1	Title pageJune 26, 2019
2	
3	Motor cortex can directly drive the globus pallidal neurons in a projection
4	neuron type dependent manner in rat
5	
6	Fuyuki Karube ¹ *, Susumu Takahashi ^{1,2} , Kenta Kobayashi ³ , and Fumino Fujiyama ¹ *
7	
8	¹ Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University
9	Kyotanabe 610-0394, Japan
10	² Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain Science,
11	Doshisha University
12	Kyotanabe 610-0394, Japan (Current address)
13	³ Section of Viral Vector Development, National Institute for Physiological Sciences
14	Okazaki 444-8585, Japan
15	
16	*Correspondence to: Associate Prof. Fuyuki Karube and Prof. Fumino Fujiyama
17	Laboratory of Neural Circuitry
18	Graduate School of Brain Science, Doshisha University
19	Kyotanabe 610-0394, JAPAN

20	Tel: 81-774-65-7381 (Japan)
21	Fax: 81-774-73-1931
22	E-mail: fkarube@mail.doshisha.ac.jp
23	ffujiyam@mail.doshisha.ac.jp
24	
25	Author contributions
26	FK designed and performed all experiments and analyzed the data. KK prepared the viral vectors.
27	FK, ST, and FF contributed reagents, experimental devices, and tools. FK, ST, and FF wrote the
28	manuscript.
29	
30	Declarations of interest
31	The authors declare no competing financial interests.
32	
33	Short title: A cell type-dependent cortico-pallidal pathway
34	
35	Key words: cerebral cortex, globus pallidus, striatum, subthalamic nucleus, projection
36	
37	Number of tables: 1
38	

39 Number of figures: 10 figures and 4 figure-figure supple	lements.
--	----------

40

41	Number of supplementary materials: 2 supplementary tables and 2 supplementary figures.
42	
43	Acknowledgement: The authors thank Dr. Yasuharu Hirai for discussion and comments. We also
44	thank Dr. Yoon-Mi Oh for technical assistance.
45	
46	Grant information: This study was funded by Grants-in-Aid from The Ministry of Education,
47	Culture, Sports, Science, and Technology (MEXT) and Japan Society for the Promotion of Science
48	(JSPS) for Scientific Research (26350983 and 16H01622 to FK; 16H06543, 16H02840 to ST;
49	25282247 and 15K12770 to FF) and for Scientific Researches on Innovative Areas "Adaptive Circuit
50	Shift" (26112001 to FF).

51

52 Abbreviations:

53	A/P, anterior/posterior coordinate; ACSF, artificial cerebrospinal fluid; AP5,
54	5-aminophosphonovaleric acid; BDA, biotinylated dextran amine; CB, calbindin; CC, cingulate
55	cortex; ChR2, channel rhodopsin 2; CMAc, caudal cingulate motor area; CMAr, rostral cingulate
56	motor area; CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione; CTB, cholera toxin subunit B; D/V,
57	dorsal/ventral coordinate; DAB, 3,3' -diaminobenzidine; EP, entopeduncular nucleus; EPSC,
58	excitatory postsynaptic current; fAHP, fast afterhyperpolarization; FoxP2, forkhead box protein 2;
59	GABA, gamma aminobutyric acid; GP, globus pallidus external segment in rodents; GP _{Bi} ,
60	bi-directionally projecting GP neurons; GP _{CPu} , GP neurons projecting to the striatum; GP _{STN} , GP
61	neurons projecting to the STN; ic, internal capsule; LED, light-emitting diode; Lhx6, LIM homeobox
62	6; LO, lateral orbitofrontal area; M/L, mediolateral coordinate; MOR, mu-opioid receptor; MSN,
63	medium spiny neuron; N.A., numerical aperture; oEPSC, optically evoked EPSC; OFC, orbitofrontal
64	cortex; PB, phosphate buffer; PHA-L, Phaseolus vulgaris leucoagglutinin; PT, pyramidal tract; PV,
65	parvalbumin; ROI, region of interest; RT, room temperature; sAHP, slow afterhyperpolarization;
66	SMA, supplementary motor area; SN, substantia nigra; SNc, substantia nigra pars compacta; SNr,
67	substantia nigra pars reticulata; STN, subthalamic nucleus; TBS, Tris buffered saline; TTX,
68	tetrodotoxin.

69

70 Abstract

71	The basal ganglia (BG) are critical for the control of motor behaviors and for reinforcement learning.
72	Here, we demonstrate in rats that primary and secondary motor areas (M1 and M2) make functional
73	synaptic connections in the globus pallidus (GP), not usually thought of as an input site of the BG
74	using optogenetics and morphological analysis. The cortical excitation in the GP was as strong as
75	that in the STN. GP neurons projecting to the striatum were preferentially innervated by the motor
76	cortex. Morphological observation revealed that the density of axonal boutons from motor cortices in
77	the GP was approximately 30% of that in the striatum, but was comparable to that in the STN. M1
78	and M2 projected differentially to the BG in terms of topography and substructures. These results
79	suggest that cortico-pallidal innervation is an additional excitatory input to the BG, and can affects
80	behaviors via the cortex-basal ganglia-thalamus loop.

81

82 Introduction

Parallel loops of neural connections among the cerebral cortex, basal ganglia, and thalamus contribute to multiple aspects of behavior (Alexander, DeLong, & Strick, 1986; Nambu, 2008; Wei & Wang, 2016). The functions mediated by these loops depend on relevant cortical areas and brain regions receiving outputs of the basal ganglia (Hikosaka, 2007; Middleton & Strick, 2000). The loop containing the motor cortex is crucial for appropriate motor control, action selection, and movement-related learning. Dysfunction of the motor loop involves movement disorders such as

Parkinsonian disease (Albin, Young, & Penney, 1989; DeLong, 1990; Middleton & Strick, 2002; 89 Nambu, 2008; Nambu et al., 2000; Parent & Hazrati, 1995a; Redgrave et al., 2010; Wichmann & 90 DeLong, 1996). Cortical projections drive three pathways in the basal ganglia: the direct, the indirect, 91and the hyperdirect pathways (Bolam, Hanley, Booth, & Bevan, 2000; Y. Smith, Bevan, Shink, & 92Bolam, 1998). The direct and indirect pathways are mediated by two distinct types of striatal 93 94medium spiny neurons (MSNs), termed the direct- and indirect-pathway MSNs (dMSNs and iMSNs). dMSNs project to the output nuclei of the basal ganglia, namely the substantia nigra (SN) pars 95reticulata (SNr), and the globus pallidus internal segment, the latter termed the entopeduncular 96 nucleus (EP) in rodents. The iMSNs project to the globus pallidus external segment (GP in rodents), 97which interconnects with the subthalamic nucleus (STN). In turn, both STN and GP also innervate 98the output nuclei. The hyperdirect pathway involves direct cortical projections to the STN (Nambu, 99 100 Tokuno, & Takada, 2002), which provides the fastest information flow among the three pathways (Nambu et al., 2000). The behavioral functions of these pathways are gradually being elucidated, 101 although recent findings propose refinement and reappraisal of the classical views of the functional 102 roles of distinct MSNs (Calabresi, Picconi, Tozzi, Ghiglieri, & Di Filippo, 2014; Cui et al., 2013; 103 104 Isomura et al., 2013; Vicente, Galvao-Ferreira, Tecuapetla, & Costa, 2016). According to the traditional model, the direct pathway promotes the execution of desired actions, whereas the indirect 105pathway prevents the execution of competing actions (Friend & Kravitz, 2014; Nambu, 2007; 106 Vicente et al., 2016), and the hyperdirect pathway emergently cancels or switches imminent 107

movements (Frank, Samanta, Moustafa, & Sherman, 2007; Isoda & Hikosaka, 2008; Nambu et al.,
2002; Schmidt, Leventhal, Mallet, Chen, & Berke, 2013). In this regard, basal ganglia activity and
function are likely modulated by the cerebral cortex.

111	The rodent motor cortical area is composed of primary and secondary motor cortices, M1 and
112	M2, respectively. The rodent M1 codes and conducts movement signals (Barth, Jones, & Schallert,
113	1990; Brown & Teskey, 2014) via direct projections to the brainstem and spinal cord, analogously to
114	the primate M1. It has been debated whether the rodent M2, which has various other names such as
115	the medial agranular cortex and the medial precentral cortex (Ebbesen et al., 2018; Svoboda & Li,
116	2018), is a functional counterpart of the primate premotor and/or supplementary motor areas (Barthas
117	& Kwan, 2017; Svoboda & Li, 2018). Recent studies have revealed the functional role and
118	significance of the rodent M2 (Guo et al., 2014; Hira et al., 2014; Hira et al., 2013; Li, Chen, Guo,
119	Gerfen, & Svoboda, 2015; Manita et al., 2015; D. Miyamoto et al., 2016; Murakami, Shteingart,
120	Loewenstein, & Mainen, 2017; Murakami, Vicente, Costa, & Mainen, 2014; Saiki et al., 2014; Soma
121	et al., 2017; Sul, Jo, Lee, & Jung, 2011). The M2 integrates motor signals and multimodal
122	sensory/internal state information [for review see Barthas and Kwan (2017)]. The M2 is also
123	involved in the preparatory and movement phases of behavior (Guo et al., 2014; Heindorf, Arber, &
124	Keller, 2018; Li et al., 2015; Murakami et al., 2017; Murakami et al., 2014), and learning of motor
125	tasks (Cao et al., 2015; Kawai et al., 2015). Other frontal cortical areas are also related to motor
126	behaviors, such as the orbitofrontal cortex and the cingulate motor area (Bissonette, Powell, &

127Roesch, 2013; Friedman et al., 2015; Nakayama, Yokoyama, & Hoshi, 2015; Passingham & Wise, 2012; Paus, 2001; Schoenbaum, Roesch, Stalnaker, & Takahashi, 2009; Sul, Kim, Huh, Lee, & Jung, 1282010). The neural circuitry underlying these functional roles and its effects on the basal ganglia and 129other subcortical regions are not fully known. 130 Neuron-type diversity is an important factor to understand the neural circuitry. It has been 131132established that distinct neural types other than striatal dMSNs and iMSNs are present in the GP (Abdi et al., 2015; Abrahao & Lovinger, 2018; Cooper & Stanford, 2000; Dodson et al., 2015; Gittis 133et al., 2014; Hegeman, Hong, Hernandez, & Chan, 2016; Hernandez et al., 2015; H. Kita, 2007; 134Mallet et al., 2012; Mastro, Bouchard, Holt, & Gittis, 2014), EP (Y. Miyamoto & Fukuda, 2015; 135Wallace et al., 2017), STN (Baufreton et al., 2003; Xiao et al., 2015), and SN (Kim, Ghazizadeh, & 136 137Hikosaka, 2014; Lerner et al., 2015; Matsumoto & Hikosaka, 2009; Menegas et al., 2015). These neuronal populations differ in molecular profile, projection targets, and synaptic inputs. In addition, 138each nucleus of the basal ganglia contains functional/morphological subdomains (Crittenden & 139Graybiel, 2011; Fujiyama, Takahashi, & Karube, 2015; Hontanilla, Parent, de las Heras, & 140 Gimenez-Amaya, 1998; H. Kita & Kita, 2001; Parent, Fortin, Cote, & Cicchetti, 1996) correlated 141142with the distribution of glutamatergic innervation (Crittenden & Gravbiel, 2011; Eblen & Gravbiel, 1995; Fujiyama, Unzai, Nakamura, Nomura, & Kaneko, 2006; Kincaid & Wilson, 1996; J. B. Smith 143et al., 2016). Even if innervated by the same set of cortical inputs, each cell type can behave 144differently, recruit distinct neural circuitry, and lead to various behavioral outputs. Therefore, any 145

146 account of the functionality of cortical projections to the basal ganglia must consider cell type and147 subregion.

148	Cortico-basal ganglia projections are topographically and somatotopically organized
149	(Crittenden & Graybiel, 2011; Gabbott, Warner, Jays, Salway, & Busby, 2005; Nambu, 2011; Shipp,
150	2016; Voorn, Vanderschuren, Groenewegen, Robbins, & Pennartz, 2004). In the rodent, frontal
151	cortical areas project to the dorsal striatum (Barth et al., 1990; Ebrahimi, Pochet, & Roger, 1992;
152	Reep & Corwin, 1999; Reep et al., 2008; Rouiller, Moret, & Liang, 1993). Recently, topographical
153	maps of cortico-striatal projections have been described in detail (Hintiryan et al., 2016; Hunnicutt et
154	al., 2016; Mailly, Aliane, Groenewegen, Haber, & Deniau, 2013). Cortical projections to the striatum
155	are dependent on the neuron type of origin (Hooks et al., 2018) and individual cortical neurons
156	generally project to multiple sites (T. Kita & Kita, 2012; Shepherd, 2013; Shibata, Tanaka, Hioki, &
157	Furuta, 2018; but see alsoY. Smith, Wichmann, & DeLong, 2014). Thus, basal ganglia nuclei
158	innervated by the same or different cortical areas can be affected simultaneously, in turn, their
159	activities are modulated via the intra-basal ganglia circuitry (Bogacz, Martin Moraud, Abdi, Magill,
160	& Baufreton, 2016; Wei & Wang, 2016). The aim of the present study was to investigate cortical
161	projections to multiple nuclei in the basal ganglia from two motor areas, M1 and M2, in a subregion-
162	and cell type-specific manner. Using a combination of neural tracing with immunofluorescence, we
163	demonstrate that M1 and M2 project to different subregions of each basal ganglia nucleus, and that
164	in the GP, cortical axon collaterals and boutons have topographic distributions that depend on the

165 cortical area of origin (Naito & Kita, 1994). Using morphological and electrophysiological 166 experiments combined with optogenetics, we demonstrate that cortico-pallidal synapses are effective 167 and specific for post-synaptic GP cell types. We discuss the potential roles of cortico-pallidal 168 projections in relation to other basal ganglia nuclei.

- 169
- 170 **Results**

171 *Motor cortex innervates the GP.*

- 172 We observed cortical axon collaterals in the GP using conventional tracers (BDA or PHA-L; Fig. 1A,
- 173 1C; Fig. 1-figure supplement. 1) or adenoassociated virus (AAV) vectors (Fig. 2A, 5A; Fig. 1-figure
- 174 supplement 2), as reported previously (Naito & Kita, 1994).

