DeepTetrad: high-throughput analysis of meiotic tetrads by deep learning in plants

Eun-Cheon Lim ${ }^{1}$, Jaeil Kim ${ }^{1}$, Jihye Park ${ }^{1}$, Eun-Jung Kim ${ }^{1}$, Juhyun Kim ${ }^{1}$, Hyun Seob Cho ${ }^{1}$, Dohwan Byun ${ }^{1}$, Ian R Henderson², Gregory P Copenhaver ${ }^{3}$, Ildoo Hwang ${ }^{1}$ and Kyuha Choi¹*
${ }^{1}$ Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
${ }^{2}$ Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK ${ }^{3}$ Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

*Corresponding author: Kyuha Choi (kyuha@postech.ac.kr)

Abstract

Meiotic crossovers facilitate chromosome segregation and create new combinations of alleles in gametes. Crossover frequency varies along chromosomes and crossover interference limits the coincidence of closely spaced crossovers. Crossovers can be measured by observing the inheritance of linked transgenes expressing different colors of fluorescent protein in Arabidopsis pollen tetrads. Here we establish DeepTetrad, a deep learning-based image recognition package for pollen tetrad analysis that enables high-throughput measurements of crossover frequency and interference in individual plants. DeepTetrad will accelerate genetic dissection of mechanisms that control meiotic recombination.

Main

Meiosis consists of two consecutive nuclear divisions and produces four haploid gametes from a single diploid cell in sexually reproducing eukaryotes ${ }^{1}$. In Arabidopsis male meiosis, $\sim 200-$

250 meiotic DNA double-strand breaks (DSBs) are induced in the genome by a DNA topoisomerase VI-like complex to initiate meiotic recombination ${ }^{2-4}$. Of these DSBs, only $\sim 8-$ 11 are repaired as crossovers (COs) using a homologous chromosome (homolog). Thus, male meiosis in the Arabidopsis genome, which comprises five chromosomes, results in an average of ~ 1.8 crossovers between homologs. This low number suggests the existence of mechanisms that limit crossovers, a phenomenon that is observed in most eukaryotes ${ }^{2}$. Meiotic DSB and CO frequencies are controlled by genetic and epigenetic factors and are non-randomly distributed along chromosomes, with higher levels around gene promoters and terminators and lower levels across the centromeres ${ }^{5-7}$.

At least two pathways (Type I and Type II), contribute to CO formation ${ }^{2,3}$. The Type I pathway leads to interfering COs that prevent the coincident occurrence of closely spaced CO on the same pair of chromosomes ${ }^{2,8,9}$. In plants, interfering COs represent $\sim 80-85 \%$ of total COs and are dependent on the ZMM proteins (ZIP4, MSH4, MSH5, MER3, HEI10, SHOC1, PTD, MLH1, MLH3). The remaining $\sim 10-15 \%$ of COs are non-interfering and occur via the Type II pathway ${ }^{10}$. Non-interfering COs are resolved by the MUS81 endonuclease and are restricted by anti-recombination factors such as FANCM, RECQ4A, RECQ4B, and FIGL1 ${ }^{11-15}$. Disruption of anti-recombination factors can increase the number of Type II COs in plants, which has the potential to create new combinations of desirable alleles that can improve crop varieties ${ }^{13,16}$. Therefore, high-throughput detection and understanding of CO frequency and interference have important implications for our understanding of the control of meiotic recombination as well as for breeding.

In Arabidopsis, CO frequency and interference can be measured by pollen tetrad analysis using Fluorescent-Tagged Lines (FTLs) in the quartet1 (qrt1) background ${ }^{17,18}$. Mutation of the QRT1 gene encoding a pectin methylestrase results in the four pollen products of male meiosis remaining attached to one another, allowing classical tetrad analysis. Each FTL has a transgenes that expresses eYFP (Y), dsRed (R) or eCFP (C) fluorescent proteins in mature pollen using the post-meiotic LAT52 promoter. Genetic intervals bounded by transgenes expressing different colors (e.g. IIbc, IIfg, I2ab, I2fg, I3bc, CEN3, I5ab; Supplementary Fig. 1) can be created by crossing FTLs. Scoring the segregation of 2 or 3 linked markers enables CO frequency and interference to be measured. For example, plants that are hemizygous for the three markers (YRC/+++) that define the IIbc interval produce 12 pollen tetrad classes (A-L) depending on the number of COs between $Y R$ and $R C$ (Supplementary Fig. 2). The relative segregation of any two markers can be used to place pollen tetrads into one of the
three categories used for classic tetrad analysis: parental ditype (PD), tetratype (T) and nonparental ditype (NPD) (Supplementary Fig. 3). Tetrad analysis enables the calculation of map distances between pairs of markers, and measurement of CO interference between adjacent intervals.

Visual analysis of pollen tetrads is a powerful method for measuring genetic distance and crossover interference in Arabidopsis ${ }^{12,14,15,17,18}$. For example, manual analysis using fluorescence microscopy has been used to measure interference by comparing the map distances of two-color FTL intervals with and without COs in an adjacent interval ${ }^{18}$. However, manually scoring large numbers of tetrads is laborious and time consuming. Alternatively, FTLs in the qrt1/+ or QRT1 background can be analyzed by flow cytometry, which allows rapid measurement of CO frequency and interference of $\sim 10,000$ single pollen grains per plant ${ }^{19-21}$. Unfortunately, the flow cytometric method is unable to detect double crossovers within single intervals, requires high purity pollen samples, and uses specialized equipment for three-color measurements. As an alternative, we have developed DeepTetrad (https://github.com/abysslover/deeptetrad), a deep learning-based image recognition package that enables quick, high-throughput, automated pollen tetrad analysis that can be used with existing FTL lines.

To develop DeepTetrad, we adapted the Mask Regional Convolutional Neural Network (Mask R-CNN), integrating a deep residual network (ResNet) backbone for image recognition to detect four-pollen tetrads with and without fluorescence ${ }^{22,23}$ (Fig. 1). First, DeepTetrad must precisely recognize pollen tetrads in bright-field pollen images, which include not only tetrads but also triads, dyads and monads (Fig. 1 a-c). DeepTetrad was assembled with two separate Mask R-CNN processes, using a ResNet-FPN backbone to generate masks of the bright-field pollen images (Fig. 1a) ${ }^{23,24}$. Then, DeepTetrad was trained to detect whole tetrad, triad, or dyad images via a Tetrad Segmentation Model with a ResNet depth of 101 layers. In parallel, we also trained DeepTetrad to detect every single pollen cell within tetrads, triads, dyads, and even monads via a Pollen Segmentation Model with a ResNet of depth 50 layers (Fig 1a). We used Keras and TensorFlow backends for training, with input bright-field images of pollen tetrads from FTLs ${ }^{25,26}$.

When trained, DeepTetrad can produce masks of both tetrad-like (tetrads, triads, dyads) and single pollen-like objects from bright-field images of pollen tetrads (Fig. 1b). Next, DeepTetrad assigns a centroid to each pollen mask. Based on the position and distance between centroids
of pollen masks within each tetrad-like mask, DeepTetrad recognizes measurable tetrads comprising four detectable pollen grains in the bright-field images (Fig. 1c). DeepTetrad's tetrad classifier then determines a tetrad type from a choice of 12 classes (A-L) for three-color assays (Supplementary Fig. 4), or from a choice of three types (PD, T, NPD) for two-color assays (Supplementary Fig. 5), according to the segregation pattern and intensity of fluorescence (yellow, red, cyan) in the four pollen masks per tetrad mask (Fig. 1d). CO frequency and interference can then be calculated using the frequency of tetrads in each class ${ }^{18}$. Because DeepTetrad is able to recognize single pollen grains and classify their fluorescence in tetrads, triads, dyads and monads, we developed the DeepMonad package by subclassing DeepTetrad. Like flow cytometry analysis, DeepMonad can measure crossover frequency and interference in FTLs by analyzing images of single fluorescent pollen grains in the qri1/+ and QRT1 backgrounds ${ }^{19}$. In addition, DeepMonad can analyze single grains within tetrads, which allows comparison of genetic distances and interference calculated by DeepTetrad and DeepMonad (Fig. 2).

