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Abstract  

The link between sequence and phenotype is essential to understanding the 

molecular mechanisms of evolution, and the design of proteins and genes with 

specific properties. However, it is difficult to describe the relationship between 

sequence and protein or organismal phenotypes, due to the complex relationship 

between sequence, protein folding and activity, and organismal physiology. Here, 

we use machine learning models trained on individual families of proteins or 

nucleic acids to predict the originating species’ optimal growth temperatures or 

other quantitative phenotypes. Trained multilayer perceptrons (MLPs) 

outperformed linear regressions in predicting the originating species growth 

temperature from protein sequences, achieving a root mean squared error of 3.6 

°C. Similar machine learning models were able to predict the binding affinity of 

mutant WW domain sequences, brightness of fluorescent proteins, and 

enzymatic activity of ribozymes. Notably, the trained models are protein or 

nucleic acid family specific and therefore useful in the design of biopolymers with 

particular properties. This method provides a new tool for the in silico prediction 

of quantitative biophysical and organismal phenotypes directly from sequence. 

 

1 Introduction  

The relationship between a protein or nucleic acid’s sequence and the 

biochemical or organismal phenotype is central to the study of evolution, protein 

folding, and enzymatic activity. Further, knowing a protein’s sequence and 
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temperature dependent properties is also clinically and industrially valuable. For 

example, mutations may alter a protein’s sequence such that it has reduced 

expression (Tate, 2012) or enzymatic activity (Abrahamson and Grubb, 1994), or 

the organism exhibits an increased disease phenotype (Raimondo et al., 2014). 

Accordingly, highly tailored high-throughput experimental methods have been 

designed to efficiently screen the correspondence of sequence and the 

phenotypes of protein stability (C. A. Sarkar et al., 2008; Serrano-Vega et al., 

2008; Abdul-Hussein et al., 2013) or abundance (Matreyek et al., 2018). 

The ability to predict phenotype from sequence in silico is clearly of value. 

However, the link between sequence and phenotype is often difficult to describe 

quantitatively, due to the large potential sequence space, the complexities of 

protein and nucleic acid folding, and unclear or unknown biophysical and 

physiological mechanisms. Therefore, many current quantitative methods require 

a densely sampled sequence space, a highly specific biophysical model of the 

process being studied, or sacrifice specificity for sufficient examples necessary 

for optimizing model parameters. In particular these limitations are seen in the 

computational method used to describe a protein’s thermodynamic properties, 

where highly accurate models of protein folding free energy require a three-

dimensional protein structure and a highly specific biophysical model (Yasuda et 

al., 2017; Pucci et al., 2016), extensive mutagenesis of the target protein family 

(Muk et al., 2019), or are purely trained with many protein families and therefore 
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of limited specificity to any particular protein family (Montanucci et al., 2008; Li 

and Fang, 2010; Gromiha and Suresh, 2008; Li et al., 2019). 

Fortunately for the study of protein stability, many protein families natural 

selection has already broadly sampled both sequence space and temperature 

space. Protein families often include homologs from organisms that grow at a 

wide range of temperatures. Organismal growth in each thermal niche places 

specific constraints on its proteins’ sequences such that the proteins are folded 

and active under native conditions. Accordingly, studies comparing homologus 

proteins from species with distinct growth temperatures have identified sequence 

differences which correlate to the native thermal environment of the originating 

organisms (Sauer et al., 2015; Nguyen et al., 2017; Perl et al., 2000). Introducing 

corresponding mutations into model proteins often result in altered thermal 

stability or temperature dependent activity, reflecting the role of these amino 

acids in thermoadaptation. Therefore, the available homologus protein 

sequences and organismal growth temperatures provide a large dataset for 

analyzing temperature dependent protein properties, allowing novel methods of 

analysis. 

Here we report a method to quantitatively predict a phenotype from a family of 

homologus sequences. The method, named protMLP, uses machine learning in 

the form of multilayer perceptron (MLP) models trained on individual family of 

proteins or nucleic acids. Notably, no assumptions are made about chemical, 

structural, epistatic, or thermodynamic effects, and a three-dimensional structure 
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is not used. We demonstrate the effectiveness of the method in predicting the 

originating organisms’ growth temperatures (TG) from protein sequences. Further, 

we show the correlation of predicted growth temperatures of the organism to the 

protein’s experimentally determined melting temperature (TM) or temperature of 

optimal activity (TA). Thus, predicted organismal growth temperature (TG) can 

serve as an easily calculable proxy for a protein’s thermal stability and 

temperature dependent activity. Additionally, we demonstrate the generality of 

the protMLP method by predicting other quantitative phenotypes, such as binding 

affinity, fluorophore brightness, and catalytic activity, from the sequences of 

proteins and nucleic acids. 