Cortico-pallidal axon collaterals were exclusively ipsilateral (Fig. 1-figure supplement 2), 175implying that the layer 5 (L5) pyramidal tract (PT) type of neuron could be providing this input, 176thereby conveying a copy of cortical motor signals. Cortical axons were differentially distributed in 177the GP depending on the cortical area of origin. M1 and M2 axons were observed across the broad 178extent of the medio-lateral axis (range: M/L 2.4-3.7 mm; see also Fig. 1-figure supplement 1). Axon 179180 collaterals issued from the main axons and often elongated along the dorso-ventral axis (Fig. 1A, Fig. 1-figure supplement 1). Combining with immunofluorescent staining for calbindin D-28k (CB), 181 motor cortical axons, especially from M1, were preferentially found in CB-negative [CB(-)] 182subregions of the GP (Fig. 1A, Fig. 1-figure supplement 1). 183

These axons frequently formed small sized axonal boutons (Fig. 1C, 1D). We compared the 184density of cortical axonal boutons in the GP, STN, and striatum. The number of boutons was greater 185in the striatum than in the GP or STN (Fig. 1-figure supplement 3). Since the size and efficacy of the 186 tracer labeling were not uniform across animals, the bouton density in the GP was normalized to that 187 in the striatum or STN for each injection. Using this normalization, the bouton density in the striatum 188 was found to be significantly higher than in the GP ($p = 2.9 \times 10^{-6}$ for M1 and $p = 2.6 \times 10^{-6}$ for M2 189 using one-way ANOVA followed by Tukey test) or STN (p = 0.0018 for M1; p = 0.0003 for M2; see 190 also Fig. 1-figure supplement 3). Bouton densities in the GP and STN were not significantly different 191 (Fig. 1E; p = 0.155 using one-way ANOVA). GP bouton density did not significantly differ between 192M1 and M2 axons (p = 0.32). 193194These data suggested that M1 and M2 can affect the GP as strongly as they affect the STN. However, because bouton density does not directly indicate synaptic efficacy, we evaluated the 195

196 electrophysiological features of cortico-pallidal projections.

197

198 Cortico-GP terminals elicit monosynaptic EPSCs.

To confirm that the observed cortico-pallidal innervation was electrophysiologically functional, we conducted whole-cell patch clamp recordings combined with optogenetic stimulation of cortical terminals using *in vitro* slice preparations. Channel rhodopsin 2 (ChR2) was introduced into cortical neurons using *AAV-hSyn-H134R-mCherry* injection into either M1 or M2 (Fig. 2A). In voltage clamp 203mode at a holding potential of -60 mV, stimulation with a brief light pulse (5 ms, 470 nm) elicited inward currents in GP neurons (Fig. 2B1). The response was stable over repetitive stimulation (10 204pulses at 2-10 Hz; Fig. 2B1). In current clamp mode, photoactivation elicited action potentials, 205although the action potential probability was affected by the spontaneous oscillation of the 206membrane potential (Fig. 2B2). To confirm that the photoactivated current that elicited action 207208potentials was within the physiological range, we measured the minimum current required to induce action potentials (rheobase current) in GP neurons using 5-ms depolarizing pulses (Fig. 2C, inset). In 209half of GP neurons, the rheobase was less than 30 pA, and most GP neurons could emit an action 210potential with less than 100 pA of depolarization (N = 100 neurons; Fig. 2C). A depolarized 211membrane potential and a high input resistance (Table 1) led to easy induction of action potentials by 212213small excitation.

Not all GP neurons exhibited inward photocurrent. 67/159 and 151/248 neurons did so for M1 and M2 stimulation, respectively (Fig. 2D). The locations of the GP neurons in which inward currents were observed were plotted (Fig. 2E). Consistent with the distribution of cortical axons, these locations were frequently around the center of the GP in coronal slices. Responsive neurons were similarly concentrated around the center of the GP along the rostro-caudal axis. Neurons responding to M1 terminal stimulation tended to be located in the dorsal GP, whereas those responding to M2 terminal stimulation were clustered in the ventral GP (Fig. 2E).

It is possible that the observed EPSCs were elicited by the STN via a di-synaptic circuit.

222However, we used coronal slices with an anteroposterior position of 0.6 mm rostral (r0.6) - 2.2 mm caudal (c2.2) to bregma, which did not include the STN (Paxinos & Watson, 2007). Bath application 223of the sodium channel blocker tetrodotoxin (TTX) at 1 µM completely prevented inward currents 224(Fig. 3A). Additional application of the potassium channel blocker 4-aminopyridine (4AP) at 1 mM 225226recovered the currents to up to 60% of control on average (Fig. 3A), indicating that the current was 227monosynaptic (Gradinaru, Mogri, Thompson, Henderson, & Deisseroth, 2009; Shu, Yu, Yang, & McCormick, 2007). Moreover, a GABAA receptor antagonist (gabazine, 20 µM) did not block the 228current (Fig. 3A); conversely, glutamate receptor antagonists (CNQX, 10 µM and AP-5, 20 µM) 229almost completely abolished the current (Fig. 3A). Thus, the inward current was mediated by 230glutamatergic excitatory postsynaptic currents (EPSCs). The latency (delay) of current onset after the 231photic stimulus in GP neurons did not differ from that in STN neurons (Fig. 3B1, 3B2). The 20-80% 232rise time and decay constant tended to be longer in GP neurons than in STN neurons (Fig. 3B3, 3B4). 233Taken together, these results indicated that the inward current observed in GP neurons was a 234monosynaptic, glutamatergic EPSC directly elicited by cortical terminals. Hereinafter, we refer to 235this current as an optically evoked EPSC (oEPSC). 236

- 237
- 238 *M1 and M2 preferentially innervate GP neurons projecting to the striatum than those projecting* 239 *to STN.*

240

The results shown in Fig. 2C raised the question whether GP neurons have cell-type specific

241	cortical innervation. To determine whether cortical innervation depends on the GP-neuron projection
242	type, we conducted <i>in vitro</i> whole cell recordings from retrogradely labeled GP _{STN} or GP _{CPu} neurons.
243	Occasionally, we recorded large GP neurons with no or very little spontaneous activity ($N = 6$, 1.20 ±
244	1.79 Hz during on-cell recording mode), which possessed a distinct action potential shape. Based on
245	earlier reports (Bengtson & Osborne, 2000; Hernandez et al., 2015), these were most likely
246	cholinergic neurons and were excluded from subsequent analysis, although they were found to be
247	innervated by the cortex ($N = 5/6$). In addition to the molecular profiles, the electrophysiological
248	properties of GP_{CPu} and GP_{STN} neurons also differed. GP_{STN} neurons usually showed spontaneous
249	repetitive firing (~20 Hz; Table 1), whereas many GP _{CPu} neurons were silent. Firing frequencies
250	induced by depolarizing current pulses were higher in GP _{STN} than in GP _{CPu} neurons, and spike width
251	was narrower in GP _{STN} neurons (Fig. 4B; see Table 1 for other electrophysiological parameters and
252	quantitative comparisons). We discovered that GP _{CPu} neurons were more frequently innervated by
253	motor cortex (51/62) than were GP_{STN} neurons (53/126). The oEPSC amplitude was also larger in
254	GP _{CPu} neurons (Fig. 4D, E, F). The distribution of oEPSC amplitudes recorded from GP _{CPu} neurons
255	seemed bimodal; the smaller-amplitude group was similar to GP_{STN} neurons (Fig. 4D). For
256	comparison, MSNs ($N = 11$) and STN neurons ($N = 18$) were recorded. One-way ANOVA followed
257	by post-hoc Tukey test revealed that the oEPSC amplitude was significantly larger in MSNs than in
258	STN or GP neurons (for all combinations of comparisons, $p < 9 \times 10^{-7}$). The oEPSC amplitude of STN
259	neurons was not significantly different from that of GP_{STN} ($p = 0.109$) or GP_{CPu} neurons ($p = 0.999$).

 GP_{CPu} neurons exhibited significantly greater amplitudes than did GP_{STN} neurons (p = 0.0021; Fig. 2604D). Despite the larger EPSCs, we observed relatively hyperpolarized membrane potentials and 261lower membrane input resistances in MSNs compared with GP or STN neurons. The mean 262membrane potential (V_{mean}) = -73.45 ± 5.3 mV and input resistance (R_{in}) = 79.17 ± 28.38 M Ω for 10 263264MSNs; $V_{\text{mean}} = -45.43 \pm 7.47$ mV and $R_{\text{in}} = 253.14 \pm 156.31$ M Ω for 15 STN neurons; see Table 1 for 265GP neurons). Thus, the ease of induction of action potentials was lower in MSNs than in GP or STN neurons, at least in slice preparation. Actually, the median of rheobase current was 695 pA for MSNs 266(N = 10; range. 450-1415 pA), whereas 55 pA for STN neurons (N = 30; range, 10-545 pA) and 30 267pA for GP neurons (N = 100; range, 5–250 pA). 268

GP_{CPu} neurons were frequently innervated by either M1 (28/35) or M2 (23/27). In contrast, 269only a small fraction of GP_{STN} neurons received M1 (17/51) or M2 (36/75) inputs (Fig. 4C). The 270amplitude of M1-induced oEPSCs in the GP_{CPu} neurons was significantly larger than in the GP_{STN} 271neurons ($p = 1.5 \times 10^{-6}$ using the Wilcoxon rank sum test). This was also the case for M2-induced 272oEPSCs (p = 0.0038). Therefore, both motor areas preferentially innervated GP_{CPu} neurons, although 273GP_{STN} was more effectively innervated by M2 (Fig. 4C, 4F). Indeed, the mean oEPSC amplitude in 274275 GP_{STN} was larger with M2 stimulation than with M1 stimulation (p = 0.0028), but no significant difference between cortical sites was observed in GP_{CPu} neurons (p = 0.9595). M2 stimulation 276frequently evoked oEPSCs with initially smaller amplitudes, especially for the first light pulse, 277although repetitive light pulses at 10 Hz often augmented the oEPSC amplitude, similar to M1 278

stimulation. The paired-pulse ratio for second-to-first oEPSC in GP_{STN} neurons was 1.27 ± 0.81 for M2 stimulation (N = 38) and 1.45 ± 1.20 for M1 stimulation (N = 14); in the GP_{CPu} neurons, it was 1.25 ± 0.62 for M2 stimulation and 1.31 ± 0.79 for M1 stimulation.

To further identify characteristics of GP neuron types, using retrograde labeling of GP neurons 282283and immunofluorescence against parvalbumin (PV), LIM homeobox 6 (Lhx6), and forkhead box 284protein 2 (FoxP2), we examined molecular profiles of GP neuron projection types in Wistar rats 285(Fujiyama, Nakano, et al., 2015). We confirmed that GP_{CPu} neurons frequently expressed FoxP2 or Lhx6, but not PV (N = 659 GP_{CPu} neurons in three sections from three rats; Fig. 5), in agreement 286with previous studies in mice (Dodson et al., 2015; Hernandez et al., 2015; Mastro et al., 2014; 287Mizutani, Takahashi, Okamoto, Karube, & Fujiyama, 2017), Long-Evans rats (Oh et al., 2017), and 288Sprague-Dawley rats (Abdi et al., 2015; H. Kita & Kita, 2001). The expression of FoxP2 and Lhx6 289was almost mutually exclusive. Most PV(+) GP_{CPu} neurons co-expressed Lhx6. GP_{STN} neurons 290lacked expression of FoxP2 but expressed PV and/or Lhx6 (N = 727 GP_{STN} neurons in three sections 291from three rats; Fig. 5). Triple immunofluorescence combined with a single retrograde tracer 292injection into the striatum was conducted to further elucidate the molecular identity of GP_{CPu} neurons. 293294The expression of Lhx6 (333/665) or FoxP2 (328/665) was again almost mutually exclusive. Only a small fraction (14.7%) of Lhx6-expressing neurons co-expressed PV (49/333) (Fig. 5B). 295Occasionally, double-retrogradely labeled neurons, namely bi-directional projecting GP neurons 296(GP_{Bi}), were observed (N = 113). Lhx6 was expressed in most GP_{Bi} neurons (61/69), PV less 297

298frequently (19/72), and FoxP2 rarely (2/85). GP_{Bi} neurons that expressed PV co-expressed Lhx6 in most cases examined (5/6). Therefore, GP_{STN} neurons comprised PV(+) and/or Lhx6(+) prototypic 299neurons, whereas GP_{CPu} neurons comprised arkypallidal neurons expressing FoxP2 and prototypic 300 neurons expressing Lhx6.(Fujiyama, Nakano, et al., 2015; Mallet et al., 2012). Importantly, these 301 data insist that selective electrophysiological recording from Lhx6(+) neurons can be accomplished 302303 by targeting GP_{Bi} neurons. As a result, we found that GP_{Bi} also received cortical inputs (7/10 for M1 and 7/9 for M2; N = 3 rats for each), and most of them exhibited an oEPSCs with small amplitude 304 (Fig. 5C). Actually, the frequency distributions of oEPSC amplitudes significantly differ between 305 GP_{Bi} and GP_{CPu} neurons (Fig. 5D; $p = 2.2 \times 10^{-16}$ by the Kolmogorov-Smirnov test). It suggests that 306 arkypallidal neurons, which do not send axons to the STN, could be a principle target of 307 cortico-pallidal innervation. 308

309

310 M1 and M2 differentially innervate striatal subregions.

The preceding results suggest that the two cortical motor areas project differentially to the GP. In rodents, cortical pyramidal cells send axon collaterals to multiple nuclei of the BG which, in turn, are themselves interconnected. Thus, M1 and M2 projections to nuclei other than the GP should involve information processing in cortico-basal ganglia circuitry (Lerner et al., 2015). To quantify the cortical axon distribution onto striatal molecular subregions, we employed AAV vector injection into the motor area followed by immunostaining for either CB, or μ -opioid receptor (MOR) which is a

317	marker of the striosomes (Crittenden & Graybiel, 2011; Kincaid & Wilson, 1996; J. B. Smith et al.,
318	2016). CB was preferentially expressed in the medial and ventral portion of the striatum and faintly
319	in the dorsolateral striatum (Fig. 1-figure supplement 1) (H. Kita & Kita, 2001; Wouterlood, Hartig,
320	Groenewegen, & Voorn, 2012). M1 axons were mostly confined to CB(-) subregions of the striatum
321	(Fig. 6A), whereas M2 axons innervated both CB(-) and CB(+) striatal subregions (Fig. 6B). We
322	quantified the axon distribution in $CB(+)$ and $CB(-)$ striatal subregions for both M1 and M2 axons (N
323	= 3 rats for each subregion; 12 sections for M1 and 13 sections for M2). The proportion of $CB(+)$
324	pixels that contained axons was calculated in the striatum. M2 axons were found in $37.2 \pm 9.0\%$ of
325	CB(+) pixels, and M1 axons were found in only $15.3 \pm 7.6\%$ of CB(+) pixels ($p = 0.000012$ by
326	Wilcoxon rank sum test; Fig. 6C1). To evaluate the relative strengths of the innervation, the
327	brightness of the fluorescence in each pixel in the regions of interest (ROIs) were measured. The
328	median pixel intensity in CB(-) ROIs was normalized to that of CB(+) ROIs. As shown in Fig. 6C2,
329	the normalized fluorescence intensity in CB(-) striatum was ~1.6-times higher for both M1 (1.61 \pm
330	0.39) and M2 (1.56 \pm 0.28) axons. These results indicated that M2 axons innervated CB(+) striatum
331	more frequently than did M1 axons, although CB(-) ROIs were more densely innervated by both M1
332	and M2 than were CB(+) ROIs.