Since DeepTetrad does not require specialized equipment (like flow cytometry), we developed a quick, simple method to prepare a large number of pollen tetrads for high-throughput imaging (Fig. 2a). This method allows extensive image sets of pollen tetrads (bright-field, red, yellow and cyan) to be obtained, which can then be analyzed quickly and simultaneously by DeepTetrad (Supplementary Table 1). We used this technique to measure genetic distances in two-color FTL intervals (CEN3, I1b, I1c, I1b-c, I1f, I1g, I1f-g, I2f, I2g, I2f-g, I3b, I3c, I3b-c, I5a, I5b, I5a-b) using DeepTetrad (Fig. 2b, Supplementary Fig. 1). The genetic distance values obtained this way were similar to those obtained using manual tetrad counting, flow cytometry and DeepMonad (Fig. 2b, Supplementary Table 2-4). Intriguingly, our DeepTetrad analysis showed higher crossover frequencies for long intervals (I1b, I1c, IIb-c, I3b-c, I5a, I5b, I5a-b) compared to DeepMonad single pollen analysis; this was because DeepTetrad, but not DeepMonad, detects double crossovers in long intervals (Fig. 2b, Supplementary Table 2-4). In addition, the CEN3 interval which spans the centromere on chromosome 3 had a lower CO rate ($2.21 \mathrm{cM} / \mathrm{Mb}$) than the overall male chromosome average CO frequencies ($4.77 \mathrm{cM} / \mathrm{Mb}$), and intervals $I 2 f$, $12 g$ and $I 2 f-g$ which are close to the telomere had higher CO frequencies ($10.19 \mathrm{cM} / \mathrm{Mb}, 10.71 \mathrm{cM} / \mathrm{Mb}$ and $10.23 \mathrm{cM} / \mathrm{Mb}$, respectively) (Fig. 2c, Supplementary Fig. 1), consistent with prior observations ${ }^{6,7,27}$. DeepTetrad can also recognize tetrad images taken at different magnifications, and produces consistent CO frequency irrespective of scale (Fig. 2d, Supplementary Fig. 6).

To demonstrate DeepTetrad's utility for measuring CO interference we analyzed tetrad images from the three-color (YRC/+++) FTL interval-I1bc (Fig. 2e, Supplementary Fig. 1). Previously, interference had been measured in manually counted tetrads by calculating the interference ratio (defined here as σ) of the map distance of an interval (i1) in tetrads that have a CO in an adjacent interval (i2) with the map distance of the same interval (i1) in tetrads that lack a CO in $i 2^{18}$. Analysis of 18,584 tetrads with DeepTetrad resulted in a σ value of 0.33 for $11 b c$ which is consistent with the σ value of 0.36 obtained by manually counting 923 tetrads (Fig. 2e, Supplementary Table 2-5). Flow cytometry has also been used to measure interference in fluorescent-tagged pollen monads by calculating the ratio of observed double COs to expected double COs (I=1-coefficient of coincidence, the ratio of $\mathrm{DCO}_{\text {obs }}$ to $\left.\mathrm{DCO}_{\exp }\right)^{19}$. An analysis of 74,336 monads (converted from tetrad images) using this method with DeepTetrad resulted in an interference value of 0.54 for $11 b c(Y R C /+++)$ which was consistent with a value of 0.56 obtained from flow sorting 135,789 monads (Fig. 2e) ${ }^{19}$. To provide baseline values for future studies we also used DeepTetrad and DeepMonad to measured σ and I values in 4 other 3color FTL intervals (I1fg, I2fg, I3bc and I5ab; (Fig. 2e, Supplementary Table 2 and 3). Previously, it was shown that frequency of Type II COs increases in fancm single mutants, as well as recq4a recq4b figl1 triple mutants, leading to an absence of interference ($\mathrm{I}=0, \sigma$ $=1)^{12,14,15,19}$. Using DeepTetrad, we found that the σ value of FTL-I2ab in recq4a recq4b figl1 plants is 1 , indicating no detectable interference, consistent with the prior observations (Fig. 2f, Supplementary Table 2 and 3). Taken together, our data demonstrate that DeepTetrad is a useful deep learning-based image recognition package for high-throughput measurements of both CO frequency and interference.

The FTL-based visual tetrad assay has been used extensively in studies of plant meiosis ${ }^{12,17,18}$. The application of flow cytometry to FTLs allowed rapid, high-throughput measurement of CO frequency and interference ${ }^{19,21}$. Here, we have extended the utility of FTLs further by developing DeepTetrad to enable quick, simple, and automated tetrad analysis. DeepTetrad will accelerate genetic analysis of meiotic recombination mechanisms as well as the influence of epigenetic and environmental effects.

Methods

DeepTetrad Network Architecture

DeepTetrad assembles two separate Mask Regional Convolutional Neural Network (Mask RCNN) for the instance segmentation task ${ }^{23}$. They generate masks of pollen objects and tetrad objects, respectively, from input bright-field images. As backbone architectures, which are responsible for feature detection, we used deep residual networks (ResNet) of depths 50 and 101, with a feature pyramid network (FPN) ${ }^{28}$. We use the same terminology and definitions as those used in the Mask R-CNN article ${ }^{23}$ when describing the backbone; ResNet-50-FPN. Multi-task loss L is also defined in the same manner.
$L=L_{c l s}+L_{b o x}+L_{\text {mask }}$
, where $L_{c l s}$ is classification loss. $L_{b o x}$ is loss of bounding box $v=\left(v_{x}, v_{y}, v_{w}, v_{h}\right)$, which is a rectangle defined by coordinates of the upper-top vertex (x, y), and the dimension (width w, height h). $L_{\text {mask }}$ is mask loss. The i-th mask of bounding box v, which is the core feature in DeepTetrad, is a grayscale image defined by the following logical predicate.
$m_{i}(v)=\left\{\left(x_{i}, y_{i}\right) \mid \operatorname{pixel}\left(x_{i}, y_{i}\right)>0, v_{x} \leq x_{i} \prec v_{x}+v_{w}, v_{y} \leq y_{i} \prec v_{y}+v_{h}, i>0\right\}$
, in which the pixel (x, y) function returns the pixel value of given coordinates in an image.

Mask segmentation is a multi-label classification. Hence $L_{\text {mask }}$ must be calculated independently for each class in a single image. It is achieved by applying a sigmoid function to each pixel, from which the mean of binary cross entropy loss is calculated.

$$
L_{\text {mask }}=-\sum_{i=1}^{C=2} y_{i} \log \left(\frac{1}{1+e^{x_{i}}}\right)
$$

Training

DeepTetrad is trained by nVidia TITAN X with 12 GB RAM using Keras ${ }^{26}$ and Tensorflow ${ }^{25}$ backends in the CUDA 10 platform. Transfer learning is performed with pre-trained weights on a Microsoft COCO dataset ${ }^{29}$. Input images are of fixed dimensions (1,920, 2,560). Zeropadding resizes each image to the exact dimension of $(2,048,2,560)$, which ensures that width and height are multiples of 512. The image is cropped at random positions with dimensions of (512, 512). For pollen objects, 919 training masks and 370 validation masks were used for
data augmentation. For tetrad objects, 1,371 training masks and 617 validation masks were used. Masks were annotated using VGG Image Annotator (VIA) ${ }^{30}$.

Image augmentation with scaling, translation, rotation, and shearing operations is randomly triggered to each training session and validation mini-batch. During an epoch, a mini-batch of two images per Graphic Processing Unit (GPU) is fed to the backbone. Regions of interest (ROIs) or bounding boxes are sampled 128 times for the pollen model; 512 times for the tetrad model.

The pollen model, in which ResNet-50-FPN backbone is integrated, is trained by a single GPU for 10,000 iterations using the Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.001 , momentum of 0.9 , and weight decay of 0.0001 . The tetrad model is trained with the same configuration, except that the backbone is replaced with ResNet-101-FPN and the number of iterations is increased to 20,000.

Inference

Each backbone applies non-maximum suppression to $6,000 \mathrm{ROI}$ candidates, in turn yielding 1,000 ROIs. The number of detected masks is limited by the maximum number of detecting instances D, which is set to 200 . Hence, only D-detected ROIs with the highest scores are selected to create masks. If D is increased, the model may fail to infer masks because of memory limitation, or the inference may be seriously prolonged. The model might also overlook a considerable number of masks, which would be a critical problem.