2 Methods 

2.1 Sequence and organismal growth temperature collection 

Domain sequence alignments were downloaded from the Pfam 32.0 database 

(Finn et al., 2016) and used without modification unless otherwise noted. 

Reconstructed ancestral ADK sequences (Nguyen et al., 2017) were combined 

with extant proteins from the Pfam alignment. CSP sequences identified in Pfam 

were extended at the C-terminus by one amino acid using the sequences in 

UniProtBK release 2018_04 (The UniProt Consortium, 2017). CSP and ADK 

sequences were then re-aligned in Promals3D (Pei et al., 2008). Species’ 

measured growth temperatures were collected from published sources (Sauer et 

al., 2015; Engqvist, 2018) and BacDive (accessed August 14, 2019) (Söhngen et 

al., 2016), averaging duplicate values of the same species. Growth temperatures 
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of uncharacterized species were predicted using previously published methods 

and proteomes (Li et al., 2019). Proteins inducing gaps, annotated as fragments, 

or with residues outside the standard protein alphabet 

(ACDEFGHIKLMNPQRSTVWY-) were excluded.  

 

2.2 Data division into training, validation, and test datasets 

The method requires three datasets for training the regression model (training), 

preventing overfitting to the training dataset (validation), and final evaluation of 

model accuracy (test). Therefore, identical sequences were grouped and these 

groups were then randomly assigned into training (70%), validation (10%), or test 

(20%) datasets.   

 

2.3 Sequence assignment, encoding, and balancing 

For TG regression, species assignments for each protein were collected from 

UniProtKB release 2018_04. Those sequences without a species assignment or 

without an originating species’ TG were excluded from further analysis. All CSP 

and ADK sequences with a characterized TA and TM were removed from the 

alignments; and used only for the comparison of TG and TG to TM and TA.  

All datasets were then one-hot encoded, with invariant positions of the 

one-hot training sequences removed from all alignments.  

Training dataset were balanced by first calculating a histogram of training 

sequence phenotypes with 20 bins. In addition to all the sequences in the original 
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alignment, sequences were added to the alignment by random selection with 

replacement from each bin until all bins had the same number of sequences as 

the most populous bin.  

Phenotype-correlated positions were identified using the point-biserial 

correlation or a top-hat function fit to the relationship between phenotype and the 

one-hot encoded amino acid. If a threshold was provided, positions with a top-hat 

function Pearson correlation or point-biserial correlation less than the threshold 

were removed.  

 

2.4 MLP training 

The MLPs were trained using an identity or leaky ReLu activation function (Maas 

et al., 2013). All regressions were trained using the Adam solver (Kingma and 

Ba, 2014), with the mean square error (MSE) as the loss function. Model 

checkpoints were saved at each epoch, if the current model validation dataset 

MSE was lower than the previous checkpoint. Training was stopped when the 

validation dataset MSE did not decrease for two consecutive training epochs.  

 

2.5 Topology generation and search 

MLP architectures were built systematically, requiring only that the first layer 

have at most twice as many nodes as the input layer and that the network be 

over-determined. Topologies were limited to between 1 and 5 hidden layers, in 

addition to the input and output layers (Fig. S1A). Of the potential topologies, 500 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2019. ; https://doi.org/10.1101/677328doi: bioRxiv preprint 

https://doi.org/10.1101/677328
http://creativecommons.org/licenses/by-nc/4.0/


were randomly selected and trained each generation for 10 generations. After 

each generation, the top scoring 20% of the topologies (based on the MSE of the 

validation dataset) were recombined and mutated, and used as input for the 

following generation. Recombining topologies consisted of joining two topologies 

at a random layer chosen from each. Topologies were mutated by randomly 

changing the number of nodes in a randomly chosen layer. Finally, the Pearson 

correlation coefficient, mean squared error, and root mean square error were 

calculated and reported using the test dataset for the lowest validation MSE 

model.  

 

2.6 Regression of deeply mutagenized sequences 

Phenotypes and sequences or mutants were downloaded for WW domain 

(Fowler et al., 2010; Esposito et al., 2019), eqFP611 (Poelwijk et al., 2019), 

guanine-inhibited ribozyme Lib-2 (Kobori et al., 2017), and BRCA1 (Findlay et al., 

2014), with multiple sequence alignments generated in silico. For the guanine-

inhibited ribozymes and BRCA1 RNA sequences, uracil (U) was replaced with 

thymine (T). The presence or absence of the regulating guanine in the guanine-

inhibited ribozymes samples was encoded as an additional G or gap, 

respectively, at the 5’ end of the sequence. Groups of identical sequences were 

assigned to training, validation, or test datasets as above. MLPs were then 

trained using the standard protMLP protocol, using the phenotypes as the target 

for regression.  
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All calculations used custom scripts written in Python with the Biopython 

