multiple 

sequence alignment length. We therefore applied an evolutionary algorithm to optimize 

the MLP topology [31]. This consisted of training 500 randomly selected topologies for 

10 generations, recombining and randomly permutating the 100 lowest validation MSE 

topologies of each generation. This method does not completely or evenly sample the 

entire topology space, and therefore may not find the optimal topology. However, 

empirically this method is very time efficient finding an optimized MLP topology for the 

prediction of TG.  

 

A trained MLP can predict organismal growth temperature from a protein‘s 

primary sequence 
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As an initial prototype for organismal growth temperature prediction we used the Cold 

Shock Protein (CSP) family of proteins that bind and stabilize nucleic acids. The small 

protein size and strong conservation across organisms with different ecologies [33]  

results in many available sequences relative to the protein length from species with a 

wide range of growth temperatures. This made the CSP family an ideal case study for 

regression of organismal growth temperature from protein sequence.  

 

 

Figure 1. Organismal growth temperature can be predicted by using MLP regression 

from the primary sequences of thermophiles and mesophiles. Regression of TG using 

(A) the best rMLP or (B) linear regression model. C) Predicted organismal growth 

temperature (TG) versus reported TM for cold shock protein homologs. 

 

Homologus Cold Shock Protein sequences were collected from Pfam [34], extended by 

one amino based on the results of Perl et al. [19], and aligned in Promals3D [35]. In total 

34,068 homologus CSP sequences were identified that had an available source 

organism growth temperature, with TGs measured 4 to 95.5 °C. All protein sequences 
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were one-hot encoded and rMLPs were trained using the described protMLP algorithm. 

Of the 1017 possible topologies, using the evolutionary algorithm over 10 generations 

5000 topologies were trained with 23,759 training sequences. The trained rMLP 

predicted the source organism growth temperature of 6839 un-seen test sequences, 

with a root mean squared error of 3.69 °C (r = 0.783) (Fig. S3A).  

 

Notably, this rMLP clearly outperformed a linear regression trained with the same 

23,759 training sequences (RMSE = 4.32 °C, r = 0.685), particularly in predicting TG of 

proteins from thermophiles (Fig. S3B). However, accuracy in TG prediction using 

proteins from psychrophiles (TG < 20 °C) was poor. This is perhaps due to the rarity of 

these sequences, comprising only 1% of the species-TG pairs, or differences in the 

adaptive mechanisms to psychrophilic conditions [36]. Additionally, training minimizes 

the squared error, which may lead to preferential optimization of sequences from 

thermophiles due to the positive skew of the TG distribution (Fig. S3C). Excluding protein 

sequences from psychrophiles further improved regression accuracy (RMSE = 3.34 °C, 

r = 0.810) (Fig. 1A), and again outperformed a linear regression (Fig. 1B). This TG range 

of ≥20 °C was therefore used in all subsequent studies.  

 

 
A non-l inear activation function is necessary to predict organismal growth 

temperature 

In examining the rMLP topologies trained in the Cold Shock Protein regression, we 

found three distinct populations of model accuracy (Fig 2A). A low accuracy population 
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is of topologies that converged to a single constant value (peak a).  A second population 

is of networks with accuracies similar to a linear regression (peak b). This set is 

unsurprising, as an rMLP can model a linear function. The final population consists of 

MLP models that are more accurate than a linear regression (peak c), suggesting that a 

non-linear activation function is essential in increasing regression accuracy.  

 

 

Figure 2. The non-linear activation function is essential for MLP accuracy. Accuracy in 

predicting the validation dataset for all trained MLPs, using either (A) a rectified or (B) 

identity activation function. The accuracy of a linear regression is indicated by the dotted 

line.  