333 Comparing the data in Fig. 6A and 6B shows that M1 and M2 axons exhibited differing 334 innervation of the striosome. Based on MOR immunofluorescence, M1 axons appeared to 335 preferentially innervate the matrix, and axon labeling in the striosomes was faint (Fig. 6D). In

contrast, M2 axons were almost equally distributed in both the striosome and matrix (Fig. 6E), as 336previously reported for mouse (J. B. Smith et al., 2016). We also observed topographical differences 337in striosome preference. In medial sections (M/L \leq 2.9 mm), the striosomes in the ventral part of the 338 dorsal striatum were not densely innervated by M2 axons (arrowheads in Fig. 6E2; see also Fig. 339 1-figure supplement 1). We quantified relative preference by normalizing fluorescence intensity in 340the matrix to that of the striosomes (Fig. 6F). For M2, the matrix preference was only 1.17 ± 0.22 (N 341= 3 rats, 126 ROIs) in lateral sections (M/L > 2.9 mm). In contrast, the matrix preference for M1 was 342 1.45 ± 0.26 (N = 3 rats, 155 ROIs), a significantly greater preference for the matrix than that of M2 343axons ($p < 2.2 \times 10^{-16}$ by Wilcoxon rank sum test; Fig. 6F1). In medial sections (M/L ≤ 2.9 mm), both 344 M1 and M2 preferred the matrix similarly, i.e., 1.37 ± 0.20 for M1 (N = 60 ROIs) and 1.36 ± 0.31 for 345346 M2 (N = 106 ROIs; Fig. 6F1). Taken together, these results show that striosomes in the dorsal striatum were selectively innervated by M2, especially in the lateral striatum. 347

348

349 *Cortico-subthalamic (STN) projections from frontal cortical areas*

Cortico-STN projections are topographically organized depending on cortical area of origin, especially in primates (Haynes & Haber, 2013; Nambu, Takada, Inase, & Tokuno, 1996; Nambu, Tokuno, Inase, & Takada, 1997). Retrograde tracer injection into the STN labeled L5 cortical neurons in a wide range of areas, among them, many neurons were found in M1, M2, and the lateral orbitofrontal area (LO) in the frontal cortex (Fig. 7-figure supplement 1). We also observed that M1

and M2 had different topographies of cortico-STN projection. M1 axons were concentrated in the 355central part of the STN along the anteroposterior and dorsoventral axis (Fig. 7A, B). The density of 356M1 axons was low around the rostral and caudal STN. The axon distribution in STN was similar 357between rostral and caudal M1 areas (Fig. 7A, B). Conversely, M2 axons were densely distributed in 358the dorso-anterior and ventro-posterior portions of the STN (Fig. 7C). LO provided dense axonal 359360 input to the rostral part of the STN (Fig. 7D). We quantified the preferential axon distribution in STN along the anteroposterior (Fig. 7E1) and dorsoventral axes (Fig. 7E2). Significant differences were 361observed among M1, M2, and LO (p < 0.05 by the Kruskal-Wallis test followed by multiple 362comparisons based on the Fisher Exact test with a Bonferroni correction for multiple comparisons). 363 Of note, the topographic distribution was not clearly segregated; rather, a substantial overlap of 364 axons from different frontal cortical areas was observed (Fig. 7F). 365

366

367 Neural projections among the striatum, GP, and STN

L5 PT-type neurons, candidates for the origin of the cortico-pallidal innervation, are known to project to multiple brain nuclei including the striatum and STN (T. Kita & Kita, 2012; Shepherd, 2013; Shibata et al., 2018) This suggests that when the GP receives cortical excitation, the striatum and STN are co-excited by the same source. Therefore, to elucidate the functional relevance of cortico-pallidal pathways, it is important to examine the relationship between their axon distribution and that of other, related intra-basal ganglia projections to elucidate functional relevance of 374cortico-pallidal pathways. For bi-directional projections between GP and the striatum, CB expressions in the GP and striatum are correlated, such that the CB(+) striatum (medio-ventral 375striatum) projects to the outer edges of the GP, where CB immunoreactivity is obvious due to 376 innervation by CB(+) striatal axon terminals (H. Kita & Kita, 2001). In contrast, the dorsolateral 377378striatum which has sparse CB expression, innervates the central part of the GP, which lacks CB 379immunoreactivity (H. Kita & Kita, 2001; Rajakumar, Elisevich, & Flumerfelt, 1994; Rajakumar, Rushlow, Naus, Elisevich, & Flumerfelt, 1994). We confirmed these findings using tracer injections 380 into the striatum (Fujiyama et al., 2011; Kawaguchi, Wilson, & Emson, 1990; Wu, Richard, & Parent, 381382 2000) (Fig. 8). Thus, the central GP can receive direct cortical excitation (Fig. 1, 2; Fig. 1-figure supplement 1) and iMSN innervation from the dorsolateral striatum, where motor cortex 383 preferentially projected (Fig. 6). It suggests convergence of motor cortical information. Projections 384from the GP to the striatum are likely to obey the same rule (Fig. 8). For GP-to-STN projections, we 385found topographic projection patterns as shown in Fig. 9. The rostral GP, expressing CB, projected to 386 the rostral part of STN, whereas the central GP, lacking CB expression, projected to the central part 387 of STN. Because the rostral STN received M2 projection and the central STN received M1 388389projection, again, motor cortical information can converge in the STN subregions.

390

391

392 Discussion

393	To summarize, we here report that direct motor cortical innervation of GP neurons is as dense
394	as that of STN neurons. Pallidostriatal neurons were more frequently and heavily innervated by the
395	cortex than were pallidosubthalamic neurons. We also investigated the distribution of cortical
396	projections onto basal ganglia subregions, which likely affects the functions of the cortico-pallidal
397	pathway, as discussed subsequently (see Fig. 10 for the schematic). To date, fast excitation observed
398	in GP following cortical stimulation has been considered disynaptic excitation via the STN (Nambu
399	et al., 2000). This does not fully contradict the present findings, since a larger population of GP
400	neurons, GP _{STN} (or prototypic neurons), was not the main target of the motor cortex. In addition, it is
401	possible that traditional extracellular unit recordings are biased towards neurons with relatively
402	higher firing frequency, which include GP _{STN} neurons (Table 1). A question that remains is whether
403	cortico-pallidal projections exist in primates including humans, as suggested (Milardi et al., 2015; Y.
404	Smith & Wichmann, 2015).

405

406 Innervation of the basal ganglia by the frontal cortex

Topographic cortical projections are well established for the striatum and STN (Heilbronner, Meyer, Choi, & Haber, 2018; Hooks et al., 2018; Janssen et al., 2017; Mathai & Smith, 2011; Nambu, 2011; J. B. Smith et al., 2016). We also demonstrated topographic differentiation of cortico-striatal projections between M1 and M2 with distinct molecular-subdomain preferences (Fig. 6). For other frontal or associative areas, we observed that LO innervated the ventromedial part of the striatum 412with preference for the striosomes, whereas the cingulate cortex (Cg) projected to the dorsomedial striatum and avoided the striosomes, consistent with an earlier report (Friedman et al., 2015). For 413cortico-STN projections, M1 and M2 projected densely to the central-to-caudal portions of the STN, 414 whereas LO and Cg projected to the rostromedial and caudomedial STN, respectively 415(Supplementary Fig. 1, 2). Cortico-pallidal projections were also topographically organized; M1 and 416 417M2 axons were densely distributed in the CB(-) central part of the GP (Fig. 1-figure supplement 1). Cg axons projected to the GP in a similar manner. In contrast, LO provided fewer pallidal collaterals 418 (Fig. 1, Supplementary Fig. 1, 2). Thus, each frontal cortical area likely has its own regions of 419 interest in each BG nucleus. In addition, CB(-) GP was interconnected with CB(-) striatum (Fig. 8; 420Fujiyama et al., 2011; H. Kita & Kita, 2001), and projected to the central part of the STN (Fig. 9), 421422which received projections from motor cortices, especially M1. Similar topographic interconnections 423between STN and GP have been reported in primates (Shink, Bevan, Bolam, & Smith, 1996) and rodents (Baufreton et al., 2009; but see also Canteras, Shammah-Lagnado, Silva, & Ricardo, 1990; 424van Dijk et al., 2016). Moreover, thalamic inputs also differentiate between CB(+) and CB(-) GP (Y. 425Smith, Raju, Pare, & Sidibe, 2004), and GP neurons form topographic pallido-pallidal connections 426427dependent on the location of the cell bodies (Sadek, Magill, & Bolam, 2007). Therefore, topographic interconnections among the cortex-striatum-GP-STN likely contribute to differential integration of 428429neural signals.

430

431 Possible effects of cortical innervation in GP

Our findings may explain the heterogeneous activity of GP neurons during movement (Arkadir, 432Morris, Vaadia, & Bergman, 2004; DeLong, 1971; Dodson et al., 2015; Goldberg & Bergman, 2011; 433Mink & Thach, 1991a, 1991b; Turner & Anderson, 1997). The firing phases of prototypic neurons 434(GP_{STN}) and arkypallidal neurons corresponding to FoxP2(+) GP_{CPu} differ with regard to cortical 435436activity (Abdi et al., 2015; Mallet et al., 2012; Mallet et al., 2016). This may be due to biased cortical innervation of GP_{CPu} (Fig. 4C, D, E, F). The axon terminal density of cortico-pallidal projections was 437sparser than cortico-striatal ones, but as dense as cortico-subthalamic ones. The neural connection in 438the basal ganglia is usually sparse; for example, even in the connection between STN and GP, which 439 is clearly functional, only 1–2% of all GP neurons converge onto a single STN neuron and vice versa 440 441 (Baufreton et al., 2009; Goldberg & Bergman, 2011). Moreover, even if excitatory synaptic inputs 442did not reach action potential threshold, the timing of subsequent action potentials is still altered (Ermentrout, 1996; Schultheiss, Edgerton, & Jaeger, 2010). Expression of sodium channels 443characteristic of GP neurons can boost excitatory synaptic inputs (Edgerton, Hanson, Gunay, & 444 Jaeger, 2010; Hanson, Smith, & Jaeger, 2004). Thus, the relatively sparse cortical innervation to the 445446 GP_{STN} neurons could nevertheless affect a small but specific component of the basal ganglia circuitry. 447

Most neighboring GP neuron pairs do not exhibit real correlation (Bar-Gad, Heimer, Ritov, &
Bergman, 2003; Goldberg & Bergman, 2011; Stanford, 2003), even for pause periods (Elias et al.,

2007). Excitatory inputs may synchronize GP neurons more effectively, as GP neurons tend to align
with STN inputs rather than with striatal inputs (Goldberg, Kats, & Jaeger, 2003). Cortico-pallidal
inputs probably precede STN-GP inputs and thus strengthen STN-GP coupling (Bevan, Magill,
Hallworth, Bolam, & Wilson, 2002; Bevan, Magill, Terman, Bolam, & Wilson, 2002; Parent &
Hazrati, 1995b), thereby affecting the oscillatory phase and synchronization of GP neurons.

455

456 Potential roles of the cortico-pallidal pathway

Mallet et al. (2012) reported that both MSNs and interneurons are innervated by arkypallidal neurons. 457Npas1(+) neurons, which overlap with Lhx6(+) and FoxP2(+) GP_{CPu} neurons, synapse onto iMSNs 458and dMSNs. The average inhibitory postsynaptic current amplitude is significantly larger in iMSNs 459(Glajch et al., 2016). In turn, iMSNs inhibit all GP neuron types equally (Hernandez et al., 2015). 460 GP_{STN} is also activated by M2 terminals. A substantial difference among GP_{STN} cell types has been 461 reported for innervation of the SNc (Mastro et al., 2014; Oh et al., 2017). Based on our results 462suggesting that M2 but not M1 project to the dorsolateral striosomes (Fig. 6) and the fact that 463striosomal dMSNs innervate the SNc (Fujiyama et al., 2011; Gerfen, 1985), M2-driven pathways 464may modulate dopamine signaling via the striatum and GP_{STN}. Recently, Viana-Magno et al. (Viana 465Magno et al., 2019) revealed that M2 activation can relieve the motor dysfunction of Parkinson's 466 disease in mice. The neural circuitry proposed here is highly likely to contribute to such an effect. 467

468 As shown in Fig. 1-figure supplement 2, the cortico-pallidal pathway likely originates from PT

neurons, which also issue axon collaterals to STN (Shepherd, 2013; Shibata et al., 2018). In addition, 469dense labeling of L5 neurons following injection of retrograde tracer in STN (Fig. 7-figure 470supplement 1) suggested that STN-projecting neurons are unlikely to form a specific population of 471PT neurons in rodents (Shibata et al., 2018). Thus, once M1 activates, cortical signals are transmitted 472to the striatum, STN, and GP (Fig. 10). Due to their membrane properties, STN and GP neurons will 473474be activated more effectively and earlier than striatal neurons (Jaeger & Kita, 2011). Since GP_{CPu} neurons are activated by direct M1 inputs, they may exhibit more activity than GP_{STN} neurons and be 475more in phase with cortical excitation. In contrast, GP_{STN} neurons are not strongly activated by M1. 476The M1-pallidal pathway therefore is unlikely to counteract hyperdirect inputs onto STN neurons. 477Because the latency and strength of oEPSCs in GP_{CPu} neurons were almost equal to those in STN 478479neurons (Fig. 6, 11), STN and GP neurons may be excited simultaneously. Inhibition of MSNs by GP_{CPu} could counteract corticostriatal excitation and weaken iMSN activity. Decreased iMSN 480 activity may reduce inhibition of GP neurons, thereby augmenting the inhibition of STN, EP, and 481 SNr. Operation of this trisynaptic circuit may require a long duration; thus, the M1 cortico-pallidal 482pathway may act as a delayed terminator of the hyperdirect pathway. GP_{CPu} can also inhibit dMSNs, 483which in turn disinhibit the EP/SNr. If iMSN activity is suppressed by GP_{CPu}, what controls 484cortico-GP_{CPu} excitation? The most parsimonious explanation is that decreased cortico-pallidal 485486 activity can weaken GP excitation. In addition, GP_{CPu} inputs onto iMSNs will not completely block cortico-striatal excitation, but may delay it. It is noteworthy that striatal neurons receive contralateral 487

488	cortical excitation as well as ipsilateral input (Wilson, 1986, 1987), whereas the GP and STN receive
489	only ipsilateral excitation (Fig. 1-figure supplement 2). It is also possible that axon collaterals of
490	dMSNs inhibit the GP (Fujiyama et al., 2011; Kawaguchi et al., 1990; Lévesque, Bédard, Cossette, &
491	Parent, 2003; Wu et al., 2000). In addition, pallidostriatal inhibition of striatal interneurons can
492	possibly disinhibit MSN activity. Finally, via local boutons of GP neurons (Fujiyama, Nakano, et al.,
493	2015; Mallet et al., 2012), mutual inhibition (Bugaysen, Bar-Gad, & Korngreen, 2013; Mastro et al.,
494	2017; Sadek et al., 2007) may work to terminate transient excitation of the GP.
495	In the case of M2 input to GP, the GP_{STN} pathway can also be activated, as well as the GP_{CPu}
496	pathway described above (Fig. 10B). M2-GP _{STN} circuitry may be more sensitive to timing, because
497	the GP and STN form bidirectional connections, and the cortico-pallidal pathway can act as fast as
498	the hyperdirect pathway. These two pathways may compete: if GP _{STN} is activated first, it will
499	suppress STN; if STN is activated first, GP will be excited directly by the cortex and via the STN, in
500	turn inhibiting the STN. Taken together, the results suggest that the net effect of M2-GP _{STN} pathway
501	activity is likely to be suppression of the STN. However, basal ganglia activity may be strongly
502	affected by competition between M2-pallidal and hyperdirect pathways. Because the hyperdirect
503	pathway contributes to cessation of ongoing actions, the cortico-pallidal pathway may cancel this
504	cessation signal. Mallet et al. (2015) proposed a two-step model for cancellation via cooperation
505	between the STN and GP, especially arkypallidal neurons. Our current findings shed light on the
506	linking of complex stop/cancel sequences.