(Cock et al., 2009), Tensorflow (Abadi et al., 2016), Keras (Chollet, 2015), 

NumPy (Oliphant, 2006), SciPy (Jones et al., 2001), and Matplotlib (Hunter, 

2007) libraries. Source code is available at: 

https://github.com/DavidBSauer/protMLP 

 

3 Results 

3.1 Construction of multi-layer perceptrons 

Setting out, we aimed to devise a method to predict quantitative phenotypes from 

a protein or nucleic acid family’s sequences. As a part of making this a general 

method, we also want to avoid an explicit structure or description of the forces 

underlying protein or nucleic acid folding or organismal physiology. We therefore 

chose machine learning, which has been demonstrated to be particularly useful 

when the relationship between the input and output is complex or unknown 

(Webb, 2018; LeCun et al., 2015). Machine learning has been successfully 

applied to predicting a protein’s fold from the sequence (AlQuraishi, 2019), the 

genotype of cancers from histopathology images (Coudray et al., 2018), and the 

antimicrobial activity of a peptide sequence (Veltri et al., 2018). Similarly, here we 

applied machine learning in the form of multilayer perceptrons (MLPs) to 

quantitatively predict the originating organism’s growth temperature using protein 

sequences.  
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Generally, a MLP is a form of artificial neural network, a mathematical 

construct modeled on the structure and behavior of biological neural networks. 

As with a biological neural network, individual units (nodes or neurons) each 

accept and process input signals before producing an output (Fig. S1A). In an 

MLP these nodes are arranged into layers, termed “hidden layers”, with signals 

passed between consecutive layers, again mimicking the structure of biological 

neural networks. Starting from the input layer, the value of each node in the 

hidden layers is the result of an activation function applied to the weighted sum of 

the preceding layer’s nodes plus a layer bias value. The output is then the 

weighted sum of the final hidden layer and an additional bias value. 

  The activation function of a MLP node is typically non-linear, mimicking the 

threshold potential and non-linear response of biological neurons. Central to its 

application here, MLPs with nodes which apply a non-linear activation function 

can act as universal approximators (Hornik, 1991). Therefore, we reasoned a 

sufficiently complex non-linear MLP could describe non-linear interactions, such 

as electrostatics and van der Waal’s contacts. Further, a non-linear MLP can 

model logical operators, such as AND and OR, and therefore could likely capture 

epistatic interactions. We therefore used MLPs with nodes that apply the non-

linear, leaky rectifier activation function (rMLPs) (Fig. S1B).  

As MLPs are mathematical models, the inputs are necessarily numerical. 

The inputs here are aligned amino acid or nucleic acid sequences from a 

particular homologus family. We therefore convert the aligned sequences to 
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sequences of Boolean variables (one-hot encoding) (Fig. S2), where one or zero 

indicates the respective presence or absence of a particular amino acid or 

nucleic acid. We further removed positions from all one-hot encoded sequences 

that were absolutely conserved in the one-hot encoded training sequences, as 

these would not contribute to the regression. Therefore, one-hot encoding 

preserves the chemical sequence of a biopolymer in a numerical sequence of 

ones and zeroes. Notably, one-hot encoding of the sequence does not contain a 

description of chemical or physical properties. This minimizes any assumptions 

of the relevant physical or chemical properties. 

Regression methods, including machine learning, require the optimization 

of model parameters. Through “training”, the model weights and biases are 

iteratively refined using sequences with known regression target values, such as 

protein sequences and the associated originating organism’s optimal growth 

temperatures. However, it is essential to have mechanisms to avoid over-fitting 

and to independently evaluate accuracy (Zou et al., 2019). Therefore, we used 

only 70% of the sequence-target pairs in the training process to refine the MLP 

weight and bias parameters. We used the remaining 30% of the sequence-target 

pairs for evaluating the regressions, assigning the pairs to validation (10%) and 

test (20%) datasets. Notably, sequences with 100% identity are placed in the 

same training, validation, or test datasets. Therefore the datasets have no 

sequences in common, while retaining the same distribution as the input 

sequence alignment. Only the training dataset is used for optimizing model 
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parameters. The validation dataset is used to avoid over-fitting by calculating the 

Mean Square Error (MSE) after each iteration of training, with training stopped 

when the MSE no longer decreases. Finally, the test dataset is used to calculate 

MLP accuracy. This allows for an evaluation of model generalizability, the 

accuracy of the model in predicting unseen sequences. 