 

However, as multiple MLPs with many parameters are trained, it was necessary to 

ensure that the improved accuracy of MLP regressions was not due to over-fitting or 

cherry-picking. Therefore, concurrent with the training of rMLPs for the Cold Shock 

Protein regression, we trained MLPs of the same topology with an identity activation 

function, where the activation function output is equal to the input. MLPs with an identity 
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activation function are mathematically equivalent to linear regressions but fit the same 

number of parameters as MLPs with a rectified activation function for the same 

topology. As expected, the accuracy of these MLP regressions with an identity 

activation function is similar to the linear regression (Fig. 2B). Notably, MLPs using 

rectified and identity activation functions have distinct distributions (Wilcoxon signed-

rank test p < 10-14). This confirms that the rectified activation function is essential to the 

improved prediction accuracy. 

 

We also considered the possibility that protein phylogeny might present benefits and 

challenges to this analysis, particularly as the collected homologus sequences may 

include both orthologs and paralogs. Homologs with similar organismal growth 

temperatures, including paralogs, allow for the identification of TG relevant amino acids 

based on sequence conservation [16]. However, sequence identical homologs with 

similar TGs may lead to an over-estimation of MLP accuracy when randomly assigning 

individual sequences to the training, test, and validation datasets. Therefore it was 

necessary to examine the effect of sequence similarity on prediction accuracy. We 

found only a weak (r = -0.301) effect of sequence identity on TG prediction accuracy 

(Fig. S4A). Further addressing the issue, we generated new training, test, and validation 

datasets for the Cold Shock Proteins, placing identical sequences into the same 

dataset. Training MLPs as previously described, the best rMLP predicted the test 

dataset with a root mean squared error of 3.79 °C (r = 0.717) (Fig. S4B). The non-linear 

MLPs were again more accurate than a linear regression (4.22 °C, r = 0.624) and MLPs 
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trained with an identity activation function (Fig. S4C). These results indicate that 

sequence identity does not confound the application of non-linear MLPs to predicting 

organismal growth temperature from a protein sequence. 

 

Non-l inear MLPs are necessary for accurate regression of other protein 

famil ies  

We next set out to examine how general rMLPs could be as a method of predicting 

organismal growth temperature. We therefore trained new regression models of other 

protein families, using the protMLP algorithm to train MLPs to predict the originating 

species’ TG from homologus sequences of each family. Examining the Thioredoxin, 

[2Fe-2S] Ferrodoxin, and MarR families, rMLPs notably outperformed linear regressions 

in predicting the originating species optimal growth conditions from the primary 

sequences of homologus proteins (Fig. S5). Notably, the species’ growth temperatures 

predicted using different protein families are strongly correlated, with pairwise Pearson 

correlation coefficients ranging from 0.761 to 0.848 (pairwise RMSD 2.63 °C to 3.59 

°C). 

 

Predicted organismal growth temperature is correlated with experimentally 

determined melting temperatures of the protein 

In order to study the possible application of the protMLP method to thermal stability of 

the protein, we examined if the predicted organismal growth temperatures of CSP 

homologs correlate with measured protein melting temperatures. We found 
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characterized cold shock protein homologs’ predicted growth temperatures and 

measured melting temperatures to be directly correlated (r = 0.860) (Fig. 1C) [19,37–

50]. Melting temperatures of Cold Shock Proteins might be expected to be lower than 

proteins expressed under native growth conditions, as cold shock temperatures are 

inherently lower than the optimal growth temperatures. However, we observed the CSP 

homolog’s TMs are still greater than both rMLP predicted TGs and measured TGs of the 

each originating species. This may indicate the temperature difference between 

organismal optimal growth and the physiological onset of CSP activity is generally small. 

This could also reflect other functions of CSP homologs at the organisms’ optimal 

growth temperatures [51].  