507

508 Functional differentiation between M1 and M2

509	The overall effect of cortico-pallidal innervation may be suppression of the hyperdirect
510	pathway, and its timing and efficacy related to the selective cortical innervation of GP cell-type(s).
511	Therefore, our first assumption concerning the origin of the cortico-pallidal pathway should be
512	revisited here. A paper reported that PT neurons issuing axon collaterals in the STN did not provide
513	collaterals to the GP (T. Kita & Kita, 2012). If the hyperdirect and cortico-pallidal pathways originate
514	from distinct neurons, the timing of activity will be substantially affected.
515	The findings of recent in vivo experiments in rodents are contradictory regarding the presence
516	of functional differentiation between M1 and M2 during movement tasks, implying task-dependency
517	(Makino, Hwang, Hedrick, & Komiyama, 2016). On one hand, M2 contributes to the preparatory
518	function (Svoboda & Li, 2018), as observed in primates (Wise, 1985), or increases its influence on
519	other cortical areas during the preparatory phase (Makino et al., 2017). PT neurons have been
520	strongly implicated in preparatory processes as well as movement (Li et al., 2015). GP neurons are
521	also suggested to compute action selection (Bogacz et al., 2016; Goldberg & Bergman, 2011), which
522	likely relates to preparation of movement; and the M2-pallidal pathway may therefore contribute. It
523	has been suggested that M2 is involved in the integration of movement with sensory or internal
524	information (Barthas & Kwan, 2017; Saiki et al., 2014), including posture coding (Mimica, Dunn,
525	Tombaz, Bojja, & Whitlock, 2018). It is possible that M2-GP innervation reflects sensory signal
526	information, and contributes to the fine tuning of ongoing movement such as the adaptation of 28

527	chosen behaviors. Along with possibly involving the dopamine system, the M2-GP pathway may
528	relate more plastic and integrated phases of movement, which may require sensitive control using
529	two GP cell types. Natural action is a highly complex system, which involves the cerebrum, brain
530	stem, spinal cord, and midbrain nuclei (Arber & Costa, 2018; Bostan, Dum, & Strick, 2013; Kelly &
531	Strick, 2004). Concurrent and similar activities of M1 and M2 neurons have been reported, at least
532	for certain movements (Saiki et al., 2014; Soma et al., 2017). Parallel connections between M1 and
533	M2 also affect the aforementioned neural circuitry (Ueta, Hirai, Otsuka, & Kawaguchi, 2013; Ueta,
534	Otsuka, Morishima, Ushimaru, & Kawaguchi, 2013). To conclude, the functional relevance of
535	cortico-pallidal projections, M1/M2, and Cg differentiation for both behavioral output and neural
536	circuitry remain to be resolved in detail.

537

538 Materials and methods

539 Animal experiments were approved and performed in accordance with the guidelines for the care and 540 use of laboratory animals established by the Committee for Animal Care and Use and the Committee 541 for Recombinant DNA Study of Doshisha University. All efforts were made to minimize animal 542 suffering and the number of animals used.

543

544 Animal surgery for injection of neural tracers and viral vectors

545 Wistar SLC rats (Japan SLC Inc., Hamamatsu, Japan; N = 65 of both sexes for electrophysiological

546	experiments and $N = 30$ male rats for morphological experiments) were anesthetized with
547	intramuscular injection of a mixture of ketamine (Ketalar; Daiichi-Sankyo, Tokyo, Japan; 40 mg/kg)
548	and xylazine (Bayer HealthCare, Tokyo, Japan; 4 mg/kg). A small amount (0.05 mL) of the mixture
549	was additionally injected every 15 min during any prolonged surgery (>1 h). Body temperature was
550	monitored and controlled at 37°C with the aid of a heating device (World Precision Instruments
551	[WPI], Sarasota, FL, USA). Craniotomy was performed with a drill at an appropriate position on the
552	skull based on the rat brain atlas (Paxinos & Watson, 2007). A glass pipette (tip diameter, 30–60 μ m)
553	was used for all injections. For anterograde tracers, biotinylated dextran amine (BDA, 10 kDa; 10%
554	solution dissolved in PB; Thermo Fisher Scientific, Waltham, MA, USA) was injected using either a
555	brief air pulse (10–20 psi for 40–100 ms) controlled with a coordinated valve system (PV 820, WPI)
556	or using electrophoresis (0.5–2 μ A of positive current, 7 s ON/7 s OFF for 80 cycles) with a current
557	controller (WPI). PHA-L (Vector Laboratories, Burlingame, CA, USA; 2.5% dissolved in 10 mM
558	Na_2HPO_4 , pH 8.0) was injected using electrophoresis (1–5 μ A positive current, 7 s ON/7 s OFF for
559	80 cycles). To reduce number of rats, BDA and PHA-L were injected into different cortical areas in
560	individual rats, and brain sections derived from each rat were used for quantitative morphological
561	analysis in GP, CPu, and STN (Fig. 1, .7, Supplementary Fig. 1). AAV vectors encoding fluorophores
562	were injected using air pressure $(1.5 \times 10^{10} \text{ vg} \text{ [vector genomes]/}\mu\text{L},$
563	AAVdj-hSyn-hChR2(H134R)-mCherry; the plasmid a gift from Karl Deisseroth; Addgene plasmid
564	#26976; http://n2t.net/addgene:26976; RRID: Addgene_26976). For retrograde tracers, cholera toxin

565subunit B (CTB) conjugated with Alexa Fluor 488 or 555 (Thermo Fisher Scientific) and fluorophore-labeled beads (Green Retrobeads IX, LumaFluor Inc., Durham, NC, USA; FluoSphere 566Orange 0.04 µm, Thermo Fisher Scientific) were injected using air pressure. For labeling cortical 567neurons, injections were performed at two to three depths typically at 400 µm-intervals. The 568stereotaxic coordinates (Paxinos & Watson, 2007) of injections in the centers of each cortical area 569570were as follows (the actual injection locations were normalized based on skull size using the distance between bregma and lambda): for rostral M1, 2.0 mm rostral from bregma (A/P r2.0) and 2.5 mm 571lateral from the midline (M/L 2.5), depth 0.5–1.2 mm from cortical surface; for caudal M1: A/P 0.0, 572M/L 2.6, depth 0.5–1.2; for M2: A/P r4.2, M/L 1.9, depth 0.5–1.2 at a 30° angle rostral from vertical; 573for lateral orbitofrontal area (LO): A/P r3.4, M/L 2.9, depth 4.0. Because the Cg is located at the 574medial surface of the frontal cortex and is enclosed by M2, contamination of M2 following vertical 575injections into the Cg would have been unavoidable. Therefore, for injections into the Cg, the 576contralateral medial frontal area was removed using an aspiration needle and vacuum pump to 577expose the medial surface of the frontal cortex of the targeted hemisphere. An injection electrode was 578then inserted into the Cg at an angle of 45° (A/P r1.8, M/L 0.5) and the contents of the electrode 579580ejected into the Cg at two depths (0.5 and 1.0) using air pressure. Tracer injections into the striatum were performed in two ways. To visualize striatum subregion-specific projections (Fig. 8), 581582iontophoresis was applied at a single location at A/P r1.0, M/L 3.5, depth 4.2, for injection into CB-negative dorsolateral striatum, and at A/P 0.8 mm caudal to bregma (c0.8), M/L 4.0, depth 3.9 583

584	for CB-positive areas. For efficient retrograde labeling of GP neurons projecting to the dorsal
585	striatum, pressure injection was applied in three tracks (two depths for each track) at A/P r2.0, M/L
586	2.5, depth 3.8; A/P r1.0, M/L 3.5, depth 4.2; and A/P 0.0, M/L 3.7, depth 4.0. Micro-iontophoretic
587	injections into subregions of the GP were located at A/P c1.2 for the rostral GP, A/P c1.6 for the
588	central GP, and A/P c2.0 for the caudal GP. For these injections, the M/L and depth positions were
589	3.2 and 6.2, respectively. Tracers were injected into the STN at A/P c3.5, M/L 2.5, and depth 7.5
590	using air pressure. After injections, the skin was sutured and 2.5 mg/kg of butorphanol (Vetorphale,
591	Meiji Seika Pharma, Tokyo, Japan) was subcutaneously injected as an analgesic. The animals were
592	allowed to recover before further experimentation. We allowed 2-4 d of survival time for BDA or
593	retrograde tracers, 5-8 d for PHA-L, and 2-4 weeks for AAV. The age of rats ranged 7 to 12 weeks
594	for morphological experiments.

595

596 Immunohistochemistry

After the survival period, rats were deeply anesthetized with an intraperitoneal injection of sodium pentobarbital (100 mg/kg; Kyoritsu Seiyaku Corporation, Tokyo, Japan) and perfused with pre-fixative (sucrose 8.5% w/v, MgCl₂ 5 mM; dissolved in 20 mM PB) followed by fixative (2 or 4% paraformaldehyde and 0.2% picric acid with or without 0.05% glutaraldehyde in 0.1 M PB, pH 7.4) through the cardiac artery. The brains were post-fixed *in situ* for 2–3 h, and then removed and washed with PB several times. Sagittal or coronal sections 50-µm thick were cut using a vibratome 603 (Leica VT1000, Leica Instruments, Wetzlar, Germany) or freezing microtome (Leica SM 2000R),
604 and stored in PB containing 0.02% NaN₃ until further use.

For immunoreaction, sections were incubated with primary antibody diluted in incubation 605 buffer consisting of 10% normal goat serum, 2% bovine serum albumin, and 0.5% Triton X in 0.05 606 M Tris buffered saline (TBS) overnight at room temperature (RT) or for 2-3 d at 4°C. For 607 608 immunofluorescence, after rinsing with TBS three times, the sections were incubated with the secondary antibodies conjugated with fluorophores for 3 h at RT. After three rinses, the sections were 609 dried on glass slides and coverslipped with antifade mounting medium (ProLong Gold, Vector). For 610 brightfield specimens, the sections were incubated with a biotinylated secondary antibody followed 611 by rinses and then reacted with ABC solution (1:200 dilution; Vector Elite) for 3 h at RT, and 612 613 visualized with 3,3'-diaminobenzidine (DAB), Ni-DAB or Tris-aminophenyl-methane (TAPM). The 614 sections were dehydrated with a graded series of ethanol, delipidated with xylene, and finally embedded with M·X (Matsunami Glass Ind., Ltd., Osaka, Japan). The primary and secondary 615antibodies used in this study are listed in Supplementary Tables 1 and 2. 616

617

618 *Image acquisition*

Photomicrographs of brightfield specimens were captured using a CCD camera (DP-73, Olympus,
Tokyo, JAPAN) equipped with a BX-53 microscope (Olympus) using 4× (numerical aperture [N.A.]
0.13), 10× (N.A. 0.3), 40× (N.A. 0.75), 60× (N.A. 0.9) or 100× (N.A. 1.4; oil-immersion) objectives.

622	Photomicrographs were analyzed using Fiji (a distribution of Image J) (Schindelin et al., 2012), and
623	Adobe photoshop (Adobe Systems Incorporated, Sam Jose, CA, USA). The brightness of digitized
624	images was adjusted using the adjust-level function of these applications. To obtain a multifocus
625	image, images were captured with 1-µm steps and processed with the "extended depth of focus" Fiji
626	plugin. Fluorescent images were captured using an Orca Spark CMOS camera (Hamamatsu
627	photonics, Hamamatsu, Japan) or a DP-73 camera equipped with a BX-53 microscope. To quantify
628	the molecular expression patterns of GP neuron types, immunofluorescent images were acquired
629	using a confocal microscope (FV1200, Olympus) with $40 \times$ (N.A. 0.95) or $100 \times$ (N.A. 1.35; silicon
630	oil immersion) objectives.

631

632 in vitro slice recordings

633 Basal ganglia neurons were recorded using *in vitro* whole cell patch clamp. Rats of both sexes (N =65; postnatal 30-65 d) were deeply anesthetized with isoflurane and perfused with 25 mL of ice-cold 634 modified artificial cerebrospinal fluid (ACSF; N-methyl-D-glucamine, 93; KCl, 2.5; NaH₂PO₄, 1.2; 635NaHCO₃, 30; HEPES, 20; glucose, 25; sodium ascorbate, 5; thiourea, 2; sodium pyruvate, 3; MgCl₂, 636 10; and CaCl₂, 0.5; all in mM; pH was adjusted to 7.3 with HCl). All ACSFs were continuously 637 aerated with 95/5% O₂/CO₂. Brains were removed and immersed in ice-cold modified ACSF for 2 638 min. Coronal slices 300-µm thick were cut using a vibratome (7000smz-2, Campden, Leicestershire, 639 640 UK) and incubated with modified ACSF at 32°C for 15 min. The slices were transferred to normal

641	ACSF (NaCl, 125; KCl, 2.5; CaCl ₂ , 2.4; MgCl ₂ , 1.2; NaHCO ₃ , 25; glucose, 15; NaH ₂ PO ₄ , 1.25;
642	pyruvic acid, 2; lactic acid, 4; all in mM) at RT. After 1 h of recovery, slices were moved into a
643	recording chamber thermostatted at 30°C. A whole-cell glass pipette of 4–6 M Ω was filled with
644	intracellular solution (K-gluconate, 130; KCl, 2; Na ₂ ATP, 3; NaGTP, 0.3; MgCl ₂ , 2; Na ₄ EGTA, 0.6;
645	HEPES, 10; biocytin, 20.1; all in mM). The pH was adjusted to 7.3 with KOH, and the osmolality
646	was adjusted to \sim 290 mOsm. Target brain regions were identified with the aid of a fluorescence
647	microscope (BX-51WI, Olympus) using a ×40 water-immersed objective lens. Current clamp
648	recordings were low-pass filtered at 10 kHz and recorded using EPC10 (HEKA Elektronik Dr.
649	Schulze GmbH, Lambrecht/Pfalz, Germany) with a sampling rate of 20 kHz. The series resistance
650	was examined by applying a brief voltage pulse of -10 mV for 10 ms and was confirmed to be less
651	than 25 M Ω during recording. Shortly (less than 1 min) after achieving whole cell configuration, the
652	firing responses to 1-s depolarizing current pulses (maximum intensity was 1000 pA, increasing in
653	50-pA steps) were recorded in current clamp mode. Passive membrane properties were monitored as
654	responses to 1-s hyperpolarizing current pulses.