As a solution, DeepTetrad tries to infer masks from cropped images rather than directly gathering them from a whole image. In an image of dimension $(2048,2560)$, there are at least 1,600-5,000 ground truth pollen masks, and at least 400-1,250 ground truth tetrad masks. As well as tetrad masks, monad, dyad, and triad masks will also be reported by the tetrad model. Thus, the number of ground truth masks in the whole image is much larger than D in both cases. A total of 63 cropped images of dimension $(512,512)$ are generated from the whole image, thereby left images of dimension $(256,512)$, or top images of dimension $(512,256)$ are intersected with one another. Complete inference for the whole image involves predicting masks from a mini-batch of 21 cropped images in three epochs.

Mask refinement

All masks from the inference stage need to be refined. Masks that are produced at the edges of the cropped image are usually not overlapping in local coordinates, which represent the spatial location before translating to that in the whole image. However, they can become broken or overlapping when translated to global coordinates, which are the coordinates in the whole image. After removing broken or overlapping masks, contours and the number of tetrad and pollen masks can be more accurately determined. The procedure is as follows: i) all pixel coordinates of pollen masks, M_{p}, and tetrad masks, M_{t} in each cropped image are moved to global coordinates by translation (affine transformation). ii) All pixel coordinates of tetrad masks are stored in a k-d tree, T_{t}. Similarly, all pollen masks are kept in a k-d tree, T_{p}. iii) All tetrad masks are queried against T_{t}, and, similarly, all pollen masks are queried against T_{p} to collect refined tetrad masks, Ψ_{t}, and refined pollen masks, Ψ_{p}, which meet the predicate below:
$\Psi_{c}\left(M_{c}\right)=\left\{m_{i} \mid \operatorname{dist}\left(m_{i}, m_{j}\right)=0, n\left(m_{i}\right)>n\left(m_{j}\right), i \neq j, m_{i} \in M_{c}, m_{j} \in M_{c}\right\}$
, in which, $\operatorname{dist}(x, y)$ returns a Euclidean distance between x and $y, n(x)$ returns the number of elements, and c is either t (tetrad) or p (pollen).

The measurable tetrad masks and pollen masks, Ω, are defined as follows:
$\Omega\left(\Psi_{t}, \Psi_{p}\right)=\left\{\left(\psi_{i}, \psi_{j}\right) \mid n\left(\psi_{i} \cap \operatorname{centroid}\left(\psi_{j}\right)\right)=4, \psi_{i} \in \Psi_{t}, \psi_{j} \in \Psi_{p}\right\}$
, where centroid (x) yields the median of given mask coordinates.

Centroids are calculated to associate a tetrad mask Ψ_{t}, with the refined pollen masks Ψ_{p}. Each centroid of a pollen mask, Ψ_{p}, is queried against T_{t}, then Ψ_{p} is associated with a tetrad mask, Ψ_{t} if the Euclidean distance between them is 0 . When the number of Ψ_{p} associated with Ψ_{t} is four, they are deemed to be measurable.

Tetrad classification

A tetrad mask can be classified into a representative type of crossover event according to the fluorescence intensity values of associated pollen masks. The signal intensity, S_{c}, is defined as the mean of pixel values in each fluorescence channel of measurable pollen masks, in which c can be a fluorescence channel of red (R), yellow (Y), or cyan (C). We assume $c=\{R$, $Y\}$ for two-channel images, and $c=\{R, Y, C\}$ for three-channel images. For measurable tetrad masks, S_{c} of four pollen masks can be calculated, yet those which have undergone silencing in fluorescent protein expression should be ignored. If silencing occurs, the difference between S_{c} of the second-highest and the third-highest would be smaller than a certain threshold, Θ. Second-highest S_{c} represents presence or on-state of fluorescence proteins, whereas the third-highest implies absence or off-state of the proteins. Z-scores are calculated for four S_{c} values before finding Θ. We explored a parameter space of Θ up to two decimal places using an adaptive grid search method, then Θ was set to 0.40 , meaning that S_{c} differences between on-state and off-state must be bigger than but not equal to 0.40 in a normal distribution.

We determine if fluorescent proteins in a pollen grain are expressed by comparing individual S_{c} with the median of all four S_{c} values. With per-channel expressions, tetrad masks are classified as one of classical three tetrad types: parental ditype (PD), tetra type (T), and nonparental ditype (NPD), with two-color FTL intervals or 12 classes (A to L) with the three-color counterparts (Supplementary Fig. 2 and 3). In three-color FTL intervals that have two intervals (i1 and i2) with four chromatids (1-4), tetrad classes are non-crossover (A), single crossover interval 1 (B; SCO-i1), single crossover interval 2 (C; SCO-i2), two strand double crossover (D; 2stDCO), three strand double crossover a (E; 3st DCOa), three strand double crossover b (F; 3st DCOb), four strand double crossover (G; 4st DCO), non-parental ditype interval 1, noncrossover interval 2 (H; NPD-i1 NCO-i2), non-crossover interval 1, non-parental ditype interval 2 (I; NCO-i1 NPD-i2), non-parental ditype interval 1, single crossover interval 2 (J; NPD-i1 SCO-i2), single crossover interval 1, non-parental ditype interval 2 (K; SCO-i1 NPD-i2) and non-parental ditype interval 1, non-parental ditype interval 2 (L; NPD-i1 NPD-i2) ${ }^{18}$.

Calculation of interference

With two-color FTL intervals, we calculate crossover frequency following Perkin's equation:
$c M=\frac{0.5 T+3 N P D}{(P D+T+N P D)} * 100$

With three-color FTL intervals, we can calculate the interference ratio σ, which is the ratio of the map distance with adjacent crossover X_{V} to the map distance without adjacent crossover X 。
$\chi_{\gamma}=\frac{0.5 T_{\gamma}+3 N P D_{\gamma}}{P D_{\gamma}+T_{\gamma}+N P D_{\gamma}}=\frac{0.5(D+E+F+G+K)+3(J+L)}{(C+I)+(D+E+F+G+K)+(J+L)}$
$\chi_{\delta}=\frac{0.5 T_{\delta}+3 N P D_{\delta}}{P D_{\delta}+T_{\delta}+N P D_{\delta}}=\frac{0.5(B)+3(H)}{(A)+(B)+(H)}$
$\sigma=\frac{\chi_{\gamma}}{\chi_{\delta}}$
, in which PD means the number of parental ditypes or no crossover event. T is the number of tetratype or single crossover events. NPD is the number of non-parental ditype or double crossover events. A-L letters represent 12 tetrad classes from three-color FTLs (Supplementary Fig. 2) ${ }^{18}$.

In the above equations, we assumed that two adjacent genetic intervals of $i 1$ and $i 2$ are defined by three separate fluorescent protein transgenes of red, yellow, and cyan in sequential order. The y represents that at least a single crossover event occurred at i2, meanwhile δ denotes that no crossover events were found at i2. We highlight that the number of crossover event is counted at i1. T_{Y} is the tetratype tetrads for i1 that have a CO in i2, and $\mathrm{T}_{\bar{\delta}}$ is the tetratype tetrads for $i 1$ that do not have a CO in i2. DeepTetrad maps the order of input color images (red-yellow-cyan) to the physical order of fluorescent protein transgenes of FTLs for calculating the interference ratio as well as genetic distance.

Pollen tetrad preparation

FTL plants were grown at $20^{\circ} \mathrm{C}$ under long-day condition (16 h light $/ 8 \mathrm{~h}$ dark). Twenty open flowers of a primary shoot from 30-day old FTL plants were collected in a $1.5-\mathrm{ml}$ tube, and 1 ml of pollen tetrad preparation solution (17% sucrose, $2 \mathrm{mM} \mathrm{CaCl} 2,1.625 \mathrm{mM}$ boric acid, 0.1% Triton-X-100, pH 7.5) was added before incubating for 5 min at room temperature, with gentle rotation. Flowers and the solution were mixed by inverting the tube several times. The solution of pollen tetrads was pipetted and filtered into a new $1.5-\mathrm{ml}$ tube through an $80-\mu \mathrm{m}$
nylon mesh ($30 \times 30 \mathrm{~mm}$). The filtered solution was centrifuged at 500 g for 3 min to make a yellow pellet. The supernatant was removed and discarded by pipetting or vacuum aspiration. Four μ l of pollen tetrad preparation solution was added to the yellow pellet. After pipetting gently five times, the $4-\mu$ l suspension of pollen tetrads was loaded on a glass microscope slide and covered with a small cover glass ($9 \times 9 \mathrm{~mm}$). This resulted in $\sim 2,500$ tetrads for imaging.