 

Predicted organismal growth condit ions generally correlate with 

biochemical characteristics of the proteins 

We next further examined if the protMLP predicted organismal growth temperature 

correlated with stability or activity of the protein. We therefore applied the protMLP 

method to Adenosine Kinases (ADK), a highly conserved protein family that catalyzes 

the interconversion of adenosine nucleotides. ADK stability and temperature dependent 

enzymatic activity have been extensively studied [17,18,52]. While there are too few 

ADK sequences to train an over-determined MLP, a linear regression is already highly 

accurate at predicting the originating species’ growth temperature (RMSE = 3.78 °C, r = 

0.836) (Fig. 3A). Furthermore, we found a strong correlation between the calculated TGs 

for characterized ADK homologs and reconstructed ancestral sequences and protein 
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melting temperatures (r=0.787) (Fig. 3B) and temperatures of optimal enzymatic activity 

(r = 0.650) (Fig. 3C) [17,53].  

 

 

Figure 3. TGs predicted from linear regression of ADK sequences correlate with 

biochemical characteristics. A) Linear regression of TG from ADK sequences. B) 

Predicted TG versus reported TM for ADK homologs. C) Predicted TG versus reported TA 

for ADK homologs. 

 
The relatively few sequences from thermophiles are necessary but 

suff icient 

In examining sequences used for the CSP MLP regression, we noted that 98.5% of 

sequences are from mesophiles (Fig. S6A). This was unsurprising given the bias of the 

characterized and sequenced organisms [16]. However, it was therefore necessary to 

ensure that this skew in sequence-growth temperature pairs did not confound the rMLP 

training.  
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We first examined if sequences from mesophiles alone sufficiently sampled sequence 

space to accurately predict the TG of homologs from thermophiles. If successful, this 

would indicate that the thermoadaptive sequence differences between homologs from 

mesophiles and thermophiles are contained within the sequence space sampled by 

mesophiles alone. However, limiting the training and validation datasets to only Cold 

Shock Protein homologs from mesophiles reduced regression accuracy (RMSE = 4.32 

°C, r = 0.643), with a clear systematic under-prediction of proteins from extremophiles 

(Fig. S6B). Therefore, proteins from thermophiles likely contain amino acid sequences 

that are outside the sequence variation seen within CSP homologs from mesophiles. 

 

We also examined if the non-uniform distribution of organismal growth temperatures in 

the training dataset hindered the accuracy of the regression. This would be possible if, 

during training, the optimization of MLP weights and biases was dominated by the small 

but numerous differences in TG among the protein sequences from mesophiles. We 

therefore calculated rMLPs for the Cold Shock Protein family after “balancing” the 

training dataset by artificially over-sampling sequences from thermophiles (Fig. S6C), 

while validation and test datasets remained unchanged. The accuracy of the MLPs in 

predicting the unseen test dataset was slightly worse than without balancing (RMSE = 

3.74 °C, r = 0.775) (Fig. S6D). As the number of unique sequences from thermophiles is 

much smaller than those from mesophiles, the oversampling of the sequences from 

thermophiles may have lead to over-fitting of inconsequential amino acids unique to 

these sequences. 
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Together, these results make clear that the presence of relatively few (1.47%) 

sequences from thermophiles in the training dataset are necessary and sufficient for the 

prediction of optimal growth temperature of homologs from thermophiles. The bias of 

the available protein sequences and species TGs does not appear to have deleteriously 

harmed regression accuracy, though accuracy may increase with more unique 

homologs from thermophiles with an associated organismal growth temperature. 

 

Non-l inearity regressions improve TG prediction accuracy even with fewer 

sequences 

The ability of a rMLP to model increasingly complex functions is dependent upon 

increased network depth and width. However, as network topology is required to be 

over-determined, network complexity is limited by the number of training sequence – 

organismal growth temperature pairs. To examine how regression accuracy scales with 

the number of sequences, we generated smaller Cold Shock Protein training and 

validation datasets by random sampling. With the test set for evaluating regression 

accuracy remaining unchanged, linear regression and MLPs were trained as previously 

(Fig. 4). It was not possible to build an over-determined MLP with 10% of the training 

sequences. However, the rectified activation function clearly outperformed an identity 

activation function at 20% of the training and validations sequences, or 4,691 and 690 

sequences, respectively. This suggests that as few as 3.15 training sequences per one-

hot encoded amino acid, or 24.6 sequences per column of the multiple sequence 
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alignment, are sufficient to capture non-linear effects on the relationship between 

protein sequence and organismal optimal growth temperature. 