For photoactivation of ChR2, a 470-nm light-emitting diode (LED; BLS-LCS-0470-50-22, Mightex Systems, Pleasanton, CA, USA) was used at full field illumination through a 40× water immersion objective. Five-millisecond blue light pulses were applied at a maximum total power of \sim 4 mW, at which neuronal responses were saturated. In some experiments, low concentrations of TTX, 1 μM, and 4-amino pyridine (100 μM) were added to the ACSF to isolate monosynaptic 660 currents (Petreanu, Mao, Sternson, & Svoboda, 2009; Shu et al., 2007). CNQX (10 μ M) and AP5 (50 661 μ M) were applied to inhibit glutamatergic synaptic currents (N = 10), and SR95531 (gabazine; 20 662 μ M) was applied (N = 10) to prevent GABA_A receptor-mediated synaptic currents. All 663 pharmacological reagents were purchased from Tocris Bioscience (Bristol, UK).

Slices were then fixed with a mixture of 4% paraformaldehyde, 0.05% glutaraldehyde, and 664 6650.2% picric acid in 0.1 M PB overnight at 4°C. Fixed slices were rinsed with PB (3×10 min), and then re-sectioned into 50-µm-thick sections. The sections were incubated with 1% H₂O₂ in 0.05 M 666 TBS for 30 min at RT to deplete endogenous peroxidases, then rinsed with TBS three times. The 667 sections were incubated with CF350-conjugated streptavidin for 2 h (1:3000; Biotium, Inc., Fremont, 668 CA) for fluorescent investigation of biocytin filled neurons. For brightfield microscopy, the sections 669 670 were incubated with ABC (1:200; Elite, Vector) overnight at 4°C. Biocytin-filled neurons were visualized for light microscopy with Ni-DAB using H₂O₂ at a final concentration of 0.01%. The 671sections were dried on a glass slide and coverslipped with EcoMount (Biocare Medical, LLC, 672673 Concord, CA).

674

675 Data analysis

676 Quantification of corticostriatal axon density

To quantify the distribution of cortical axons in the striosome and matrix, regions of interest (ROI) were first set as square fields of approximately 10×10 pixels and located in a striosome component 679 expressing MOR. The size of the ROI was adjusted according to the size of the striosome. The fluorescence intensity of each pixel in the ROI was measured, and the median was used as the 680 representative intensity for that ROI. Next, an ROI of the same size was set in the matrix close to the 681 striosome, and the median fluorescence intensity of the matrix ROI was obtained. Each striosome 682683 ROI was accompanied by one matrix ROI. During ROI placement, areas containing axon bundles of 684 passage were excluded. To reduce the variance of the injection size and number of labeled neurons, 685the fluorescence intensity of the matrix ROI was normalized to that of the striosome ROI. Thus, if axons were equally distributed in the striosome and matrix, the normalized intensity would be 1.0. To 686 quantify axon density in CB-positive striatum, images of CB immunofluorescence were binarized, 687 and the number of pixels containing cortical axons were counted. The median value of pixel intensity 688 was used for representing projection strength. 689

690

691 Quantification of cortico-pallidal axon density

Many thick cortical axon bundles with strong fluorescence passed through the GP, which largely disrupted proportional relationships between fluorescence intensity and axon varicosity (or bouton) density. Therefore, we manually counted axonal varicosities in each ROI using brightfield microscopic images. ROIs of $233 \times 173 \mu m$ were selected as the locations of densest axon terminals. Because cortical boutons were observed in the striatum and STN of the same animal, these were also counted, and the resultant bouton density was compared with those of the GP to decrease the effect 698 of variability of tracer injections.

699

Tracing and quantification of labeled cortical or pallidal axons in the STN

Axons in serial sagittal sections were manually traced on paper using a drawing tube equipped with a 701 microscope (OPTIPHOT, Nikon Instech Co., Ltd, Tokyo, Japan) with a ×40 objective (N.A. 0.7). 702703 The tracings were scanned and saved as digital data. The resolution of a digitized image was 0.48 µm/px. For quantification using Fiji, the digitized data were converted into a binary image and the 704 presence of axons was determined pixelwise. For comparisons of spatial axon distributions in the 705STN among cortical areas of origin, the STN was divided into 10 equal parts along the A/P axis or 706 into six equal parts along the dorsoventral axis. In each division, the numbers of pixels with and 707 without cortical axons were counted, and the proportion of axon-containing pixels to all pixels was 708calculated for each division. The proportion data was also normalized to the maximum value for each 709injection. The mean values of 2 M/L plane sections (M/L, 2.3 mm and 2.7 mm) are indicated in Fig. 710 7E (N = 3 rats for M1, N = 2 for M2, and N = 2 for LO). 711

712

713 Analysis of electrophysiological data

Our analysis method has been previously described (Mizutani et al., 2017; Oh et al., 2017). Briefly, slice recording data were analyzed using Igor Pro 7 (Wave metrics Inc., Portland, OR) with the aid of the Neuromatic plugin (http://www.neuromatic.thinkrandom.com)(Rothman & Silver, 2018) and

717	handmade procedures. Neurons in the striatum, basal nucleus of Meynert, and GP possessed distinct
718	firing properties and were readily distinguished. In the GP, GABAergic projection neurons and
719	putative cholinergic neurons were distinguishable by cell morphology and firing properties. Putative
720	cholinergic neurons were excluded from the present data. The locations of recorded cells were
721	visualized with biocytin and manually plotted on a digital image.

722

723 Statistical comparisons

Averaged data are provided as mean \pm standard deviation unless otherwise noted. Data comparison 724among more than two groups was performed using one-way ANOVA followed by a post hoc Tukey 725test, using R software (http://www.r-project.org/; R Project for Statistical Computing, Vienna, 726 727Austria). Data comparison between two groups was performed using the Wilcoxon rank sum test. For 728 comparison of proportion values, Fisher's exact test was used. For comparison of cumulative histograms, the Kolmogorov-Smirnov test was applied. Differences in data values were considered 729 significant if p < 0.05. Significant differences are indicated using asterisks (*, p < 0.05; **, p < 0.01; 730 ***, p < 0.001). All *p*-values are reported. 731

732

733

bioRxiv preprint doi: https://doi.org/10.1101/677377; this version posted June 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Table 1.

735 Electrophysiological properties of globus pallidus (GP) neurons

	GP _{STN} (<i>N</i> =108)	$GP_{CPu} (N = 65)$	<i>p</i> value
Mean membrane potential (mV)	-46.63 ± 4.95	-46.36 ± 5.9	0.682
	(-34.2–-61.53)	(-33.59– -60.53)	
Input resistance (MΩ)	232.35 ± 131.87	329.97 ± 168.19	6.8×10 ⁻⁰⁵ ***
	(33.1–887.45)	(32.8-828.3)	
Time constant (ms)	12.94 ± 10.23	21.92 ± 13.11	2.1×10 ⁻⁰⁷ ***
	(2.25–79.75)	(2.42–55.67)	
Sag potential (mV)	7.23 ± 4.52	8.71 ± 7	0.3432
	(1.25–22.02)	(0.63–35.18)	
Spike frequency at 100 pA depolarization	48.46 ± 22.94	35.81 ± 19.6	0.00041 ***
(Hz)	(0–103)	(2–85)	
Spike frequency at 500 pA depolarization	99.14 ± 66.87	35.24 ± 39.24	1.8×10 ⁻⁰⁹ ***
(Hz)	(1–244)	(1–172)	
Maximum spike frequency (Hz)	135.04 ± 65.42	72.14 ± 36.12	1.0×10 ⁻⁰⁹ ***
	(11–263)	(2–172)	
Current at maximum spike frequency (pA)	578.63 ± 277.97	345.24 ± 219	6.9×10 ⁻⁰⁸ ***
	(50–1000)	(50–1000)	

bioRxiv preprint doi: https://doi.org/10.1101/677377; this version posted June 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Spike height (mV)	74.06 ± 9.77	76.55 ± 11.69	0.051
	(47.04–96.98)	(38.84–95.97)	
Spike width (ms)	0.95 ± 0.29	1.19 ± 0.32	1.6×10 ⁻⁰⁹ ***
	(0.63–2.29)	0.7–2.17	
Spike threshold (mV)	-37.57 ± 4.79	-37.7 ± 5.32	0.5351
	(-24.09– -48.11)	(-23.1446.03)	
fAHP amplitude (mV)	21.16 ± 5.14	18.09 ± 4.57	1.3×10 ⁻⁰⁵ ***
	(9.1–38.72)	(11.88–36.34)	
fAHP delay after spike peak (ms)	0.98 ± 0.39	1.31 ± 0.55	3.4×10 ⁻⁰⁷ ***
	(0.55–2.7)	(0.6–3.8)	
sAHP amplitude (mV)	18.26 ± 4.2	16.54 ± 4.71	0.0035 **
	(9.47–32.87)	(10.38–29.78)	
sAHP delay after spike peak (ms)	9.63 ± 3.32	22.58 ± 13.54	4.5×10 ⁻¹² ***
	(2.25–16.95)	(2.25–65.5)	
On cell mode spontaneous firing frequency	20.79 ± 18.74	5.47 ± 9.22	1.2×10 ⁻⁰⁸ ***
(Hz)	(0–90.53)	(0–35.68)	
Whole cell mode spontaneous firing	19.02 ± 13.74	9.41 ± 9.44	4.0×10 ⁻⁰⁶ ***
frequency (Hz)	(0–61.74)	(0–31.85)	

- 736 GP_{STN}, GP neurons projecting to the subthalamic nucleus; GP_{CPu}, GP neurons projecting to the
- striatum; fAHP, fast afterhyperpolarization; sAHP, slow afterhyperpolarization; **, p < 0.01; ***, p
- 738 < 0.001. Statistical significance was examined using the Wilcoxon rank sum test. The range of each
- 739 parameter is shown in parentheses.
- 740

741 **References**

- Abdi, A., Mallet, N., Mohamed, F. Y., Sharott, A., Dodson, P. D., Nakamura, K. C., . . . Magill, P. J. (2015).
 Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. *J Neurosci*, 35(17), 6667-6688. doi:10.1523/JNEUROSCI.4662-14.2015
- Abrahao, K. P., & Lovinger, D. M. (2018). Classification of GABAergic neuron subtypes from the globus
 pallidus using wild-type and transgenic mice. J Physiol, 596(17), 4219-4235.
 doi:10.1113/JP276079
- Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders.
 Trends Neurosci, 12(10), 366-375.
- 750Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated 751circuits linking basal ganglia and cortex. Annu Rev Neurosci. 9. 357-381. 752doi:10.1146/annurev.ne.09.030186.002041
- Arber, S., & Costa, R. M. (2018). Connecting neuronal circuits for movement. *Science*, 360(6396),
 1403-1404. doi:10.1126/science.aat5994
- Arkadir, D., Morris, G., Vaadia, E., & Bergman, H. (2004). Independent coding of movement direction and
 reward prediction by single pallidal neurons. J Neurosci, 24(45), 10047-10056.
 doi:10.1523/JNEUROSCI.2583-04.2004
- Bar-Gad, I., Heimer, G., Ritov, Y., & Bergman, H. (2003). Functional correlations between neighboring
 neurons in the primate globus pallidus are weak or nonexistent. *J Neurosci, 23*(10), 4012-4016.
- Barth, T. M., Jones, T. A., & Schallert, T. (1990). Functional subdivisions of the rat somatic sensorimotor
 cortex. *Behav Brain Res, 39*(1), 73-95.
- Barthas, F., & Kwan, A. C. (2017). Secondary Motor Cortex: Where 'Sensory' Meets 'Motor' in the Rodent
 Frontal Cortex. *Trends Neurosci, 40*(3), 181-193. doi:10.1016/j.tins.2016.11.006
- Baufreton, J., Garret, M., Rivera, A., de la Calle, A., Gonon, F., Dufy, B., . . . Taupignon, A. (2003). D5 (not
 D1) dopamine receptors potentiate burst-firing in neurons of the subthalamic nucleus by
 modulating an L-type calcium conductance. J Neurosci, 23(3), 816-825.
- Baufreton, J., Kirkham, E., Atherton, J. F., Menard, A., Magill, P. J., Bolam, J. P., & Bevan, M. D. (2009).
 Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic
 nucleus. *J Neurophysiol*, *102*(1), 532-545. doi:10.1152/jn.00305.2009
- Bengtson, C. P., & Osborne, P. B. (2000). Electrophysiological properties of cholinergic and noncholinergic
 neurons in the ventral pallidal region of the nucleus basalis in rat brain slices. *J Neurophysiol,*83(5), 2649-2660. doi:10.1152/jn.2000.83.5.2649
- Bevan, M. D., Magill, P. J., Hallworth, N. E., Bolam, J. P., & Wilson, C. J. (2002). Regulation of the timing
 and pattern of action potential generation in rat subthalamic neurons in vitro by GABA-A IPSPs. *J Neurophysiol*, 87(3), 1348-1362.
- Bevan, M. D., Magill, P. J., Terman, D., Bolam, J. P., & Wilson, C. J. (2002). Move to the rhythm:
 oscillations in the subthalamic nucleus-external globus pallidus network. *Trends Neurosci, 25*(10),
 525-531.