Microscopy and imaging

A set of four photographs for each pollen tetrad was taken using a Leica M165 FC dissecting stereomicroscope with bright-field, RFP, YFP and CFP filters (ArticleNo 10450224, 10447410, 10447409, respectively) in sequential order. Twelve image sets per cover glass were obtained from ~ 20 flowers when a magnification of $50 x$ was used to image tetrads. Information about the gain, gamma, saturation and exposure for each FTL for high quality imaging is available (Supplementary Table 6).

Acknowledgements

We thank Raphael Mercier (MPI, Germany) for providing recq4 figl1 mutant seeds. We thank our colleagues for giving critical comments. This work is funded by the Suh Kyungbae Foundation, Republic of Korea, Next-Generation BioGreen 21 Program (PJ01337001), Rural Development Administration, Republic of Korea, and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1AB03028374). GPC is supported by a US National Science Foundation grant (IOS-1844264).

Fig. 1. Establishment of DeepTetrad.
a, Masking and training of tetrad-like and pollen images by DeepTetrad. Two separate DeepTetrad segmentation models make masks of tetrad-like and single pollens, respectively. \mathbf{b}, Generation of masks from tetrad-like and single pollen images by DeepTetrad. c, Recognition and selection of measurable tetrad masks by DeepTetrad. Black dots represent the centroid assigned to each pollen mask in monads, dyads, triads, and tetrads. d, Tetrad classification by DeepTetrad. Bright-field (1), red (2), yellow (3), cyan (4)-filtered tetrad images, tetrad mask (5), single-pollen masks (6), three-color merged tetrads (7) and DeepTetrad output are displayed. In the bar graphs of DeepTetrad output, X axis labels indicate four pollens per tetrad and Y axis labels show the intensities of three-color fluorescence in the tetrad image. Scale bar $=0.1 \mathrm{~mm}(\mathbf{a}, \mathbf{b}, \mathbf{d}$, left), 0.05 mm (d, right). The colors in the tetrad mask images (\mathbf{a}, middle panel, \mathbf{b}, right panel, $\mathbf{d},(6)$) do not correspond to fluorescence colors.

12 ab FTL	A	B	C	D	E	F	G	H	1	J	K	L	Total	Interval 1	Interval 2	Interval 3	w/o adj. CO	w adj. CO	σ
WT Col/her	1430	57	108	0	0	1	1	0	1	0	0	0	1598	1.85	3.63	5.57	0.02	0.01	0.47
recq4ab figl Coller	720	142	402	31	14	26	29	2	42	1	8	0	1417	9.46	28.33	36.38	0.09	0.10	1.16
	464	71	283	12	19	14	21	3	17	0	4	0	908	8.76	26.16	35.08	0.08	0.09	1.14
	900	156	549	22	32	33	33	2	43	3	6	0	1779	8.77	27.15	35.05	0.08	0.10	1.26

Fig. 2. Measurements of crossover frequency and interference by DeepTetrad.
a, A quick tetrad preparation method for high-throughput imaging of tetrads. The detail procedure was described in Methods. b, Plot showing measurement of CO frequencies (cM) in single intervals of FTLs. Genetic distances of single intervals were measured by DeepTetrad, manual counting, flow cytometry and DeepMonad. c, Plot showing measurement of CO frequencies ($c M / M b$) in single intervals of FTLs. A horizontal red line indicates the male chromosome average crossover rate. d, Plot showing measurement of genetic distances in various sized tetrad images by DeepTetrad. Different magnifications were applied to the same tetrad samples for imaging (Supplementary Fig. 6). e, Measurement of CO interference by DeepTetrad. The CO interference ratio ($\sigma=X_{i 1}$ without adjacent $\mathrm{CO} / \mathrm{X}_{i 1}$ with adjacent CO) was measured by DeepTetrad (DT) and manual counting (MC), highlighted in blue. Interference value (I=1-coefficenct of coincidence) in yellow, was calculated by flow cytometry (FC) and DeepMonad (DM). A value of 1 and 0 indicates no interference in σ and I, respectively. The values of interference in other FTLs were measured by DeepTetrad and DeepMonad. f, The CO interference ratio in recq4a recq4b figl1 plants. DeepTetrad shows that recq4a recq4b figl1 causes interference to be absent, increasing crossover frequency in FTL-I2ab.

347 Supplementary Fig. 1. T-DNA locations of pollen FTLs (I1bc, $1 \mathbf{1 f g}, \mathbf{I 2 a b}, \mathbf{I 2 f g}, \mathbf{I} 3 b c$, CEN3, I5ab) on the Arabidopsis thaliana genome.

T-DNA positions of FTLs originally generated in qrt1 Col-0 plants are displayed on the Arabidopsis genome. Each FTL of homozygous genotype for fluorescence T-DNAs was crossed to qrt1, and pollen tetrads of F_{1} plants were used to measure CO frequency and interference by DeepTetrad. Chr = chromosome.

Supplementary Fig. 2. Diagram of 12 tetrad classes (A-L) generated by three-color tetrad assay and DeepTetrad outputs.

Twelve tetrad classes (A-L) are generated from three-color tetrad assays ${ }^{18}$. According to the position and segregation of three T-DNAs expressing eYFP, dsRed and eCFP, non-crossover (A) and recombination tetrad classes (B-L) are determined in FTLs (YRC/+++). For each tetrad type, merged, red, yellow and cyan images are displayed. Bar graphs indicate the output of DeepTetrad classification. In the bar graphs, X axis labels indicate four pollens (1, 2, 3, 4) per tetrad and Y axis labels show the intensities of three-color fluorescence in the tetrad images.

Supplementary Fig. 3. Diagram for three tetrad classes (PD, T, NPD) of 2-color assay and DeepTetrad output.

Tetrad classes of PD (parental ditype), T (tetra type), and NPD (non-parental ditype) are generated from two-color tetrad assays of FTLs (RY/++). In the bar graphs, X axis labels indicate four pollens per tetrad and Y axis labels show the intensities of two-color fluorescence in the tetrad images.

Supplementary Fig. 4. Tetrad images and DeepTetrad output in three-color assay of FTL plants.

DeepTetrad recognizes measurable tetrads from a large number of tetrads, and classifies the tetrads as \mathbf{A} (non-crossover, NCO) or $\mathbf{B}-\mathbf{L}$ (recombinant tetrad classes with one or two crossovers in interval 1 and 2 (i1 and i2)) of FTL (RYC/++). Tetrad classes are B, single crossover interval 1 SCO-i1, C, SCO-i2, D, two strand double crossover 2st DCO, E, 3st DCOa, F, 3st DCOb, G, 4st DCO, H, NPD-i1 NCO-i2, I, NCO-i1 NPD-i2, J, NPD-i1 SCO-i2, K, SCOi1 NPD-i2, and L, NPD-i1 NPD-i2 ${ }^{18}$. Each panel (A-L) shows bright-field (upper left), singlepollen mask (upper middle), merged-fluorescent (upper right), and single-color fluorescent (lower three) images. The colors in the tetrad mask images do not correspond to fluorescence colors. In the bar graphs, X axis labels indicate four pollens per tetrad and Y axis labels show the intensities of three-color fluorescence in the tetrad images. Scale bar $=0.1 \mathrm{~mm}$.

Supplementary Fig. 5. Tetrad images and DeepTetrad output in two-color assay of FTLCEN3 (YR/++) plants.

DeepTetrad recognizes measurable tetrads (left panels) and classifies them as PD (parental ditype), \mathbf{T} (tetra type) and NPD (non-parental ditype) of tetrad types according to segregation of fluorescence in FTL-CEN3 ($Y R /++$) (middle panels). Each panel in the middle shows brightfield (upper left), single-pollen mask (upper middle), tetrad mask (upper right), mergedfluorescent (lower left), yellow (lower middle) and red (lower right) fluorescent images. The colors in the tetrad mask images do not correspond to fluorescence colors. In the bar graphs, X axis labels indicate four pollens per tetrad and Y axis labels show the intensities of two-color fluorescence in the tetrad images. Scale bar $=0.1 \mathrm{~mm}$.