The MLP’s optimal number of nodes, and their arrangement into layers - 

collectively the MLP’s “topology” - are not known a priori, and are likely specific to 

the protein or nucleic acid family. Therefore, for each family we considered all 

possible MLP topologies with the restrictions that: the number of nodes in any 

hidden layer can range between two and twice the one-hot encoded sequence 

length, the network can have at-most 5 hidden layers, and the network must be 

over-determined. The number of possible topologies is very large, up to (2L - 1)5, 

where L is the one-hot encoded multiple sequence alignment length. We 

therefore applied an evolutionary algorithm to optimize the MLP topology (Vikhar, 

2016), recombining and randomly permutating the lowest validation MSE 

topologies over multiple generations. Although, this method does not evenly 

sample the entire topology space, and may not find the optimal topology, this 

method is empirically time efficient in finding an optimized MLP topology for the 

prediction of TG.  
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3.2 A trained MLP can predict organismal growth temperature from protein 

sequences 

As an initial prototype for the prediction of a quantitative phenotype from a 

sequence, we examined the ability of a MLP to predict organismal growth 

temperature from protein sequences. Organismal growth temperature was 

selected as the regression target as TGs are measured for a large number of 

species (Sauer et al., 2015). Similarly, we expected proteins to be a good input 

for such regression as many homologus protein sequences are known (Finn et 

al., 2016), and, most importantly, often contain adaptations to particular thermal 

niches (Nguyen et al., 2017; Perl et al., 2000). 

We initially studied the Cold Shock Protein (CSP) family. The CSP family’s 

small protein size and strong conservation (Phadtare et al., 1999) results in many 

available CSP sequences relative to the protein length from species with a wide 

Figure 1. Organismal growth temperature can be predicted from the sequences of a 

protein family by using MLP regression. Regression of TG using (A) the best rMLP or (B) linear 

regression model. The dotted line indicates perfect prediction. (C) Protein melting temperature 

versus predicted growth temperature of CSP homologs.  
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range of growth temperatures. This made the CSP family an ideal case study for 

regression of organismal growth temperature from protein sequence. Homologus 

Cold Shock Protein sequences were collected from Pfam (Finn et al., 2016), 

extended by one amino acid at the C-terminus, and aligned in Promals3D (Pei et 

al., 2008). In total 34,254 homologus CSP sequences were identified with an 

available source organism growth temperature, with TGs measured 4.0 to 95.5 

°C. All protein sequences were one-hot encoded and MLPs were trained using 

the described protMLP algorithm. Of the 1017 possible topologies, using the 

evolutionary algorithm 5,000 topologies were trained over 10 generations with 

23,976 training sequences (70% of the total sequences). The 3,400 validation 

sequences (9.9% of the total sequences) were used to stop training, and to 

compare the accuracies of the various topologies. The trained MLP predicted the 

source organism growth temperature of 6,878 test sequences (20% of the total 

sequences) with a root mean squared error of 4.0 °C (Pearson correlation r = 

0.70). Notably, this MLP clearly outperforms a linear regression trained with the 

same 23,976 training sequences (RMSE = 4.5 °C, r = 0.61), particularly in 

predicting TG of proteins from thermophiles.  

In examining the trained MLP results, we noted predicted TG accuracy was 

poor for proteins from organisms with a growth temperature less than 20 °C. This 

is perhaps due to the rarity of these sequences, as they comprise only 1.2% of 

the training species-TG pairs. Additionally, training minimizes the squared error, 

which may lead to preferential optimization of sequences from thermophiles due 
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to the positive skew of the TG distribution. Finally, the mechanisms of adaptation 

from mesophilic to psychrophilic conditions may be distinct from the adaptations 

from thermophilc to mesophilic (Yang et al., 2015). We therefore tested the 

accuracy of a MLP regression using only proteins from mesophiles and 

thermophiles (Fig. 1). Excluding protein sequences from organisms with a growth 

temperature less than 20 °C improved MLP accuracy (RMSE = 3.6 °C, r = 0.74) 

(Fig. 1A), again outperforming a linear regression (Fig. 1B). Therefore, we used 

only sequences from species with a TG ≥20 °C in subsequent growth temperature 

studies. 

 

3.3 Non-linearity is needed to predict growth temperatures 

In examining the MLP topologies trained in the Cold Shock Protein regression, 

we found three distinct populations of model accuracy (Fig. S3A). A low accuracy 

population consists of topologies that converged to a single value (peak a). A 

second population is of topologies with accuracies similar to a linear regression 

(peak b). This set is unsurprising, as an rMLP can model a linear function. The 

final population of MLP models is more accurate than a linear regression (peak 

c), suggesting the rectified activation function is essential to regression accuracy.  