 

 

Figure 4. The proportion of non-linear MLP topologies outperforming equivalent 

topologies with a linear activation function increases with more training data. MLP 

accuracy trained using subsets of the training and validation sequences with either 

rectified (filled) or identity (unfilled) activation functions. 

 

Particular amino acids are key to organismal growth temperature 

prediction 

In requiring the MLPs to be over-determined, we realized this could preclude longer or 

less well conserved protein families from analysis. Fortunately, previous studies had 

indicated that only a small fraction of mutations to a protein’s primary sequence alter 

protein stability [3,9,19,54]. We hypothesize that most primary sequence differences 

were neutral to thermoadaptation, analogous to passenger mutations. Therefore most 

one-hot encoded amino acids would not contribute to the accuracy of the regression, 
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while potentially adding noise to the regression and decreasing the maximum 

complexity of the topologies examined. To test this hypothesis, we examined the 

correlation of each one-hot encoded position with TG and if excluding un-correlated 

amino acids would improve regression accuracy. 

 

We identified first-order correlation between amino acid presence or absence and the 

originating species’ growth temperature using the point-biserial correlation coefficient 

(Fig. S7A). Excluding those encoded amino acids with a correlation less than 0.1, we 

achieved similar accuracy as before (RMSE = 3.75 °C, r = 0.761) while using only 

3.93% of the encoded protein sequence (Fig. S7B). We similarly used a fit top-hat 

function to identify amino acids with a second-order correlation to growth temperature 

(Fig. S7C). While only 25.4% of the amino acids had a maximum correlation to a top-hat 

function of greater than 0.1, these amino acids could predict growth temperature with a 

root mean squared error of 3.40 °C using an rMLP (r = 0.805) (Fig. S7D).  

 

These results confirm that only a subset of amino acids in the sequence is needed to 

accurately predict the originating species’ growth temperature. Therefore, using only the 

most TG correlated amino acids would allow for the regression of longer proteins. 

Alternatively, deeper and wider topologies could be examined on shorter proteins, 

potentially improving accuracy by accounting for more complex interactions in the 

primary sequence.  
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Discussion 

The design or identification of thermoadapted proteins is often central to their study or 

for their use in industrial applications. However, the study of protein thermal stability or 

temperature dependent activity is challenged by the large potential sequence space and 

the difficulty of characterizing individual protein sequences.  

 

Here, we successfully generated mathematical models to predict the originating species’ 

optimal growth temperature from a protein’s primary sequence. Growth temperatures 

could be predicted with a root mean squared error of 3.34 °C, and required as few as 

24.6 sequences per column of the multiple sequence alignment. These predicted TGs 

correlate with experimentally determined melting temperatures and temperatures of 

optimal activity. Therefore, this method allows for the rapid evaluation of protein 

sequences in silico, with the predicted values expected to correlate with protein thermal 

stability and temperature dependent activity.  

 

Linear regressions are suff icient for some protein famil ies 

The linear contribution of particular amino acids to thermostability is seen in some 

membrane [55] and soluble proteins [19], including the ADK family (Fig. 2). However, 

non-linear effects are clearly central to thermal stability of the Arc repressor [27] and in 

the prediction of organismal growth temperatures for many protein families seen here 

(Fig. 1A and Fig. S5). The varied success of linear regression models in predicting 

organismal growth temperature from primary sequence supports the hypothesis that the 
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physical interactions that underlie thermoadaptation vary by protein family [56]. As a 

rMLP can model a linear regression, in addition to more complex functions, the protMLP 

algorithm likely represents a general solution to describing the relation between primary 

sequence and quantitative characteristics of the protein.  

 

Protein famil ies available for analysis wil l  increase 

We recognize that construction of machine learning models is inherently limited by the 

number of sequence - organismal growth temperature pairs available. For Cold Shock 

Proteins, 24.6 sequences per column of the multiple sequence alignment were sufficient 

for non-linear MLPs to outperform a linear regression. The number of homologus 

sequences available for training is likely to increase as more organisms are sequenced. 