Supplementary Fig. 6. Different sized tetrad images.
Tetrad images were taken using an epifluorescence microscope at different magnifications (ae) $(25 x, 32 x, 40 x, 50 x, 80 x)$ under bright-field, RFP, YPF and CFP filters. Scale bar $=0.1 \mathrm{~mm}$.

Supplementary Table 1. Comparison of crossover measurement methods.

DeepTetrad involves the preparation of a large number of tetrads using a quick and simple method, and increases the speed of tetrad analysis to obtain data from many individual plants by analyzing all tetrad images simultaneously. Abbreviations: CO, crossover; DCO, double crossovers.

	Tetrad analysis (manual counting)	Flow cytometry	Tetrad analysis (DeepTetrad)
Equipment requirements	Fluorescence microscope, graphics software	Fluorescence microscope, flow cytometer	Fluorescence microscope, DeepTetrad package
Tetrad preparation method	Simple	Multiple steps (50-ml tube, flow cytomeric tube)	Quick and simple (1.5-ml tube)
Time to prepare tetrads from 10 individual plants	2 h 30 min (1 h 40 min/sampling, 50 min/imaging)	$1 \mathrm{~h}(60$ min/sampling)	$1 \mathrm{~h} \mathrm{(10}$ min/sampling, 50 min/imaging)
Time of data analysis for two adjacent intervals in 10 individual plants (1,000 tetrads/plant)	30 h	$5 \mathrm{~h} \mathrm{(30} \mathrm{min/plant}$, 10 plants)	2 h 30 min (16 min/plant, 10 plants)
Imaging requirement	Yes	No	Yes
Data analysis	Individually	Individually	Simultaneously
Gene conversion measurement	Yes	Yo	
CO interference measurement	Yes	Yes	Yes
Single-interval DCO measurement	Yes	No	Yes
Differentiating 2-strand, 3-strand and 4-strand DCOs from one another	Yes	Nes	Yes
qrt1 mutant background	Yes	No	

410

distances are shown ${ }^{18}$. Genetic distances were measured by DeepTetrad, manual counting, flow cytometry ${ }^{6}, 19-21,31$, and DeepMonad. The results of statistical analyses (mean of $c \mathrm{M}, 95 \%$ confidence interval, P-value) on the genetic distances measured by different methods are shown. The P-values of significantly different crossover frequency are marked by asterisks. A P-value is not calculated when assumptions for the statistical t-test are violated. Abbreviations: DT, DeepTetrad; MC, manual counting; FC, flow cytometry; DM, DeepMonad; FTL, fluorescent tagged line.

FTL genotype	T-DNA 1	T-DNA 2	T-DNA 3	Mb	cM (DT)	cM (MC)	cM (FC)	cM (DM)	p-value (DT-MC)	p-value (DT-DM)	Total tetrads (DT)
11bc (YRC/+++)	3,905,441	5,755,618	9,850,022								18,584
110 (YR/++)	3,905,441	5,755,618		1.85	$\begin{gathered} 8.09 \pm \\ 0.17 \end{gathered}$	$\begin{gathered} 8.02 \pm \\ 0.59 \end{gathered}$	$\begin{gathered} 7.93 \pm \\ 0.18 \end{gathered}$	$\begin{gathered} 7.79 \pm \\ 0.20 \end{gathered}$	7.68E-01	1.54E-02*	
11c ($\mathrm{RC} /++$)		5,755,618	9,850,022	4.09	$\begin{array}{\|c\|} \hline 19.69 \pm \\ 0.37 \\ \hline \end{array}$	$\begin{gathered} 20.00 \pm \\ 0.83 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 19.20 \pm \\ 0.21 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 18.38 \pm \\ 0.32 \\ \hline \end{array}$	3.97E-01	2.02E-05*	
11b-c (YC/++)	3,905,441		9,850,022	5.94	$\begin{gathered} 27.43 \pm \\ 0.36 \\ \hline \end{gathered}$	$\begin{gathered} 27.59 \pm \\ 3.10 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 26.12 \pm \\ 0.42 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 24.88 \pm \\ 0.32 \\ \hline \end{array}$	9.07E-01	5.29E-09*	
11 fg (YCR/+++)	24,645,163	25,652,977	25,956,590								14,112
11f (YC/++)	24,645,163	25,652,977		1.01	$\begin{gathered} 6.44 \pm \\ 0.21 \\ \hline \end{gathered}$	$\begin{gathered} 5.74 \pm \\ 0.5 \\ \hline \end{gathered}$		$\begin{gathered} \hline 6.34 \pm \\ 0.26 \\ \hline \end{gathered}$	5.61E-02	4.78E-01	
$11 \mathrm{~g}(\mathrm{CR} /++$)		25,652,977	25,956,590	0.30	$\begin{gathered} 1.78 \pm \\ 0.11 \\ \hline \end{gathered}$	$\begin{gathered} 2.26 \pm \\ 0.61 \\ \hline \end{gathered}$		$\begin{gathered} 1.77 \pm \\ 0.10 \\ \hline \end{gathered}$	1.02E-01	8.19E-01	
11f-g (YR/++)	24,645,163		25,956,590	1.31	$\begin{gathered} 8.14 \pm \\ 0.18 \\ \hline \end{gathered}$	$\begin{gathered} 7.54 \pm \\ 2.5 \\ \hline \end{gathered}$	$\begin{gathered} 8.16 \pm \\ 0.07 \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.95 \pm \\ 0.18 \\ \hline \end{gathered}$	1.16E-01	1.05E-01	
12 fg (RYC/+++)	18,286,716	18,957,093	19,373,634								10,761
$12 \mathrm{f}(\mathrm{RY/++})$	18,286,716	18,957,093		0.67	$\begin{gathered} 6.83 \pm \\ 0.33 \\ \hline \end{gathered}$	$\begin{gathered} 7.29 \pm \\ 1.3 \\ \hline \end{gathered}$	$\begin{gathered} 7.95 \pm \\ 0.58 \\ \hline \end{gathered}$	$\begin{gathered} 6.79 \pm \\ 0.34 \\ \hline \end{gathered}$	3.94E-01	8.63E-01	
12 g ($\mathrm{YC/++}$)		18,957,093	19,373,634	0.42	$\begin{gathered} 4.50 \pm \\ 0.17 \\ \hline \end{gathered}$	$\begin{gathered} 4.61 \pm \\ 0.46 \\ \hline \end{gathered}$		$\begin{gathered} 4.45 \pm \\ 0.18 \\ \hline \end{gathered}$	6.31E-01	6.08E-01	
12f-g (RC/++)	18,286,716		19,373,634	1.09	$\begin{array}{\|c\|} \hline 11.15 \pm \\ 0.28 \\ \hline \end{array}$	$\begin{gathered} 11.5 \pm \\ 2.31 \\ \hline \end{gathered}$		$\begin{gathered} 10.93 \pm \\ 0.26 \\ \hline \end{gathered}$	6.67E-01	1.93E-01	
I3bc (CYR/+++)	498,916	3,126,994	4,319,513								10,669
136 (CY/++) $^{\text {a }}$	498,916	3,126,994		2.63	$\begin{array}{\|c\|} \hline 17.91 \pm \\ 0.54 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 17.94 \pm \\ 0.71 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 17.43 \pm \\ 1.14 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 16.95 \pm \\ 0.35 \\ \hline \end{array}$	9.58E-01	NA	
13c (YR/++)		3,126,994	4,319,513	1.19	$\begin{gathered} 4.53 \pm \\ 0.35 \\ \hline \end{gathered}$	$\begin{gathered} 4.88 \pm \\ 0.28 \\ \hline \end{gathered}$	$\begin{gathered} 5.17 \pm \\ 0.14 \\ \hline \end{gathered}$	$\begin{gathered} 4.44 \pm \\ 0.31 \\ \hline \end{gathered}$	8.17E-02	6.58E-01	
/3b-c (CR/++)	498,916		4,319,513	3.82	$\begin{gathered} 22.51 \pm \\ 0.64 \\ \hline \end{gathered}$	$\begin{gathered} 23.61 \pm \\ 1.46 \\ \hline \end{gathered}$	$\begin{gathered} 21.89 \pm \\ 1.22 \\ \hline \end{gathered}$	$\begin{gathered} 20.72 \pm \\ 0.53 \\ \hline \end{gathered}$	1.44E-01	1.65E-04*	
$15 a b$ (RYC/+++)	18,164,269	23,080,567	25,731,311								7,772
$15 \mathrm{a}(\mathrm{RY/++})$	18,164,269	23,080,567		4.92	$\begin{array}{\|c\|} \hline 22.24 \pm \\ 0.49 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 21.86 \pm \\ 1.36 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 22.70 \pm \\ 1.77 \\ \hline \end{array}$	$\begin{gathered} 20.73 \pm \\ 0.27 \\ \hline \end{gathered}$	5.32E-01	7.28E-05*	
156 ($\mathrm{YC/++}$)		23,080,567	25,731,311	2.65	$\begin{array}{\|c} \hline 13.31 \pm \\ 0.31 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 12.36 \pm \\ 1.28 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 12.81 \pm \\ 0.42 \\ \hline \end{array}$	1.62E-01	2.68E-02*	
15a-b (RC/++)	18,164,269		25,731,311	7.57	$\begin{array}{\|c\|} \hline 34.91 \pm \\ 0.38 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 34.21 \pm \\ 2.41 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 31.03 \pm \\ 0.50 \\ \hline \end{array}$	5.05E-01	1.35E-07*	
CEN3 (RY/++)	11,115,724	16,520,560		5.40	$\begin{array}{\|c\|} \hline 11.96 \pm \\ 0.64 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 12.72 \pm \\ 0.86 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11.17 \pm \\ 0.19 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11.45 \pm \\ 0.70 \end{array}$	1.16E-01	1.95E-01	7,657
$\begin{aligned} & \text { 12ab recq4ab figl } \\ & (\text { CYR/+++) } \end{aligned}$	12,640,092	13,226,013	14,675,407								4,271
$\begin{aligned} & 12 a \text { recq4ab figl } \\ & (\mathrm{CY} /++) \end{aligned}$	12,640,092	13,226,013		0.59	$\begin{gathered} \hline 8.86 \pm \\ 1.38 \\ \hline \end{gathered}$			$\begin{gathered} 8.35 \pm \\ 1.56 \\ \hline \end{gathered}$	NA	NA	
$\begin{aligned} & 12 b \text { recq4ab figl } \\ & (Y R /++) \end{aligned}$		13,226,013	14,675,407	1.45	$\begin{array}{\|c\|} \hline 27.47 \pm \\ 1.88 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 21.42 \pm \\ 0.48 \\ \hline \end{array}$	NA	NA	
12a-b recq4ab figl (CR/++)	12,640,092		14,675,407	2.04	$\begin{gathered} 35.26 \pm \\ 2.56 \\ \hline \end{gathered}$			$\begin{gathered} 25.99 \pm \\ 0.83 \end{gathered}$	NA	NA	