However, as multiple MLPs with many parameters are trained, it was 

necessary to ensure that the improved accuracy of MLP regressions was not due 

to over-fitting or cherry-picking. Therefore, concurrent with the training of MLPs 

using a rectified activation function (rMLPs), we trained MLPs of the same 
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topology with an identity activation function (iMLPs), where the activation function 

output is equal to the input. iMLPs are mathematically equivalent to linear 

regressions but fit the same number of parameters as MLPs with a rectified 

activation function for the same topology. As expected, the accuracy of these 

MLP regressions with an identity activation function is similar to the linear 

regression (Fig. S3B). Notably, MLPs using rectified and identity activation 

functions have distinct distributions (Wilcoxon signed-rank test p < 10-78). This 

confirms that the rectified activation function is essential to the improved 

prediction accuracy. 

 

3.4 Predicted organismal growth temperature is correlated with 

experimentally determined melting temperatures of CSPs 

We next explored if the rMLP predicted growth temperature would be of use in 

the biochemical characterization of proteins. Species’ TG is known to correlate 

with its proteins’ thermal stability (Dehouck et al., 2008) and temperature 

dependent activity (Engqvist, 2018). We therefore examined if the predicted 

organismal growth temperatures of CSP homologs were similarly correlated with 

measured protein melting temperatures (Fig. 1C). We found that cold shock 

protein homologs’ predicted growth temperatures and measured melting 

temperatures to be directly correlated (r = 0.87) (Perl et al., 2000; D’Auria et al., 

2010; Jin et al., 2014; Lee et al., 2013; Welker et al., 1999; Phadtare et al., 2003; 

Wassenberg et al., 1999; Chatterjee et al., 1993; Petrosian and Makhatadze, 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2019. ; https://doi.org/10.1101/677328doi: bioRxiv preprint 

https://doi.org/10.1101/677328
http://creativecommons.org/licenses/by-nc/4.0/


2008; Phadtare, Inouye, et al., 2002; Phadtare, Tyagi, et al., 2002; Wunderlich et 

al., 2005; Martin et al., 2002; Garcia-Mira et al., 2004; Mueller et al., 2000). This 

is similar to the correlation between TM and measured TG for the same 

sequences (r = 0.85).  

It is worth noting the evolutionary selection of proteins protecting from cold 

shock complicates the common theoretical relationship between TM and TG. In 

principle, to support organismal growth most proteins must be folded at the 

growth temperature. This imposes a theoretical bound on protein melting 

temperature such that TM > TG. Broad analyses of many proteins from several 

organisms support this theory (Dehouck et al., 2008). However, cold shock 

temperatures are necessarily lower than organismal growth temperatures. As a 

consequence, CSP protein melting temperatures must only be greater than the 

cold shock temperature to support organismal growth. Therefore, the melting 

temperatures of Cold Shock Proteins could in principle be lower than the 

originating organism’s growth temperature. However, we observe the CSP 

homolog’s TMs are still greater than both rMLP predicted TGs and measured TGs 

of each of the originating species. This may indicate the temperature difference 

between organismal optimal growth and the physiological onset of CSP activity is 

generally small, or there are other functions of CSP homologs at the organisms’ 

optimal growth temperatures (Keto-Timonen et al., 2016).  
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3.5 Adenosine kinases’ biochemical characteristics correlate with TG 

We next further examined if the protMLP predicted organismal growth 

temperature correlated with stability or activity of the protein. We therefore 

applied the protMLP method to Adenosine Kinases (ADK), an extensively studied 

(Wolf-Watz et al., 2004; Nguyen et al., 2017; Schrank et al., 2009) family that 

catalyzes the interconversion of adenosine nucleotides. As has been observed in 

other proteins (Engqvist, 2018), we found that the ADK homologs’ temperatures 

of optimal activity (Nguyen et al., 2017; Jeske et al., 2019) were correlated with 

measured originating species’ growth temperatures (r = 0.79). While there were 

too few ADK sequences to train an over-determined MLP, a linear regression 

was already highly accurate at predicting the originating species’ growth 

temperature (RMSE = 3.9 °C, r = 0.86) (Fig. S4A). We found the TGs for 

characterized ADK homologs and reconstructed ancestral sequences correlated 

with protein TM (r=0.76) (Fig. S4B) and TA (r = 0.63) (Fig. S4C), indicating that TG 

could serve as a proxy for TA and TM.  

 

3.6 Thermophilic proteins have unique adaptations to temperature 

In the CSP MLP regression, we noted that 98.5% of sequences are from 

mesophiles (Fig. S5A). This was unsurprising given the bias of the characterized 

organisms (Sauer et al., 2015; Engqvist, 2018). While random sampling ensures 

the train, validation, and test datasets have the same distribution as the input 
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alignment, it was necessary to explore if the non-uniform distribution in 

phenotypes affected rMLP accuracy. 