However, any new homologus sequences are only useful if they have an associated 

organismal growth temperature. Notably, with the CSP family examined here, 48% of 

the sequences were discarded due to an unknown organismal growth temperature. 

Further, the number of protein sequences with an unknown TG will likely increase as 

uncharacterized and unknown organisms are sequenced through metagenomics. 

Fortunately, computation methods are available to predict organismal growth 

temperatures from the genomic sequences of uncharacterized organisms [57,58], 

providing TGs for homologus proteins from species whose growth temperatures have 

not been experimentally determined.  

 

Single mutant accuracy requires densely sampled sequence space 
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In principle, a trained rMLP should be sensitive to the effects of a single or few amino 

acid differences, such as experimentally generated point mutations. We therefore 

examined the correlation of rMLP predicted growth temperatures to the measured 

melting temperatures for mutants of a CSP ortholog from Bacillus subtillis (BsCSP). We 

found no correlation between mutant protein melting temperatures [47] and predicted 

organismal optimal growth temperatures calculated from the mutant proteins’ 

sequences (r = -0.134) (Fig. S8A). Comparing BsCSP to the training sequences, we 

noted that homologs with high sequence identity to BsCSP come from organisms with 

TGs similar to Bacillus subtillis (Fig. S8B). This is in contrast to BsCSP mutants, with 

only one or two amino acid changes, exhibiting significantly altered melting temperature 

from wild type [19,47]. We therefore suspect that the available CSP sequences do not 

sufficiently sample sequence space to capture the effects of few or rare primary 

sequence differences. 

 

To verify this hypothesis we applied the protMLP method to the densely sampled 

sequence space of the deeply mutagenized WW domain from the human Yes 

Associated Protein 65 [59]. Rather than reporting organismal growth temperatures, the 

study describes protein enrichment upon binding to a target peptide. Nevertheless, both 

dataset consists of pairs of protein sequences and numerical values. Therefore protMLP 

should be capable of predicting the enrichment scores for the WW domain sequences. 

Examining this, regressions were calculated as before, replacing organismal growth 

temperature with enrichment score as the regression target. Notably, a non-linear rMLP 
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can accurately predict the enrichment of mutant WW sequences upon binding a target 

peptide (RMSE = 0.575, r = 0.862) (Fig. 5). As with predicting organismal growth 

temperature, rMLPs significantly outperformed equivalent MLP topologies with an 

identity activation function (Wilcoxon signed-rank test p < 10-99). Notably, this dataset 

consists of only single, double, and triple mutants, corresponding to 91-97% sequence 

identity. This result demonstrates that rMLPs can accurately predict the effects of few 

mutations with sufficiently sampled sequence space.  

 

 

Figure 5. Non-linear MLPs can predict single and double mutant effects. Predicted 

enrichment for mutant WW domain sequences.  

 

Application to other biochemical parameters and evolutionary biology 

Though the thermoadaptation of proteins is the focus of this study, the accurate 

prediction of enrichment for mutant WW domains also validates the rMLP method as 
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readily applicable to other quantifiable characteristics of proteins. Additionally, 

quantifiable characteristics of nucleic acids are likely predictable using the same 

method. 

 

Finally, we also note that the prediction of organismal ecological characteristics from 

protein sequences is itself valuable. While other methods are capable of predicting 

organismal growth temperatures [57,58], protMLP calculates TG without requiring a 

complete genome or proteome sequence for the organism. This is particularly useful if 

the organism of interest no longer exists, such as ancestral organisms. By analyzing 

reconstructed ancestral sequences, protMLP could describe the thermal niche of no 

longer extant organisms. Though the ecological niches of ancestral organisms have 

been inferred from the reconstructed proteins’ melting temperatures [17,60,61], by 

predicting organismal growth temperature in silico, protMLP is faster and likely more 

accurate.  