Supplementary Table 3. Measurements of crossover frequency and interference in FTL intervals by DeepTetrad.

Abbreviations: CO, crossover; non-crossover, NCO; single crossover, SCO; double crossover, DCO; st ${ }^{*}$, stand; NPD, nonparental ditype; σ, interference ratio. $\sigma=\mathrm{X}_{i 1}$ (with adjacent CO)/ $\mathrm{X}_{i 1}($ w/o adjacent CO$) . \mathrm{X}_{i 1}$ is the map distance of the first interval (i1) generated from the Perkins equation $\left(\left(1 / 2^{*} T\right)+3^{*}(N P D) / t o t a l\right)$. A σ value of 1 indicates no interference. The letters A-L represent tetrad classification as described previously ${ }^{18}$.

FTL	A NCO	$\left\|\begin{array}{c} \mathrm{B} \\ \mathrm{SCO}-\mathrm{in} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \mathrm{C} \\ \mathrm{SCO}-i 2 \end{gathered}\right.$	$\begin{gathered} \mathrm{D} \\ 2 \mathrm{st}^{\star} \\ \mathrm{DCO} \end{gathered}$	$\begin{array}{\|c} \mathrm{E} \\ 3 \mathrm{st}^{*} \\ \mathrm{DCOa} \end{array}$	$\left\|\begin{array}{c} F \\ 3 \mathrm{st}^{\star} \\ \mathrm{DCOb} \end{array}\right\|$	$\begin{gathered} \mathrm{G} \\ 4 \mathrm{st}^{\star} \\ \mathrm{DCO} \end{gathered}$	$\left\|\begin{array}{c} \mathrm{H} \\ \text { NPD-i } 11 \\ \text { NCO-i2 } \end{array}\right\|$	$\begin{gathered} 1 \\ \text { NCO-i1 } \\ \text { NPD-i2 } \end{gathered}$	$\begin{gathered} \mathrm{J} \\ \text { NPD-i1 } \\ \text { SCO-i2 } \end{gathered}$	$\begin{gathered} \text { K } \\ \text { SCO-i1 } \\ \text { NPD-i2 } \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{L} \\ \text { NPD-i1 } \\ \text { NPD-i2 } \end{gathered}\right.$	Total	$\left\lvert\, \begin{gathered} \text { Interval 1 } \\ (\mathrm{cM}) \end{gathered}\right.$	$\begin{gathered} \text { Interval } 2 \\ (\mathrm{cM}) \end{gathered}$	$\begin{gathered} \text { Interval } 3 \\ (c M) \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{X}_{\mathrm{in}} \\ \text { (w/o } \\ \text { adjace } \\ \mathrm{nt} \\ \mathrm{CO} \text {) } \\ \hline \end{array}$	$X_{i 1}$ (with adjace nt CO)	σ
I1bc	1490	370	898	26	13	18	21	1	15	1	3	0	2856	8.11	19.00	26.70	0.10	0.04	0.43
I1bc	1396	364	907	12	14	15	11	5	15	0	2	0	2741	8.17	19.35	27.14	0.11	0.03	0.25
I1bc	1346	324	861	18	14	15	20	3	16	0	1	0	2618	7.83	19.67	27.67	0.10	0.04	0.35
I1bc	642	152	427	8	5	7	8	2	5	1	0	0	1257	7.88	19.33	27.13	0.10	0.04	0.36
I1bc	1084	283	691	14	8	14	10	5	16	0	3	0	2128	8.51	20.00	27.84	0.11	0.03	0.28
I1bc	789	215	512	8	10	8	6	0	15	1	0	0	1564	8.09	20.30	27.88	0.11	0.03	0.32
I1bc	1253	304	862	21	10	18	12	7	14	0	0	0	2501	8.14	20.13	27.83	0.11	0.03	0.29
I1bc	1457	385	986	16	23	20	16	1	12	0	3	0	2919	8.03	19.72	27.25	0.11	0.04	0.34
total	9457	2397	6144	123	97	115	104	24	108	3	12	0	18584	8.10	19.66	27.40	0.11	0.03	0.33
11fg	1432	192	58	1	0	0	1	2	0	0	1	0	1687	6.14	1.96	7.97	0.06	0.02	0.39
11 fg	824	133	29	1	0	1	1	0	0	0	0	0	989	6.88	1.62	8.54	0.07	0.05	0.67
11 fg	1640	227	71	2	0	0	1	2	0	0	0	0	1943	6.23	1.90	8.13	0.06	0.02	0.32
11 fg	2029	295	87	4	0	0	0	2	0	0	0	0	2417	6.43	1.88	8.15	0.07	0.02	0.33
11 fg	1726	251	69	2	1	0	0	0	0	0	0	0	2049	6.20	1.76	7.83	0.06	0.02	0.33
11 fg	1584	236	68	1	0	1	0	1	0	0	0	0	1891	6.45	1.85	8.22	0.07	0.01	0.21
11 fg	1365	203	47	4	0	1	2	1	0	0	0	0	1623	6.65	1.66	8.29	0.07	0.06	0.97
11fg	1269	195	45	2	1	1	0	0	0	0	0	0	1513	6.58	1.62	8.00	0.07	0.04	0.61
total	11869	1732	474	17	2	4	5	8	0	0	1	0	14112	6.41	1.80	8.12	0.07	0.03	0.44
12ab recq4 figl	559	85	330	13	20	16	21	3	23	0	7	0	1077	8.36	26.93	34.35	0.08	0.09	1.12
	720	142	402	31	14	26	29	2	42	1	8	0	1417	9.46	28.33	36.38	0.09	0.10	1.16
	900	156	549	22	32	33	33	2	43	3	6	0	1779	8.77	27.15	35.05	0.08	0.10	1.26
total	1279	227	732	44	34	42	50	5	65	1	15	0	2494	8.98	27.73	35.51	0.09	0.10	1.14
$12 f g$	1036	158	112	3	0	1	0	0	1	0	0	0	1311	6.18	4.65	10.56	0.07	0.02	0.26
$12 f g$	1068	178	124	3	0	1	1	0	0	0	0	0	1375	6.65	4.69	11.24	0.07	0.02	0.27
$12 f g$	798	126	87	2	1	1	1	1	0	0	0	0	1017	6.74	4.52	11.16	0.07	0.03	0.38
$12 f g$	1115	207	117	5	4	2	0	0	0	0	0	0	1450	7.52	4.41	11.38	0.08	0.04	0.55
12fg	1746	294	197	3	0	0	4	1	1	0	0	0	2246	6.83	4.67	11.73	0.07	0.02	0.23
12 fg	797	143	77	3	1	1	0	0	1	0	0	0	1023	7.23	4.30	11.14	0.08	0.03	0.40
12 fg	798	133	80	1	1	1	1	0	0	0	0	0	1015	6.75	4.14	10.89	0.07	0.02	0.33
$12 f g$	1031	171	115	4	2	0	1	0	0	0	0	0	1324	6.72	4.61	11.10	0.07	0.03	0.40
total	8389	1410	909	24	9	7	8	2	3	0	0	0	10761	6.83	4.53	11.21	0.07	0.03	0.34
I3bc	657	368	96	3	6	2	8	4	0	0	0	0	1144	17.96	5.03	23.78	0.19	0.08	0.43
I3bc	500	270	53	7	1	1	5	3	0	0	0	0	840	17.98	3.99	22.20	0.19	0.10	0.56
I3bc	1128	615	152	4	9	8	5	13	1	0	0	0	1935	18.58	4.75	23.20	0.20	0.07	0.37
I3bc	1035	523	131	4	3	3	5	7	2	0	0	0	1713	16.93	4.61	21.72	0.18	0.05	0.28
I3bc	572	292	65	1	2	4	4	8	0	0	0	0	948	18.51	4.01	22.94	0.19	0.07	0.37
I3bc	958	510	123	5	2	3	8	4	1	0	0	0	1614	17.10	4.55	22.18	0.18	0.06	0.35
I3bc	505	264	57	7	1	5	1	5	0	1	0	0	846	18.56	4.26	21.51	0.19	0.14	0.73
I3bc	937	535	134	3	4	6	4	3	2	1	0	0	1629	17.68	5.03	22.53	0.19	0.07	0.40
total	6292	3377	811	34	28	32	40	47	6	2	0	0	10669	17.83	4.61	22.53	0.19	0.08	0.41
$15 a b$	637	585	315	18	18	26	20	9	4	0	1	0	1633	22.11	13.07	35.00	0.26	0.10	0.40
$15 a b$	696	668	409	19	17	14	11	13	4	4	1	0	1856	22.41	13.58	34.51	0.27	0.09	0.33
$15 a b$	563	504	304	14	13	18	11	15	2	1	2	0	1447	22.74	13.30	34.90	0.27	0.09	0.32
$15 a b$	508	461	270	15	27	12	20	6	1	3	1	0	1324	22.28	13.56	35.35	0.25	0.13	0.52
15 ab	602	527	292	23	13	21	22	8	3	0	1	0	1512	21.66	13.06	34.79	0.25	0.11	0.42
total	3006	2745	1590	89	88	91	84	51	14	8	6	0	7772	22.24	13.32	34.88	0.26	0.10	0.39