- Bissonette, G. B., Powell, E. M., & Roesch, M. R. (2013). Neural structures underlying set-shifting: roles of
 medial prefrontal cortex and anterior cingulate cortex. *Behav Brain Res, 250*, 91-101.
 doi:10.1016/j.bbr.2013.04.037
- Bogacz, R., Martin Moraud, E., Abdi, A., Magill, P. J., & Baufreton, J. (2016). Properties of Neurons in
 External Globus Pallidus Can Support Optimal Action Selection. *PLoS Comput Biol, 12*(7),
 e1005004. doi:10.1371/journal.pcbi.1005004
- Bolam, J. P., Hanley, J. J., Booth, P. A., & Bevan, M. D. (2000). Synaptic organisation of the basal ganglia. *JAnat, 196 (Pt 4)*, 527-542.
- Bostan, A. C., Dum, R. P., & Strick, P. L. (2013). Cerebellar networks with the cerebral cortex and basal
 ganglia. *Trends Cogn Sci*, 17(5), 241-254. doi:10.1016/j.tics.2013.03.003
- Brown, A. R., & Teskey, G. C. (2014). Motor cortex is functionally organized as a set of spatially distinct
 representations for complex movements. J Neurosci, 34(41), 13574-13585.
 doi:10.1523/JNEUROSCI.2500-14.2014
- Bugaysen, J., Bar-Gad, I., & Korngreen, A. (2013). Continuous modulation of action potential firing by a
 unitary GABAergic connection in the globus pallidus in vitro. *J Neurosci, 33*(31), 12805-12809.
 doi:10.1523/JNEUROSCI.1970-13.2013
- Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V., & Di Filippo, M. (2014). Direct and indirect pathways of
 basal ganglia: a critical reappraisal. *Nat Neurosci, 17*(8), 1022-1030. doi:10.1038/nn.3743
- Canteras, N. S., Shammah-Lagnado, S. J., Silva, B. A., & Ricardo, J. A. (1990). Afferent connections of the
 subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the
 rat. *Brain Res*, *513*(1), 43-59.
- Cao, V. Y., Ye, Y., Mastwal, S., Ren, M., Coon, M., Liu, Q., . . . Wang, K. H. (2015). Motor Learning
 Consolidates Arc-Expressing Neuronal Ensembles in Secondary Motor Cortex. *Neuron*, 86(6),
 1385-1392. doi:10.1016/j.neuron.2015.05.022
- Cooper, A. J., & Stanford, I. M. (2000). Electrophysiological and morphological characteristics of three
 subtypes of rat globus pallidus neurone in vitro. *J Physiol*, *527 Pt 2*, 291-304.
- Crittenden, J. R., & Graybiel, A. M. (2011). Basal Ganglia disorders associated with imbalances in the
 striatal striosome and matrix compartments. *Front Neuroanat*, 5, 59.
 doi:10.3389/fnana.2011.00059
- Cui, G., Jun, S. B., Jin, X., Pham, M. D., Vogel, S. S., Lovinger, D. M., & Costa, R. M. (2013). Concurrent
 activation of striatal direct and indirect pathways during action initiation. *Nature*, 494(7436),
 238-242. doi:10.1038/nature11846
- B11 DeLong, M. R. (1971). Activity of pallidal neurons during movement. J Neurophysiol, 34(3), 414-427.
 B12 doi:10.1152/jn.1971.34.3.414
- B13 DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. *Trends Neurosci, 13*,
 814 281-285.
- B15 Dodson, P. D., Larvin, J. T., Duffell, J. M., Garas, F. N., Doig, N. M., Kessaris, N., . . . Magill, P. J. (2015).
 B16 Distinct developmental origins manifest in the specialized encoding of movement by adult

817 neurons of the external globus pallidus. *Neuron, 86*(2), 501-513. doi:10.1016/j.neuron.2015.03.007

- 818 Ebbesen, C. L., Insanally, M. N., Kopec, C. D., Murakami, M., Saiki, A., & Erlich, J. C. (2018). More than
- Just a "Motor": Recent Surprises from the Frontal Cortex. J Neurosci, 38(44), 9402-9413.
 doi:10.1523/JNEUROSCI.1671-18.2018
- Eblen, F., & Graybiel, A. M. (1995). Highly restricted origin of prefrontal cortical inputs to striosomes in
 the macaque monkey. *J Neurosci, 15*(9), 5999-6013.
- Ebrahimi, A., Pochet, R., & Roger, M. (1992). Topographical organization of the projections from
 physiologically identified areas of the motor cortex to the striatum in the rat. *Neurosci Res, 14*(1),
 39-60.
- Edgerton, J. R., Hanson, J. E., Gunay, C., & Jaeger, D. (2010). Dendritic sodium channels regulate
 network integration in globus pallidus neurons: a modeling study. J Neurosci, 30(45),
 15146-15159. doi:10.1523/JNEUROSCI.2662-10.2010
- Elias, S., Joshua, M., Goldberg, J. A., Heimer, G., Arkadir, D., Morris, G., & Bergman, H. (2007).
 Statistical properties of pauses of the high-frequency discharge neurons in the external segment
 of the globus pallidus. *J Neurosci*, 27(10), 2525-2538. doi:10.1523/JNEUROSCI.4156-06.2007
- 832 Ermentrout, B. (1996). Type I membranes, phase resetting curves, and synchrony. *Neural Comput, 8*(5),
 833 979-1001.
- Frank, M. J., Samanta, J., Moustafa, A. A., & Sherman, S. J. (2007). Hold your horses: impulsivity, deep
 brain stimulation, and medication in parkinsonism. *Science*, 318(5854), 1309-1312.
 doi:10.1126/science.1146157
- Friedman, A., Homma, D., Gibb, L. G., Amemori, K., Rubin, S. J., Hood, A. S., . . . Graybiel, A. M. (2015). A
 Corticostriatal Path Targeting Striosomes Controls Decision-Making under Conflict. *Cell, 161*(6),
 1320-1333. doi:10.1016/j.cell.2015.04.049
- Friend, D. M., & Kravitz, A. V. (2014). Working together: basal ganglia pathways in action selection. *Trends Neurosci, 37*(6), 301-303. doi:10.1016/j.tins.2014.04.004
- Fujiyama, F., Nakano, T., Matsuda, W., Furuta, T., Udagawa, J., & Kaneko, T. (2015). A single-neuron
 tracing study of arkypallidal and prototypic neurons in healthy rats. *Brain Struct Funct*.
 doi:10.1007/s00429-015-1152-2
- 845 Fujiyama, F., Sohn, J., Nakano, T., Furuta, T., Nakamura, K. C., Matsuda, W., & Kaneko, T. (2011). 846 Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single 847 neuron-tracing study using а viral vector. EurJNeurosci, 33(4),668-677. 848 doi:10.1111/j.1460-9568.2010.07564.x
- Fujiyama, F., Takahashi, S., & Karube, F. (2015). Morphological elucidation of basal ganglia circuits
 contributing reward prediction. *Front Neurosci, 9*, 6. doi:10.3389/fnins.2015.00006
- Fujiyama, F., Unzai, T., Nakamura, K., Nomura, S., & Kaneko, T. (2006). Difference in organization of
 corticostriatal and thalamostriatal synapses between patch and matrix compartments of rat
 neostriatum. *Eur J Neurosci, 24*(10), 2813-2824. doi:10.1111/j.1460-9568.2006.05177.x
- Gabbott, P. L., Warner, T. A., Jays, P. R., Salway, P., & Busby, S. J. (2005). Prefrontal cortex in the rat:

- projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol, 492(2), 145-177.
 doi:10.1002/cne.20738
- Gerfen, C. R. (1985). The neostriatal mosaic. I. Compartmental organization of projections from the
 striatum to the substantia nigra in the rat. J Comp Neurol, 236(4), 454-476.
 doi:10.1002/cne.902360404
- Gittis, A. H., Berke, J. D., Bevan, M. D., Chan, C. S., Mallet, N., Morrow, M. M., & Schmidt, R. (2014).
 New roles for the external globus pallidus in basal ganglia circuits and behavior. *J Neurosci*, 34(46), 15178-15183. doi:10.1523/JNEUROSCI.3252-14.2014
- Glajch, K. E., Kelver, D. A., Hegeman, D. J., Cui, Q., Xenias, H. S., Augustine, E. C., . . . Chan, C. S. (2016).
 Npas1+ Pallidal Neurons Target Striatal Projection Neurons. J Neurosci, 36(20), 5472-5488.
 doi:10.1523/JNEUROSCI.1720-15.2016
- Goldberg, J. A., & Bergman, H. (2011). Computational physiology of the neural networks of the primate
 globus pallidus: function and dysfunction. *Neuroscience*, 198, 171-192.
 doi:10.1016/j.neuroscience.2011.08.068
- Goldberg, J. A., Kats, S. S., & Jaeger, D. (2003). Globus pallidus discharge is coincident with striatal
 activity during global slow wave activity in the rat. J Neurosci, 23(31), 10058-10063.
 doi:10.1523/JNEUROSCI.23-31-10058.2003
- Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. (2009). Optical
 deconstruction of parkinsonian neural circuitry. *Science*, 324(5925), 354-359.
 doi:10.1126/science.1167093
- Guo, Z. V., Li, N., Huber, D., Ophir, E., Gutnisky, D., Ting, J. T., . . . Svoboda, K. (2014). Flow of cortical
 activity underlying a tactile decision in mice. *Neuron*, *81*(1), 179-194.
 doi:10.1016/j.neuron.2013.10.020
- Hanson, J. E., Smith, Y., & Jaeger, D. (2004). Sodium channels and dendritic spike initiation at excitatory
 synapses in globus pallidus neurons. J Neurosci, 24(2), 329-340.
 doi:10.1523/JNEUROSCI.3937-03.2004
- Haynes, W. I., & Haber, S. N. (2013). The organization of prefrontal-subthalamic inputs in primates
 provides an anatomical substrate for both functional specificity and integration: implications for
 Basal Ganglia models and deep brain stimulation. J Neurosci, 33(11), 4804-4814.
 doi:10.1523/JNEUROSCI.4674-12.2013
- Hegeman, D. J., Hong, E. S., Hernandez, V. M., & Chan, C. S. (2016). The external globus pallidus:
 progress and perspectives. *Eur J Neurosci, 43*(10), 1239-1265. doi:10.1111/ejn.13196
- Heilbronner, S. R., Meyer, M. A. A., Choi, E. Y., & Haber, S. N. (2018). How do cortico-striatal projections
 impact on downstream pallidal circuitry? *Brain Struct Funct, 223*(6), 2809-2821.
 doi:10.1007/s00429-018-1662-9
- Heindorf, M., Arber, S., & Keller, G. B. (2018). Mouse Motor Cortex Coordinates the Behavioral Response
 to Unpredicted Sensory Feedback. *Neuron*, 99(5), 1040-1054 e1045.
 doi:10.1016/j.neuron.2018.07.046

- Hernandez, V. M., Hegeman, D. J., Cui, Q., Kelver, D. A., Fiske, M. P., Glajch, K. E., . . . Chan, C. S. (2015).
 Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External
 Globus Pallidus. *J Neurosci*, *35*(34), 11830-11847. doi:10.1523/JNEUROSCI.4672-14.2015
- Hikosaka, O. (2007). GABAergic output of the basal ganglia. *Prog Brain Res, 160*, 209-226.
- Hintiryan, H., Foster, N. N., Bowman, I., Bay, M., Song, M. Y., Gou, L., . . . Dong, H. W. (2016). The mouse
 cortico-striatal projectome. *Nat Neurosci*, *19*(8), 1100-1114. doi:10.1038/nn.4332
- Hira, R., Ohkubo, F., Masamizu, Y., Ohkura, M., Nakai, J., Okada, T., & Matsuzaki, M. (2014).
 Reward-timing-dependent bidirectional modulation of cortical microcircuits during optical
 single-neuron operant conditioning. *Nat Commun*, 5, 5551. doi:10.1038/ncomms6551
- Hira, R., Ohkubo, F., Ozawa, K., Isomura, Y., Kitamura, K., Kano, M., . . . Matsuzaki, M. (2013).
 Spatiotemporal dynamics of functional clusters of neurons in the mouse motor cortex during a
 voluntary movement. *J Neurosci, 33*(4), 1377-1390. doi:10.1523/JNEUROSCI.2550-12.2013
- Hontanilla, B., Parent, A., de las Heras, S., & Gimenez-Amaya, J. M. (1998). Distribution of calbindin
 D-28k and parvalbumin neurons and fibers in the rat basal ganglia. *Brain Res Bull*, 47(2),
 107-116.
- Hooks, B. M., Papale, A. E., Paletzki, R. F., Feroze, M. W., Eastwood, B. S., Couey, J. J., . . . Gerfen, C. R.
 (2018). Topographic precision in sensory and motor corticostriatal projections varies across cell
 type and cortical area. *Nat Commun*, 9(1), 3549. doi:10.1038/s41467-018-05780-7
- 911 Hunnicutt, B. J., Jongbloets, B. C., Birdsong, W. T., Gertz, K. J., Zhong, H., & Mao, T. (2016). A
 912 comprehensive excitatory input map of the striatum reveals novel functional organization. *Elife*, 5.
 913 doi:10.7554/eLife.19103
- Isoda, M., & Hikosaka, O. (2008). Role for subthalamic nucleus neurons in switching from automatic to
 controlled eye movement. *J Neurosci, 28*(28), 7209-7218. doi:10.1523/JNEUROSCI.0487-08.2008
- Isomura, Y., Takekawa, T., Harukuni, R., Handa, T., Aizawa, H., Takada, M., & Fukai, T. (2013).
 Reward-modulated motor information in identified striatum neurons. J Neurosci, 33(25),
 10209-10220. doi:10.1523/JNEUROSCI.0381-13.2013
- Jaeger, D., & Kita, H. (2011). Functional connectivity and integrative properties of globus pallidus
 neurons. *Neuroscience*, 198, 44-53. doi:10.1016/j.neuroscience.2011.07.050
- Janssen, M. L. F., Temel, Y., Delaville, C., Zwartjes, D. G. M., Heida, T., De Deurwaerdere, P., . . .
 Benazzouz, A. (2017). Cortico-subthalamic inputs from the motor, limbic, and associative areas in
 normal and dopamine-depleted rats are not fully segregated. *Brain Struct Funct, 222*(6),
 2473-2485. doi:10.1007/s00429-016-1351-5
- Kawaguchi, Y., Wilson, C. J., & Emson, P. C. (1990). Projection subtypes of rat neostriatal matrix cells
 revealed by intracellular injection of biocytin. *J Neurosci, 10*(10), 3421-3438.
- Kawai, R., Markman, T., Poddar, R., Ko, R., Fantana, A. L., Dhawale, A. K., . . . Olveczky, B. P. (2015).
 Motor cortex is required for learning but not for executing a motor skill. *Neuron, 86*(3), 800-812.
 doi:10.1016/j.neuron.2015.03.024
- 930 Kelly, R. M., & Strick, P. L. (2004). Macro-architecture of basal ganglia loops with the cerebral cortex: use

931 of rabies virus to reveal multisynaptic circuits. *Prog Brain Res, 143*, 449-459.