We first considered if sequences from mesophiles alone sufficiently 

sampled sequence space to accurately predict the TG of homologs from 

thermophiles  (Fig. S5B). If successful, this would indicate that the 

thermoadaptive sequence differences between homologs from mesophiles and 

thermophiles are contained within the sequence space sampled by mesophiles 

alone. However, limiting the training and validation datasets to only Cold Shock 

Protein homologs from mesophiles reduced regression accuracy (RMSE = 4.2 

°C, r = 0.63), with a systematic under-prediction of proteins from thermophiles. 

Therefore, proteins from thermophiles likely contain amino acids at particular 

positions that are outside the sequence variation seen within CSPs from 

mesophiles. 

We also investigated if the non-uniform distribution of organismal growth 

temperatures in the training dataset hindered the accuracy of the regression. This 

would be possible if, during training, the optimization of MLP weights and biases 

was dominated by the small but numerous differences in TG among the protein 

sequences from mesophiles. We therefore calculated rMLPs for the Cold Shock 

Protein family after “balancing”. In balancing, a new training dataset was 

generated where rare thermophile sequences are over-sampled to be equal in 

proportion to the more common mesophiles (Fig. S5C). The validation and test 

datasets remained unchanged. Applying this new training dataset, the accuracy 
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of the rMLPs in predicting the unseen test dataset was slightly worse than without 

balancing (RMSE = 3.9 °C, r = 0.70) (Fig. S5D). As the number of unique 

sequences from thermophiles is much smaller than those from mesophiles, the 

oversampling of sequences from thermophiles may have led to over-fitting of 

inconsequential amino acids unique to these sequences. 

Together, these results make clear that the relatively few (1.5%) 

sequences from thermophiles in the training dataset are necessary and sufficient 

for the prediction of optimal growth temperature of homologs from thermophiles. 

The non-uniform distribution of protein sequences and species TGs does not 

appear to have harmed regression accuracy, though accuracy may increase with 

more unique homologs from thermophiles having associated organismal growth 

temperatures. 

 

3.7 Non-linear activation function MLPs are more accurate than linear 

regressions even with relatively few sequences 

The ability of an rMLP to model increasingly complex functions is dependent 

upon increased network depth and width. However, as network topology is 

required to be over-determined, network complexity is limited by the number of 

training sequence – organismal growth temperature pairs. To examine how 

regression accuracy scales with the number of sequences, we generated smaller 

Cold Shock Protein training and validation datasets by random sampling. With 

the test set for evaluating regression accuracy remaining unchanged, rMLPs and 
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iMLPs were trained as previously described (Fig. 2). It was not possible to build 

over-determined MLPs with 10% of the training sequences. However, the 

rectified activation function clearly outperformed an identity activation function at 

20% of the training and validation sequences, or 4,761 and 686 sequences, 

respectively. This suggests that as few as 3.16 training sequences per one-hot 

encoded amino acid, or 24.9 sequences per column of the multiple sequence 

alignment, are sufficient to capture non-linear effects on the relationship between 

protein sequence and organismal optimal growth temperature.  

 

 

 

 

 

 

 

 

3.8 Particular amino acids are key to TG prediction 

When exploring possible MLP topologies, we only considered those topologies 

that were over-determined, with more training sequences than model 

Figure 2. The proportion of non-linear MLP topologies outperforming equivalent 

topologies with a linear activation function increases with more training data. MLP 

accuracy trained using subsets of the training and validation sequences with either rectified (filled) 

or identity (unfilled) activation functions. 
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parameters. As the number of model parameters is dependent upon the one-hot 

encoded sequence length, we realized longer or less well conserved protein 

families may be precluded from analysis by the protMLP method. Fortunately, 

previous studies had indicated that only a small fraction of mutations to a 

protein’s sequence alter protein stability (Abdul-Hussein et al., 2013; Serrano-

Vega et al., 2008; Perl et al., 2000). We therefore hypothesized that most 

sequence differences were neutral to thermoadaptation, analogous to passenger 

mutations. Therefore most one-hot encoded amino acids would not contribute to 

the accuracy of the regression, while potentially adding noise to the regression 

and decreasing the maximum complexity of the topologies examined. To test this 

hypothesis, we examined the correlation of each one-hot encoded position with 

TG and whether excluding un-correlated amino acids would improve regression 

accuracy. 