Abbreviations: NPD, non-parental ditype; T, tetra type; FTL, fluorescence tagged line.

FTL Interval	NPD	T	Total	cM	FTL Interval	NPD	T	Total	cM
CEN3	1	163	670	12.61	12 g	0	11	153	3.59
CEN3	0	134	517	12.96	12 g	0	9	114	3.95
CEN3	0	164	623	13.16	12 g	0	6	77	3.90
CEN3	2	124	528	12.88	12 g	0	15	169	4.44
CEN3	2	155	593	14.08	12 g	0	9	119	3.78
CEN3	0	124	563	11.01	12 g	0	10	99	5.05
CEN3	2	150	656	12.35	12 g	0	22	205	5.37
I1b	0	151	998	7.57	$12 f-g$	0	119	547	10.88
I1b	0	112	764	7.33	12f-g	1	88	363	12.95
I1b	0	119	737	8.07	$12 f-g$	2	126	556	12.41
I1b	0	118	692	8.53	$12 f-g$	0	65	333	9.76
I1b	0	35	224	7.81	13 b	1	190	542	18.08
I1b	0	118	670	8.81	136	2	126	380	18.16
I1c	3	347	998	18.29	$13 b$	4	230	694	18.30
I1C	2	234	618	19.90	I3b	4	64	228	19.30
I1c	8	261	737	20.96	$13 b$	9	273	784	20.85
11c	4	258	710	19.86	$13 b$	0	59	193	15.28
11c	9	180	577	20.28	I3b	1	68	219	16.89
I1c	6	182	521	20.92	$13 b$	2	99	296	18.75
I1c	4	174	500	19.80	$13 b$	4	167	559	17.08
I1b-c	6	472	998	25.45	$13 b$	2	134	381	19.16
I1b-c	4	435	764	30.04	I3b	1	65	207	17.15
11b-c	10	352	737	27.95	I3b	0	59	184	16.03
$11 b-c$	4	387	674	30.49	$13 b$	1	67	196	18.62
$11 b-c$	2	120	213	30.99	$13 b$	0	110	311	17.68
$11 b-c$	2	45	132	21.59	$13 b$	2	126	391	17.65
$11 b-c$	0	25	47	26.60	I3b	2	166	494	18.02
I1f	0	56	536	5.22	13c	1	22	276	5.07
I1f	0	56	494	5.67	13c	0	20	219	4.57
I1f	0	35	292	5.99	I3c	0	31	296	5.24
I1f	1	70	589	6.45	13c	1	50	559	5.01
I1f	0	61	607	5.02	13c	0	34	381	4.46
I1f	18	1	169	7.10	13c	0	18	184	4.89
I1f	29	0	222	6.53	13c	0	21	196	5.36
I1f	23	0	198	5.81	13c	0	29	311	4.66
I1f	0	16	129	6.20	13c	0	33	391	4.22
I1f	0	22	199	5.53	I3c	0	53	494	5.36
I1f	0	17	152	5.59	I3b-c	5	92	233	26.18
I1f	0	18	188	4.79	I3b-c	3	91	219	24.89
I1f	0	21	196	5.36	I3b-c	4	122	296	24.66
I1f	0	22	155	7.10	I3b-c	6	208	559	21.82
I1f	0	12	99	6.06	I3b-c	6	162	381	25.98
I1f	0	15	122	6.15	I3b-c	0	74	184	20.11
I1f	0	7	118	2.97	I3b-c	2	85	196	24.74
I1g	0	17	645	1.32	$13 b-c$	2	135	311	23.63
11 g	0	22	532	2.07	$13 b-c$	4	143	391	21.36
11 g	0	17	294	2.89	$13 b-c$	4	200	494	22.67
11 g	1	36	739	2.84	15a	2	266	608	22.86
11 g	0	31	665	2.33	15a	6	208	513	23.78
11 g	0	21	500	2.10	15 a	2	48	139	21.58
$11 f-g$	0	70	544	6.43	15 a	1	34	99	20.20
$11 f-g$	0	74	475	7.79	15a	1	53	140	21.07
$11 f-g$	0	43	256	8.40	15b	0	168	608	13.82
$12 f$	0	68	532	6.39	15b	0	102	407	12.53
$12 f$	0	53	363	7.30	15b	0	119	442	13.46
$12 f$	1	82	556	7.91	I5b	0	107	493	10.85
$12 f$	0	41	333	6.16	$15 b$	1	30	136	13.24
$12 f$	0	91	525	8.67	15b	0	20	99	10.10
$12 g$	0	47	480	4.90	$15 b$	1	29	140	12.50
12 g	0	46	363	6.34	15a-b	9	369	608	34.79
12 g	0	50	556	4.50	$15 a-b$	18	304	605	34.05
12 g	0	23	334	3.44	15a-b	11	281	476	36.45
12 g	0	59	536	5.50	15a-b	8	280	493	33.27
$12 g$	0	71	639	5.56	15a-b	2	90	134	38.06
12 g	0	12	126	4.76	15a-b	1	59	99	32.83
12 g	0	6	73	4.11	15a-b	1	78	140	30.00

Supplementary Table 5. Measurements of crossover interference in FTL-I1bc by manually counting tetrads.