- Wim, H. F., Ghazizadeh, A., & Hikosaka, O. (2014). Separate groups of dopamine neurons innervate
 caudate head and tail encoding flexible and stable value memories. *Front Neuroanat, 8*, 120.
 doi:10.3389/fnana.2014.00120
- 935Kincaid, A. E., & Wilson, C. J. (1996). Corticostriatal innervation of the patch and matrix in the rat936neostriatum.JCompNeurol,374(4),578-592.
- 937 doi:10.1002/(SICI)1096-9861(19961028)374:4<578::AID-CNE7>3.0.CO;2-Z
- 938 Kita, H. (2007). Globus pallidus external segment. *Prog Brain Res, 160*, 111-133.
- Kita, H., & Kita, T. (2001). Number, origins, and chemical types of rat pallidostriatal projection neurons. J
 Comp Neurol, 437(4), 438-448.
- Kita, T., & Kita, H. (2012). The subthalamic nucleus is one of multiple innervation sites for long-range
 corticofugal axons: a single-axon tracing study in the rat. J Neurosci, 32(17), 5990-5999.
 doi:10.1523/JNEUROSCI.5717-11.2012
- Lévesque, M., Bédard, A., Cossette, M., & Parent, A. (2003). Novel aspects of the chemical anatomy of the
 striatum and its efferents projections. J Chem Neuroanat, 26(4), 271-281.
 doi:10.1016/j.jchemneu.2003.07.001
- Lerner, T. N., Shilyansky, C., Davidson, T. J., Evans, K. E., Beier, K. T., Zalocusky, K. A., . . . Deisseroth, K.
 (2015). Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits. *Cell*, 162(3), 635-647. doi:10.1016/j.cell.2015.07.014
- Li, N., Chen, T. W., Guo, Z. V., Gerfen, C. R., & Svoboda, K. (2015). A motor cortex circuit for motor
 planning and movement. *Nature*, *519*(7541), 51-56. doi:10.1038/nature14178
- Mailly, P., Aliane, V., Groenewegen, H. J., Haber, S. N., & Deniau, J. M. (2013). The rat prefrontostriatal
 system analyzed in 3D: evidence for multiple interacting functional units. *J Neurosci, 33*(13),
 5718-5727. doi:10.1523/JNEUROSCI.5248-12.2013
- Makino, H., Hwang, E. J., Hedrick, N. G., & Komiyama, T. (2016). Circuit Mechanisms of Sensorimotor
 Learning. *Neuron*, 92(4), 705-721. doi:10.1016/j.neuron.2016.10.029
- Makino, H., Ren, C., Liu, H., Kim, A. N., Kondapaneni, N., Liu, X., . . . Komiyama, T. (2017).
 Transformation of Cortex-wide Emergent Properties during Motor Learning. *Neuron*, 94(4),
 880-890 e888. doi:10.1016/j.neuron.2017.04.015
- Mallet, N., Micklem, B. R., Henny, P., Brown, M. T., Williams, C., Bolam, J. P., . . . Magill, P. J. (2012).
 Dichotomous organization of the external globus pallidus. *Neuron*, 74(6), 1075-1086.
 doi:10.1016/j.neuron.2012.04.027
- Mallet, N., Schmidt, R., Leventhal, D., Chen, F., Amer, N., Boraud, T., & Berke, J. D. (2016). Arkypallidal
 Cells Send a Stop Signal to Striatum. *Neuron*. doi:10.1016/j.neuron.2015.12.017
- Manita, S., Suzuki, T., Homma, C., Matsumoto, T., Odagawa, M., Yamada, K., . . . Murayama, M. (2015). A
 Top-Down Cortical Circuit for Accurate Sensory Perception. *Neuron*, *86*(5), 1304-1316.
 doi:10.1016/j.neuron.2015.05.006
- 968 Mastro, K. J., Bouchard, R. S., Holt, H. A., & Gittis, A. H. (2014). Transgenic mouse lines subdivide

- 969 external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J
 970 Neurosci, 34(6), 2087-2099. doi:10.1523/JNEUROSCI.4646-13.2014
- Mastro, K. J., Zitelli, K. T., Willard, A. M., Leblanc, K. H., Kravitz, A. V., & Gittis, A. H. (2017).
 Cell-specific pallidal intervention induces long-lasting motor recovery in dopamine-depleted mice. *Nat Neurosci, 20*(6), 815-823. doi:10.1038/nn.4559
- Mathai, A., & Smith, Y. (2011). The corticostriatal and corticosubthalamic pathways: two entries, one
 target. So what? *Front Syst Neurosci, 5*, 64. doi:10.3389/fnsys.2011.00064
- Matsumoto, M., & Hikosaka, O. (2009). Two types of dopamine neuron distinctly convey positive and
 negative motivational signals. *Nature*, 459(7248), 837-841. doi:10.1038/nature08028
- Menegas, W., Bergan, J. F., Ogawa, S. K., Isogai, Y., Umadevi Venkataraju, K., Osten, P., . . .
 Watabe-Uchida, M. (2015). Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. *Elife*, 4, e10032. doi:10.7554/eLife.10032
- Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. *Brain Res Brain Res Rev, 31*(2-3), 236-250.
- 983 Middleton, F. A., & Strick, P. L. (2002). Basal-ganglia 'projections' to the prefrontal cortex of the primate.
 984 *Cereb Cortex*, 12(9), 926-935.
- Milardi, D., Gaeta, M., Marino, S., Arrigo, A., Vaccarino, G., Mormina, E., . . . Quartarone, A. (2015). Basal
 ganglia network by constrained spherical deconvolution: a possible cortico-pallidal pathway? *Mov Disord*, 30(3), 342-349. doi:10.1002/mds.25995
- Mimica, B., Dunn, B. A., Tombaz, T., Bojja, V., & Whitlock, J. R. (2018). Efficient cortical coding of 3D
 posture in freely behaving rats. *Science*, *362*(6414), 584-589. doi:10.1126/science.aau2013
- Mink, J. W., & Thach, W. T. (1991a). Basal ganglia motor control. I. Nonexclusive relation of pallidal
 discharge to five movement modes. *J Neurophysiol*, 65(2), 273-300. doi:10.1152/jn.1991.65.2.273
- Mink, J. W., & Thach, W. T. (1991b). Basal ganglia motor control. II. Late pallidal timing relative to
 movement onset and inconsistent pallidal coding of movement parameters. J Neurophysiol, 65(2),
 301-329. doi:10.1152/jn.1991.65.2.301
- Miyamoto, D., Hirai, D., Fung, C. C., Inutsuka, A., Odagawa, M., Suzuki, T., . . . Murayama, M. (2016).
 Top-down cortical input during NREM sleep consolidates perceptual memory. *Science*, *352*(6291),
 1315-1318. doi:10.1126/science.aaf0902
- Miyamoto, Y., & Fukuda, T. (2015). Immunohistochemical study on the neuronal diversity and
 three-dimensional organization of the mouse entopeduncular nucleus. *Neurosci Res, 94*, 37-49.
 doi:10.1016/j.neures.2015.02.006
- Mizutani, K., Takahashi, S., Okamoto, S., Karube, F., & Fujiyama, F. (2017). Substance P effects
 exclusively on prototypic neurons in mouse globus pallidus. *Brain Struct Funct, 222*(9), 4089-4110.
 doi:10.1007/s00429-017-1453-8
- Murakami, M., Shteingart, H., Loewenstein, Y., & Mainen, Z. F. (2017). Distinct Sources of Deterministic
 and Stochastic Components of Action Timing Decisions in Rodent Frontal Cortex. *Neuron*, 94(4),
 908-919 e907. doi:10.1016/j.neuron.2017.04.040

- Murakami, M., Vicente, M. I., Costa, G. M., & Mainen, Z. F. (2014). Neural antecedents of self-initiated
 actions in secondary motor cortex. *Nat Neurosci*, 17(11), 1574-1582. doi:10.1038/nn.3826
- Nakayama, Y., Yokoyama, O., & Hoshi, E. (2015). Distinct neuronal organizations of the caudal cingulate
 motor area and supplementary motor area in monkeys for ipsilateral and contralateral hand
 movements. J Neurophysiol, 113(7), 2845-2858. doi:10.1152/jn.00854.2014
- Naito, A., & Kita, H. (1994). The cortico-pallidal projection in the rat: an anterograde tracing study with
 biotinylated dextran amine. *Brain Res, 653*(1-2), 251-257.
- 1014 Nambu, A. (2007). Globus pallidus internal segment. . Prog Brain Res, 160(135-150).
- 1015 Nambu, A. (2008). Seven problems on the basal ganglia. Curr Opin Neurobiol, 18(6), 595-604.
 1016 doi:10.1016/j.conb.2008.11.001
- 1017 Nambu, A. (2011). Somatotopic organization of the primate Basal Ganglia. Front Neuroanat, 5, 26.
 1018 doi:10.3389/fnana.2011.00026
- Nambu, A., Takada, M., Inase, M., & Tokuno, H. (1996). Dual somatotopical representations in the
 primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from
 the primary motor cortex and the supplementary motor area. J Neurosci, 16(8), 2671-2683.
- Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., . . . Hasegawa, N. (2000).
 Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J
 Neurophysiol, 84(1), 289-300.
- Nambu, A., Tokuno, H., Inase, M., & Takada, M. (1997). Corticosubthalamic input zones from forelimb
 representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey:
 comparison with the input zones from the primary motor cortex and the supplementary motor
 area. Neurosci Lett, 239(1), 13-16.
- 1029 Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico-subthalamo-pallidal
 1030 'hyperdirect' pathway. *Neurosci Res, 43*(2), 111-117.
- 1031 Oh, Y. M., Karube, F., Takahashi, S., Kobayashi, K., Takada, M., Uchigashima, M., . . . Fujiyama, F. (2017).
 1032 Using a novel PV-Cre rat model to characterize pallidonigral cells and their terminations. *Brain*1033 Struct Funct, 222(5), 2359-2378. doi:10.1007/s00429-016-1346-2
- Parent, A., Fortin, M., Cote, P. Y., & Cicchetti, F. (1996). Calcium-binding proteins in primate basal
 ganglia. *Neurosci Res, 25*(4), 309-334.
- Parent, A., & Hazrati, L. N. (1995a). Functional anatomy of the basal ganglia. I. The cortico-basal
 ganglia-thalamo-cortical loop. *Brain Res Brain Res Rev, 20*(1), 91-127.
- Parent, A., & Hazrati, L. N. (1995b). Functional anatomy of the basal ganglia. II. The place of subthalamic
 nucleus and external pallidum in basal ganglia circuitry. *Brain Res Brain Res Rev, 20*(1), 128-154.
- Passingham, R. E., & Wise, S. P. (2012). *The neurobiology of prefrontal cortex. Anatomy, evolution, and the origin of insight.* Oxford: Oxford University Press.
- Paus, T. (2001). Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat
 Rev Neurosci, 2(6), 417-424. doi:10.1038/35077500
- 1044 Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates (6th ed.). San Diego, USA:

1045 Academic Press.

- Petreanu, L., Mao, T., Sternson, S. M., & Svoboda, K. (2009). The subcellular organization of neocortical
 excitatory connections. *Nature*, 457(7233), 1142-1145. doi:10.1038/nature07709
- Rajakumar, N., Elisevich, K., & Flumerfelt, B. A. (1994). The pallidostriatal projection in the rat: a
 recurrent inhibitory loop? *Brain Res, 651*(1-2), 332-336.
- Rajakumar, N., Rushlow, W., Naus, C. C., Elisevich, K., & Flumerfelt, B. A. (1994). Neurochemical
 compartmentalization of the globus pallidus in the rat: an immunocytochemical study of
 calcium-binding proteins. J Comp Neurol, 346(3), 337-348. doi:10.1002/cne.903460303
- 1053 Redgrave, P., Rodriguez, M., Smith, Y., Rodriguez-Oroz, M. C., Lehericy, S., Bergman, H., . . . Obeso, J. A.
 1054 (2010). Goal-directed and habitual control in the basal ganglia: implications for Parkinson's
 1055 disease. *Nat Rev Neurosci, 11*(11), 760-772. doi:10.1038/nrn2915
- 1056 Reep, R. L., & Corwin, J. V. (1999). Topographic organization of the striatal and thalamic connections of
 1057 rat medial agranular cortex. *Brain Res, 841*(1-2), 43-52.
- Reep, R. L., Wu, J. H., Cheatwood, J. L., Corwin, J. V., Kartje, G. L., & Mir, A. (2008). Quantification of
 synaptic density in corticostriatal projections from rat medial agranular cortex. *Brain Res, 1233*,
 27-34. doi:10.1016/j.brainres.2008.07.059
- Rothman, J. S., & Silver, R. A. (2018). NeuroMatic: An Integrated Open-Source Software Toolkit for
 Acquisition, Analysis and Simulation of Electrophysiological Data. *Front Neuroinform, 12*, 14.
 doi:10.3389/fninf.2018.00014
- Rouiller, E. M., Moret, V., & Liang, F. (1993). Comparison of the connectional properties of the two
 forelimb areas of the rat sensorimotor cortex: support for the presence of a premotor or
 supplementary motor cortical area. *Somatosens Mot Res, 10*(3), 269-289.
- Sadek, A. R., Magill, P. J., & Bolam, J. P. (2007). A single-cell analysis of intrinsic connectivity in the rat
 globus pallidus. *J Neurosci, 27*(24), 6352-6362. doi:10.1523/JNEUROSCI.0953-07.2007
- Saiki, A., Kimura, R., Samura, T., Fujiwara-Tsukamoto, Y., Sakai, Y., & Isomura, Y. (2014). Different
 modulation of common motor information in rat primary and secondary motor cortices. *PLoS One*,
 9(6), e98662. doi:10.1371/journal.pone.0098662
- Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., . . . Cardona, A. (2012).
 Fiji: an open-source platform for biological-image analysis. *Nat Methods*, 9(7), 676-682.
 doi:10.1038/nmeth.2019
- Schmidt, R., Leventhal, D. K., Mallet, N., Chen, F., & Berke, J. D. (2013). Canceling actions involves a
 race between basal ganglia pathways. *Nat Neurosci, 16*(8), 1118-1124. doi:10.1038/nn.3456
- Schoenbaum, G., Roesch, M. R., Stalnaker, T. A., & Takahashi, Y. K. (2009). A new perspective on the role
 of the orbitofrontal cortex in adaptive behaviour. *Nat Rev Neurosci, 10*(12), 885-892.
 doi:10.1038/nrn2753
- Schultheiss, N. W., Edgerton, J. R., & Jaeger, D. (2010). Phase response curve analysis of a full
 morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of
 synaptic integration. J Neurosci, 30(7), 2767-2782. doi:10.1523/JNEUROSCI.3959-09.2010