 We identified first-order correlation between amino acid presence or 

absence and the originating species’ growth temperature using the point-biserial 

correlation coefficient (Fig. S6A). Excluding those encoded amino acids with a 

correlation of less than 0.1 causes a loss in accuracy (RMSE = 4.0 °C, r = 0.68) 

while still outperforming a linear regression (RMSE = 4.8 °C, r = 0.47) using only 

4.3% of the encoded protein sequence (Fig. S6B). We similarly used a fit top-hat 

function to identify amino acids with a second-order correlation to growth  

temperature (Fig. S6C). While only 26% of the encoded amino acids had a 

maximum correlation to a top-hat function of greater than 0.1, these amino acids 
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could predict growth temperature with a root mean squared error of 3.7 °C using 

an rMLP (r = 0.73) (Fig. S6D).  

These results confirm that only a subset of amino acids in the alignment of the 

CSP family are correlated with temperature and needed to predict the originating 

species’ growth temperature. Therefore, using a similar point-biserial or top-hat 

correlation threshold would increase the effective data-to-parameter ratio, and 

allow for the over-determined regression of longer proteins. Alternatively, deeper 

and wider topologies could be used for shorter proteins, improving accuracy by 

accounting for more complex interactions in the sequence.  

 

3.9 Non-linear MLPs in the regression of other protein families  

We next examined if rMLPs could be used as a general method for predicting 

organismal growth temperature. Therefore, we trained MLP regression models to 

predict the originating species’ TG for other protein families (Table S1). These 

families included interaction and enzymatic domains, those targeted to various 

cellular localizations, and alpha-helical and beta-barrel membrane proteins. Of 

the 40 protein families examined, 25 had a sufficient number of sequences to 

train an over-determined MLP. The rMLP predicted growth temperature was 

correlated with measured growth temperature for all 25 families, and in each 

case outperformed a linear regression. Growth temperature predictions were 

consistent across all rMLP regressions with a test set species’ TG average 

standard deviation of 3.2 °C. 
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We also considered the effect of protein phylogeny on rMLP accuracy, 

particularly as the available sequences of a protein family may unevenly sample 

sequence space. We found only weak to no anti-correlation between maximum 

sequence identity and TG prediction accuracy (r = -0.13 to -0.41). Therefore, the 

protMLP models are likely capturing features beyond sequence identity for the 

protein families. 

 

3.10 MLPs can predict the phenotypes of proteins and nucleic acids 

With the success of rMLPs to predict organismal growth temperature from a 

variety of protein families, we hypothesized that the same protMLP method could 

be applied for the regression of other quantitative phenotypic traits from the 

aligned sequences of other biopolymers.  

Figure 3. Non-linear MLPs can predict other phenotypes from protein and nucleic acid 

sequences. Predicting the (A) enrichment of WW domain mutants and (B) brightness of 

eqFP611 mutants and (C) transcript enrichment of mutant BRCA1 nucleic acid sequences using 

trained rMLP models. The dotted lines indicate perfect prediction. 
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We first examined the ability of protMLP to predict the phenotype of 

densely sampled sequence space by calculating regression on deeply 

mutagenized sequences of the human Yes Associated Protein 65 WW domain 

(Fowler et al., 2010) and the fluorescent protein eqFP611 (Poelwijk et al., 2019) 

(Fig. 3A and 3B). In both cases we found strong correlations between predictions 

and the measured phenotypes binding affinity (r = 0.856) and brightness (r = 

0.962), respectively.  

Noting that protMLP makes no assumptions of the physical or chemical 

characteristics of the individual monomers of the biopolymer, we next tested if 

nucleic acids can be analyzed by the same method. We therefore applied the 

protMLP method to mutant sequences of the BRCA1 gene (Findlay et al., 2014) 

and an engineered guanine-inhibited ribozyme (Kobori et al., 2017). protMLP 

model predictions strongly correlated with the measured transcript enrichment (r 

= 0.843) (Fig. 3C) or catalytic activity (r = 0.850) (Fig. S7B), respectively. 

These results verify the generality of this method to predict a variety of 

quantitative phenotypes from proteins and nucleic acid sequences.  

4 Discussion 

The identification or design of biopolymers with particular biochemical or 

biophysical properties is often central to their study or for their use in industrial 

applications. However, the link between sequence and phenotype is often difficult 

to describe, due to the large potential sequence space and the difficulty of 

characterizing individual protein sequences.  
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Here, we successfully generated mathematical models to predict the 

various quantitative phenotypes from sequences. Growth temperatures could be 

predicted from protein sequences with a root mean squared error of 3.6 °C. 

These predicted TGs correlate with experimentally determined melting 

temperatures and temperatures of optimal activity. Similarly, binding affinity, 

fluorophore brightness, and ribozyme activity could be predicted from the 

sequences of biopolymers with strong correlation to the measured phenotypes. 

As phenotypically characterizing a sequence is typically tedious and time 

consuming, the protMLP method of predicting phenotype in silico from sequence 

offers significant advantages over experimental techniques.   