Abbreviations: CO, crossover; non-crossover, NCO; single crossover, SCO; double crossover, DCO; st*, stand; NPD, non-parental ditype; σ, interference ratio. $\sigma=X_{i 1}$ (with adjacent CO)/ $X_{i 1}$ (w/o adjacent CO). $\mathrm{X}_{i 1}$ is the map distance of the first interval ($i 1$) generated from the Perkins equation $\left(\left(1 / 2^{*} T\right)+3^{*}(N P D) /\right.$ /total). A σ value of 1 indicates no interference. The letters A-L represent tetrad classification as described previously ${ }^{18}$.

FTL	$\begin{gathered} \text { A } \\ \text { NCO } \end{gathered}$	$\begin{gathered} \text { B } \\ \text { SCO-i1 } \end{gathered}$	$\left\|\begin{array}{c} \text { C } \\ \text { sco-i2 } \end{array}\right\|$	$\begin{gathered} \mathrm{D} \\ 2 \mathrm{st} t^{\star} \\ \mathrm{DCO} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ 3 \mathrm{st}^{\star} \\ \mathrm{DCOa} \end{gathered}$	$\begin{gathered} F \\ 3 \mathrm{st}^{\star} \\ \mathrm{DCOb} \end{gathered}$	$\begin{gathered} \mathrm{G} \\ 4 \mathrm{st}^{\star} \\ \mathrm{DCO} \end{gathered}$	$\left\lvert\, \begin{gathered} H \\ \text { NPD- } \mathrm{il} \\ \text { NCO-i2 } \end{gathered}\right.$	$\begin{gathered} 1 \\ \text { NCO-i1 } \\ \text { NPD- } 12 \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{J} \\ \text { NPD-i1 } \\ \mathrm{SCO}-\mathrm{i} \end{gathered}\right.$	$\begin{gathered} \mathrm{K} \\ \text { SCO-i1 } \\ \text { NPD- } 12 \end{gathered}$	$\left\|\begin{array}{c} \mathrm{L} \\ \text { NPD-i1 } \\ \text { NPD-i2 } \end{array}\right\|$	Total	Interval 1 (cM)	$\begin{array}{\|c} \text { Interval } 2 \\ (\mathrm{cM}) \end{array}$	Interval 3 (cM)	$x_{i 1}($ w/o adjace nt $c 0)$ $c o$	$\begin{array}{\|c\|} \hline \mathrm{X}_{\mathrm{il}} \\ \text { (with } \\ \text { adjace } \\ \mathrm{nt} \\ \mathrm{CO}) \\ \hline \end{array}$	σ
11bc	514	110	277	7	4	4	4	0	3	0	0	0	923	6.99	17.01	23.67	0.09	0.03	0.36

Supplementary Table 6. Information of imaging fluorescent pollen in FTLs.

The gain, saturation, gamma values except for the exposure value are applied across images: gain of x10.1, saturation of 1.00, gamma of 1.50. In particular, exposure for the YFP image should be adjusted if its fluorescence is weaker than those in the other channels. The table shows the value of exposure applied to each FTL (fluorescent tagged line).

FTL	Red (ms)	Yellow (ms)	Cyan (ms)
I1bc (YRC/+++)	250	1,200	1,200
I1fg (YCR/+++)	300	800	800
I2ab (CYR/+++)	150	700	1,500
12 fg (RYC/+++)	40	1500	700
I3bc(CYR/+++)	300	1300	800
CEN3 (YR/++)	700	1500	
I5ab (RYC/+++)	500	1,500	1500

References

1. Hunter, N. Meiotic Recombination: The Essence of Heredity. Cold Spring Harb. Perspect. Biol. 7, a016618 (2015).
2. Mercier, R., Mézard, C., Jenczewski, E., Macaisne, N. \& Grelon, M. The Molecular Biology of Meiosis in Plants. Annu. Rev. Plant Biol. 66, 297-327 (2015).
3. Wang, Y. \& Copenhaver, G. P. Meiotic Recombination: Mixing It Up in Plants. Annu. Rev. Plant Biol. 69, 577-609 (2018).
4. Vrielynck, N. et al. A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 351, 939-43 (2016).
5. Choi, K. \& Henderson, I. R. Meiotic recombination hotspots - A comparative view. Plant J. 83, (2015).
6. Choi, K. et al. Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis thaliana transposons and gene regulatory regions. Genome Res. 28, (2018).
7. Choi, K. et al. Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat. Genet. 45, (2013).
8. Mercier, R. et al. Two meiotic crossover classes cohabit in Arabidopsis: one is dependent on MER3, whereas the other one is not. Curr. Biol. 15, 692-701 (2005).
9. Higgins, J. D., Armstrong, S. J., Franklin, F. C. H. \& Jones, G. H. The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes Dev. 18, 2557-70 (2004).
10. Berchowitz, L. E., Francis, K. E., Bey, A. L. \& Copenhaver, G. P. The role of AtMUS81 in interference-insensitive crossovers in A. thaliana. PLoS Genet. 3, e132 (2007).
11. Serra, H. et al. Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis. Proc. Natl. Acad. Sci. U. S. A. 115, 2437-2442 (2018).
12. Fernandes, J. B., Séguéla-Arnaud, M., Larchevêque, C., Lloyd, A. H. \& Mercier, R. Unleashing meiotic crossovers in hybrid plants. Proc. Natl. Acad. Sci. U. S. A. 115, 2431-2436 (2018).
13. Choi, K. Advances towards Controlling Meiotic Recombination for Plant Breeding. Mol. Cells 40, (2017).
14. Crismani, W. et al. FANCM limits meiotic crossovers. Science 336, 1588-90 (2012).
15. Girard, C. et al. AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms. PLoS Genet. 11, e1005369 (2015).
16. Mieulet, D. et al. Unleashing meiotic crossovers in crops. Nat. Plants 4, 1010-1016 (2018).
17. Francis, K. E. et al. Pollen tetrad-based visual assay for meiotic recombination in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 104, 3913-8 (2007).
18. Berchowitz, L. E. \& Copenhaver, G. P. Fluorescent Arabidopsis tetrads: a visual assay for quickly developing large crossover and crossover interference data sets. Nat. Protoc. 3, 41-50 (2008).
19. Yelina, N. E. et al. High-throughput analysis of meiotic crossover frequency and interference via flow cytometry of fluorescent pollen in Arabidopsis thaliana. Nat. Protoc. 8, 2119-2134 (2013).
20. Ziolkowski, P. A. et al. Juxtaposition of heterozygosity and homozygosity during meiosis causes reciprocal crossover remodeling via interference. Elife 4, e03708 (2015).
21. Ziolkowski, P. A. et al. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev. 31, 306-317 (2017).
22. He, K., Zhang, X., Ren, S. \& Sun, J. Deep Residual Learning for Image Recognition. ArXiv 1512.03385 (2015).
23. He, K., Gkioxari, G., Dollár, P. \& Girshick, R. Mask R-CNN. ArXiv 1703.06870 (2017).
24. Lin, T.-Y. et al. Feature Pyramid Networks for Object Detection. ArXiv 1612.03144 (2016).
25. Abadi, M. et al. TensorFlow: A system for large-scale machine learning. in Operating Systems Design and Implementation 265-283 (2016).
26. Chollet, F. keras. GitHub (2015).
27. Giraut, L. et al. Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLoS Genet. 7, (2011).
28. Girshick, R. Fast R-CNN. ArXiv 1504.08083 (2015).
29. Lin, T.-Y. et al. Microsoft COCO: Common Objects in Context. ArXiv 1405.0312v3 (2015).
30. Dutta, A. \& Zisserman, A. The VGG Image Annotator (VIA). ArXiv 1904.10699v1 (2019).
31. Yelina, N. E. et al. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev. 29, 2183-202 (2015).