 

Materials and Methods 

Sequence and organismal growth temperature collection and encoding 

Species’ TG values were collected from Sauer and Wang (2015) [16], Engqvist (2018) 

[62], and BacDive (accessed March 14, 2019) [63], and averaging values of the same 

species. Domain sequence alignments were downloaded from the Pfam 32.0 database 

[34] and used without modification unless otherwise noted. Reconstructed ancestral 

ADK sequences from Nguyen et al. [17] were combined with extant proteins from the 
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Pfam alignment. CSP sequences identified in Pfam were extended by one amino acid 

using the sequences in UniProtBK release 2018_04 [64]. CSP and ADK sequences 

were then re-aligned in Promals3D [35]. All CSP and ADK sequences with 

characterized TA and TM values were removed from the alignments prior to division into 

training, test, and validation datasets; and used only for the comparison of TG to TM and 

TA. 

 

Species assignment for each protein was collected from UniProtKB release 2018_04 

[64]. Gap inducing proteins, proteins annotated as fragments, or proteins without an 

originating species’ TG were excluded from analysis. Proteins were randomly assigned 

individually into training (70%), validation (10%), or test (20%) datasets. The amino acid 

sequences were then one-hot encoded, and amino acids which were absent or 

absolutely conserved in the training sequences were removed from all alignments.  

 

Balancing Training Sequences 

Training data was balanced by first calculating a histogram of training sequence TGs 

with 20 bins. In addition to all the sequences in the original alignment, sequences were 

added to the alignment by random selection with replacement from each TG bin until all 

bins had the same number of sequences as the most populous bin. 

 

Amino acid correlation with TG 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/677328doi: bioRxiv preprint 

https://doi.org/10.1101/677328
http://creativecommons.org/licenses/by-nc/4.0/


 26 

From the one-hot encoded training sequences, the point-biserial correlation coefficient 

was calculated between TG and the presence or absence of a particular amino acid. 

Alternatively, top-hat function was fit to the presence or absence of a one-hot encoded 

amino acid versus TG by systematically screening hat widths and centers. If a threshold 

was provided, those positions with a Pearson correlation coefficient of fit top-hat 

function or point-biserial correlation coefficient less than the threshold were removed.  

 

MLP training 

The MLPs were trained using an identity or leaky ReLu activation function (alpha = 0.01) 

[65]. All regressions were trained with the training dataset using the Adam solver [66], 

with the mean square error (MSE) as the loss function. Training was stopped when the 

validation dataset MSE did not decrease for two consecutive training epochs.  

 

Topology generation and search 

MLP architectures were built systematically, requiring only that the first layer have at 

most twice as many nodes as the input layer, all subsequent layers have less than or 

equal to as many nodes as the previous layer, and that the network be over-determined. 

Topologies were limited to 5 or fewer hidden layers. Of the potential topologies, 500 

were randomly selected and trained each generation for 10 generations. After each 

generation, the top scoring 20% of the topologies (based on the MSE of the validation 

dataset) were recombined and mutated, and used as input for the following generation. 

Recombining topologies consisted of joining two topologies at a random layer chosen 
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from each. Topologies were mutated by randomly changing the number of nodes in a 

randomly chosen layer. Finally, the Pearson correlation coefficient and root mean 

square error was calculated and reported using the test dataset for the best trained 

model of the last generation. For comparing inter-family species growth temperature 

prediction consistency, TGs from the test sets were averaged by species and then 

compared pairwise by protein family.   

 

Regression of WW enrichment 

WW domain mutations and Enrich2 scores were downloaded from MaveDB [59,67]. 

Mutant sequences were generated in silico, and regressions calculated as previously 

described, using Enrich2 scores as the regression target. 

 

All calculations used custom scripts written in Python with the Biopython [68], 

Tensorflow [69], Keras [70], NumPy [71], SciPy [72], and Matplotlib [73] libraries. Source 

code is available at https://github.com/DavidBSauer/protMLP 
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