 

4.1 Linear regressions are sufficient for some protein families 

Some phenotypes can clearly be modeled as the linear combination of individual 

amino acid contributions, such as thermostability as seen in some membrane 

(Casim A. Sarkar et al., 2008) and soluble proteins (Perl et al., 2000), and 

prediction of TG from ADK protein sequences. However, non-linear effects are 

clearly seen in the thermal stability of the Arc repressor (Brown and Sauer, 

1999), the brightness of the eqFP611 fluorescent protein (Poelwijk et al., 2019). 

Similarly, non-linear effects are seen here in the regression of organismal growth 

temperature from sequences. The varied success of linear regression models in 

predicting organismal growth temperature from sequence supports the 

hypothesis that the physical interactions that underlie thermoadaptation vary by 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2019. ; https://doi.org/10.1101/677328doi: bioRxiv preprint 

https://doi.org/10.1101/677328
http://creativecommons.org/licenses/by-nc/4.0/


protein family (Petsko, 2001). As an rMLP can model a linear regression, in 

addition to more complex functions, the protMLP algorithm likely represents a 

general solution to describing the relationship between sequence and 

quantitative characteristics of the protein.  

 

4.2 Protein families available for TG analysis will increase 

We recognize that construction of machine learning models for the regression of 

organismal growth temperatures is inherently limited by the number of sequence 

- TG pairs available. For Cold Shock Proteins, 24.9 sequences per column of the 

multiple sequence alignment were sufficient for non-linear MLPs to outperform a 

linear regression. The number of homologus sequences available for training is 

likely to increase as more organisms are sequenced. However, any new 

homologus sequences are only useful if they have an associated organismal 

growth temperature. Notably, with the CSP family examined here, 48% of the 

sequences were discarded due to an unknown organismal growth temperature. 

Further, the number of protein sequences with an unknown TG will likely increase 

as uncharacterized and unknown organisms are sequenced through 

metagenomics. Fortunately, computation methods are available to predict 

organismal growth temperatures from the genomic sequences of uncharacterized 

organisms (Wang and Sauer, 2019; Li et al., 2019), providing TGs for homologus 

proteins from species whose growth temperatures have not been experimentally 

determined. Using species’ growth temperatures predicted by the Li et al. method 
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increased the number of training and validation sequences with an assigned TG 

by 15%. Using these additional sequences and proteome predicted TGs in the 

protMLP method improved accuracy slightly (RMSE = 3.6 °C, r = 0.75) (Fig. S8).  

 

4.3 Single mutant accuracy requires densely sampled sequence space 

In principle, a trained rMLP should be sensitive to the effects of a single or few 

amino acid differences, such as experimentally generated point mutations. We 

therefore examined the correlation of rMLP predicted growth temperatures to the 

measured melting temperatures for single and double mutants of a CSP ortholog 

from Bacillus subtillis (BsCSP) (Fig. S9A). We found no correlation between 

mutant protein melting temperatures (Wunderlich et al., 2005; Garcia-Mira et al., 

2004) and predicted organismal optimal growth temperatures calculated from the 

mutant proteins’ sequences (r = -0.21). Comparing BsCSP to the training 

sequences, we noted that homologs with high sequence identity to BsCSP come 

from organisms with TGs similar to Bacillus subtillis (Fig. S9B). This is in contrast 

to BsCSP mutants, with only one or two amino acid changes, exhibiting 

significantly altered melting temperature from wild type (Perl et al., 2000; 

Wunderlich et al., 2005; Garcia-Mira et al., 2004). We therefore suspect that the 

available CSP sequences do not sufficiently sample sequence space to capture 

the effects of few or rare sequence differences. This hypothesis is supported by 

the accuracy of protMLP in predicting binding affinity of a deeply mutagenized 

WW domain (Fig. 3A). This dataset consists of only single, double, and triple 
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mutants, corresponding to 91-97% sequence identity. Therefore, this result 

demonstrates that rMLPs can accurately predict the effects of few mutations with 

sufficiently sampled sequence space.  

 

4.4 Application to describing organismal phenotypes  

We also note that the prediction of organismal ecological characteristics from 

protein sequences is itself valuable. While other methods are capable of 

predicting organismal growth temperatures (Wang and Sauer, 2019; Li et al., 

2019), protMLP calculates TG without requiring a complete genome or proteome 

sequence for the organism. This is particularly useful if the organism of interest 

no longer exists, such as ancestral organisms. It is possible to describe the 

thermal niche of no longer extant organisms by analyzing their reconstructed 

sequences using protMLP. Though the ecological niches of ancestral organisms 

have been inferred by the experimental characterization of reconstructed 

proteins’ melting temperatures (Nguyen et al., 2017), by predicting organismal 

growth temperature in silico, protMLP is faster and likely more accurate.  
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