- Shepherd, G. M. (2013). Corticostriatal connectivity and its role in disease. *Nat Rev Neurosci, 14*(4),
 278-291. doi:10.1038/nrn3469
- Shibata, K.-I., Tanaka, T., Hioki, H., & Furuta, T. (2018). Projection Patterns of Corticofugal Neurons
 Associated with Vibrissa Movement. *eNeuro*, 5(5), ENEURO.0190-0118.2018.
 doi:10.1523/eneuro.0190-18.2018
- Shink, E., Bevan, M. D., Bolam, J. P., & Smith, Y. (1996). The subthalamic nucleus and the external
 pallidum: two tightly interconnected structures that control the output of the basal ganglia in the
 monkey. *Neuroscience*, 73(2), 335-357.
- Shink, E., & Smith, Y. (1995). Differential synaptic innervation of neurons in the internal and external
 segments of the globus pallidus by the GABA- and glutamate-containing terminals in the squirrel
 monkey. J Comp Neurol, 358(1), 119-141. doi:10.1002/cne.903580108
- 1094 Shipp, S. (2016). The functional logic of corticostriatal connections. Brain Struct Funct.
 1095 doi:10.1007/s00429-016-1250-9
- Shu, Y., Yu, Y., Yang, J., & McCormick, D. A. (2007). Selective control of cortical axonal spikes by a slowly
 inactivating K+ current. *Proc Natl Acad Sci U S A*, 104(27), 11453-11458.
 doi:10.1073/pnas.0702041104
- Smith, J. B., Klug, J. R., Ross, D. L., Howard, C. D., Hollon, N. G., Ko, V. I., . . . Jin, X. (2016).
 Genetic-Based Dissection Unveils the Inputs and Outputs of Striatal Patch and Matrix
 Compartments. *Neuron*, *91*(5), 1069-1084. doi:10.1016/j.neuron.2016.07.046
- Smith, Y., Bevan, M. D., Shink, E., & Bolam, J. P. (1998). Microcircuitry of the direct and indirect
 pathways of the basal ganglia. *Neuroscience*, *86*(2), 353-387.
- Smith, Y., Raju, D. V., Pare, J. F., & Sidibe, M. (2004). The thalamostriatal system: a highly specific
 network of the basal ganglia circuitry. *Trends Neurosci, 27*(9), 520-527.
 doi:10.1016/j.tins.2004.07.004
- Smith, Y., & Wichmann, T. (2015). The cortico-pallidal projection: an additional route for cortical
 regulation of the basal ganglia circuitry. *Mov Disord*, *30*(3), 293-295. doi:10.1002/mds.26095
- Smith, Y., Wichmann, T., & DeLong, M. R. (2014). Corticostriatal and mesocortical dopamine systems: do
 species differences matter? *Nat Rev Neurosci, 15*(1), 63. doi:10.1038/nrn3469-c1
- Soma, S., Saiki, A., Yoshida, J., Rios, A., Kawabata, M., Sakai, Y., & Isomura, Y. (2017). Distinct Laterality
 in Forelimb-Movement Representations of Rat Primary and Secondary Motor Cortical Neurons
 with Intratelencephalic and Pyramidal Tract Projections. J Neurosci, 37(45), 10904-10916.
 doi:10.1523/JNEUROSCI.1188-17.2017
- Stanford, I. M. (2003). Independent neuronal oscillators of the rat globus pallidus. J Neurophysiol, 89(3),
 1116 1713-1717. doi:10.1152/jn.00864.2002
- Sul, J. H., Jo, S., Lee, D., & Jung, M. W. (2011). Role of rodent secondary motor cortex in value-based
 action selection. *Nat Neurosci, 14*(9), 1202-1208. doi:10.1038/nn.2881
- 1119Sul, J. H., Kim, H., Huh, N., Lee, D., & Jung, M. W. (2010). Distinct roles of rodent orbitofrontal and1120medial prefrontal cortex in decision making. Neuron, 66(3), 449-460.

1121 doi:10.1016/j.neuron.2010.03.033

- Svoboda, K., & Li, N. (2018). Neural mechanisms of movement planning: motor cortex and beyond. *Curr Opin Neurobiol, 49*, 33-41. doi:10.1016/j.conb.2017.10.023
- Tsumori, T., Yokota, S., Kishi, T., Qin, Y., Oka, T., & Yasui, Y. (2006). Insular cortical and amygdaloid
 fibers are in contact with posterolateral hypothalamic neurons projecting to the nucleus of the
 solitary tract in the rat. *Brain Res, 1070*(1), 139-144. doi:10.1016/j.brainres.2005.11.040
- 1127Turner, R. S., & Anderson, M. E. (1997). Pallidal discharge related to the kinematics of reaching1128movements in two dimensions. J Neurophysiol, 77(3), 1051-1074. doi:10.1152/jn.1997.77.3.1051
- Ueta, Y., Hirai, Y., Otsuka, T., & Kawaguchi, Y. (2013). Direction- and distance-dependent interareal
 connectivity of pyramidal cell subpopulations in the rat frontal cortex. *Front Neural Circuits, 7*,
 164. doi:10.3389/fncir.2013.00164
- 1132 Ueta, Y., Otsuka, T., Morishima, M., Ushimaru, M., & Kawaguchi, Y. (2013). Multiple Layer 5 Pyramidal
 1133 Cell Subtypes Relay Cortical Feedback from Secondary to Primary Motor Areas in Rats. Cereb
 1134 Cortex. doi:10.1093/cercor/bht088
- van Dijk, K. J., Janssen, M. L., Zwartjes, D. G., Temel, Y., Visser-Vandewalle, V., Veltink, P. H., . . . Heida,
 T. (2016). Spatial Localization of Sources in the Rat Subthalamic Motor Region Using an Inverse
 Current Source Density Method. *Front Neural Circuits, 10*, 87. doi:10.3389/fncir.2016.00087
- Viana Magno, L. A., Tenza-Ferrer, H., Collodetti, M., Felipe Guimaraes Aguiar, M., Paula Carneiro
 Rodrigues, A., Souza da Silva, R., . . . Aurelio Romano-Silva, M. (2019). Optogenetic stimulation of
 the M2 cortex reverts motor dysfunction in a mouse model of Parkinson's Disease. *J Neurosci.*doi:10.1523/JNEUROSCI.2277-18.2019
- Vicente, A. M., Galvao-Ferreira, P., Tecuapetla, F., & Costa, R. M. (2016). Direct and indirect dorsolateral
 striatum pathways reinforce different action strategies. *Curr Biol, 26*(7), R267-269.
 doi:10.1016/j.cub.2016.02.036
- 1145 Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. (2004). Putting a
 spin on the dorsal-ventral divide of the striatum. *Trends Neurosci, 27*(8), 468-474.
 1147 doi:10.1016/j.tins.2004.06.006
- Wallace, M. L., Saunders, A., Huang, K. W., Philson, A. C., Goldman, M., Macosko, E. Z., . . . Sabatini, B. L. 1148(2017). Genetically Distinct Parallel Pathways in the Entopeduncular Nucleus for Limbic and 11491150Sensorimotor Output of the Basal Ganglia. Neuron, 94(1),138 - 152e135. doi:10.1016/j.neuron.2017.03.017 1151
- Wei, W., & Wang, X. J. (2016). Inhibitory Control in the Cortico-Basal Ganglia-Thalamocortical Loop:
 Complex Regulation and Interplay with Memory and Decision Processes. *Neuron*, 92(5),
 1093-1105. doi:10.1016/j.neuron.2016.10.031
- Wichmann, T., & DeLong, M. R. (1996). Functional and pathophysiological models of the basal ganglia. *Curr Opin Neurobiol, 6*(6), 751-758.
- Wilson, C. J. (1986). Postsynaptic potentials evoked in spiny neostriatal projection neurons by stimulation
 of ipsilateral and contralateral neocortex. *Brain Res, 367*(1-2), 201-213.

- Wilson, C. J. (1987). Morphology and synaptic connections of crossed corticostriatal neurons in the rat. J *Comp Neurol, 263*(4), 567-580. doi:10.1002/cne.902630408
- Wise, S. P. (1985). The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci, 8,
 1162 1-19. doi:10.1146/annurev.ne.08.030185.000245
- Wouterlood, F. G., Hartig, W., Groenewegen, H. J., & Voorn, P. (2012). Density gradients of vesicular
 glutamate- and GABA transporter-immunoreactive boutons in calbindinand mu-opioid
 receptor-defined compartments in the rat striatum. J Comp Neurol, 520(10), 2123-2142.
 doi:10.1002/cne.23031
- Wu, Y., Richard, S., & Parent, A. (2000). The organization of the striatal output system: a single-cell
 juxtacellular labeling study in the rat. *Neurosci Res, 38*(1), 49-62.
- 1169 Xiao, C., Miwa, J. M., Henderson, B. J., Wang, Y., Deshpande, P., McKinney, S. L., & Lester, H. A. (2015).
- 1170 Nicotinic receptor subtype-selective circuit patterns in the subthalamic nucleus. J Neurosci, 35(9),
- 1171 3734·3746. doi:10.1523/JNEUROSCI.3528·14.2015
- 1172

1173

1174 Figure legends

1175 **Fig. 1.** Motor cortical axons project to the globus pallidus (GP).

(A) A representative image of axons in the GP originated from the secondary motor cortex (M2), 1176 labeled with biotinylated dextran amine (BDA; visualized in black). Axon collaterals in the GP are 11771178predominantly distributed in the calbindin (CB)-negative subregions. CB is visualized in brown. (B) 1179 Images and drawings of BDA injection sites into the primary and secondary motor areas (M1 and M2, respectively). Tracer was deposited across the entire thickness of the cortex. (C) Images of axon 1180 distributions in the GP, striatum, and subthalamic nucleus (STN) from M1 and M2. The sections 1181 were counter-stained with an anti-parvalbumin (PV) antibody, visualized in brown. (D) Magnified 1182views of cortical axon varicosities (arrowheads) in the GP; left, M1 axons; right, M2 axons. The 1183 images are composites from multiple focal planes, and show that the PV neurons are unlikely to be 1184 contacted by axon varicosities. (E) Comparison of axon varicosity density in GP with that in the STN 1185and striatum (N = 3 rats). The axon varicosity density in the GP as normalized values to that in the 1186 1187 STN (E1), or to that in the striatum (E2).

1188

1189 **Fig. 2.** Photoactivation of motor cortical terminals evokes excitation in GP neurons.

(A) Schematic (top) of AAV encoding channel rhodopsin 2 and mCherry injection into the motor
cortex for *ex vivo* recordings using coronal slices. Examples of AAV injection sites are shown in the
middle panels (red). Images of immunofluorescence for neurofilament 200 kDa (N200, bottom),

1193	used for identification of the M1/M2 border (white dotted lines). (B1) A representative voltage clamp
1194	trace (held at -60 mV) showing inward currents in GP neurons elicited by 5-ms blue light pulses (470
1195	nm). (B2) A representative current clamp trace showing photoinduced action potentials and
1196	excitatory postsynaptic potentials (EPSPs, arrowheads). (C) Cumulative histogram of the rheobase
1197	current of GP neurons. Note that 25 to 30 pA is sufficient to elicit action potentials in half of GP
1198	neurons ($N = 100$). (D) Proportion of GP neurons innervated by M1 or M2 terminals. The number of
1199	neurons is shown in bars. M2 more frequently innervated the GP than did M1. (E) Location of GP
1200	neurons innervated by M1 (red circle) or M2 (blue circle). Note the topographic distribution of M1
1201	and M2 innervation. The size of circles represents the amplitude of optically evoked currents,
1202	
1202 1203	Fig. 3. Cortico-pallidal connections are monosynaptic and glutamatergic.
	Fig. 3. Cortico-pallidal connections are monosynaptic and glutamatergic.(A) The current induced by optogenetic stimulation of cortical terminals is monosynaptic and
1203	
1203 1204	(A) The current induced by optogenetic stimulation of cortical terminals is monosynaptic and
1203 1204 1205	(A) The current induced by optogenetic stimulation of cortical terminals is monosynaptic and glutamatergic. (A1) Representative traces of pharmacological effects on the light-induced inward
1203 1204 1205 1206 1207	(A) The current induced by optogenetic stimulation of cortical terminals is monosynaptic and glutamatergic. (A1) Representative traces of pharmacological effects on the light-induced inward current. Top , no treatment; Middle , effects of TTX, 4AP, and gabazine; Bottom , effects of additional
1203 1204 1205 1206	(A) The current induced by optogenetic stimulation of cortical terminals is monosynaptic and glutamatergic. (A1) Representative traces of pharmacological effects on the light-induced inward current. Top , no treatment; Middle , effects of TTX, 4AP, and gabazine; Bottom , effects of additional application of glutamate receptor antagonists (CNQX, AP5). (A2) A summary plot of
1203 1204 1205 1206 1207 1208	(A) The current induced by optogenetic stimulation of cortical terminals is monosynaptic and glutamatergic. (A1) Representative traces of pharmacological effects on the light-induced inward current. Top , no treatment; Middle , effects of TTX, 4AP, and gabazine; Bottom , effects of additional application of glutamate receptor antagonists (CNQX, AP5). (A2) A summary plot of pharmacological treatments ($N = 10$ GP neurons from 4 rats). (B) Comparison of the time courses of

1211 plots of oEPSC time courses in STN and GP neurons. (B2) The latency from light onset to oEPSC

1212	onset does not differ between STN and GP neurons (both $N = 15$ neurons from 6 rats). The rise time
1213	(B3) and the decay constant (B4) of oEPSCs ($N = 15$ GP neurons and 12 STN neurons). Statistical
1214	significance was examined by the Wilcoxon rank sum test. The STN and GP neurons were recorded
1215	from the different brain slices of the same animal.
1216	
1217	Fig. 4. Cell type-dependent cortical innervation of pallidal neurons
1218	(A) Schematic of ex vivo recordings from retrogradely labeled GP neurons to investigate the effect of
1219	GP neuron projection type on cortical innervation. (B) Electrophysiological differences between GP
1220	neurons projecting to the striatum (GP _{CPu}) and STN (GP _{STN}) (see also Table 1). (C) The proportion of
1221	GP neurons innervated by M1 or M2 is correlated with projection type. GP _{CPu} neurons were more
1222	often innervated by either M1 or M2 than were GP _{STN} . Significance was examined using Fisher's
1223	exact test with a Bonferroni correction for multiple comparisons (***, $p < 0.00025$; **, $p < 0.0025$; *
1224	p < 0.0125).(D) Amplitudes of oEPSCs in GP, STN, and striatal neurons. The amplitude in GP _{CPu}
1225	neurons is similar to that in STN neurons but smaller than that in striatal medium spiny neurons

1226 (MSNs). From each rat, CPu, GP and STN neurons were recorded in the same experimental session.

Data obtained from M1 and M2 stimulation are summed. (E) Cumulative histograms of oEPSC amplitude in GP_{CPu} and GP_{STN} neurons. GP_{CPu} neurons exhibit a greater optically evoked EPSC (oEPSC) amplitude. (F) Left, amplitudes of oEPSCs induced in GP neurons by M1 terminal stimulation. The GP_{CPu} group shows larger oEPSC amplitudes than the GP_{STN} group. Right, amplitudes of oEPSCs induced by M2 terminal stimulation. Significantly larger oEPSCs were again

recorded in the GP_{CPu} group (p = 0.034), but the difference is small. The neurons represented in Fig. 12324 are not the same population as shown in Fig. 2, except for in Fig. 2C. 123312341235**Fig. 5**. Cortical inputs on bi-directional projection GP neurons (GP_{Bi}) 1236Two distinct retrograde tracers were injected into the STN and striatum (CPu), respectively. (A) Three combinations of double immunofluorescence (PV/Lhx6, PV/FoxP2, and Lhx6/FoxP2) were 1237 applied (N = 3. rats). CPu-projecting GP neurons (GP_{CPu}) expressed either FoxP2 or Lhx6 1238exclusively (A1), whereas STN-projecting GP neurons (GP_{STN}) were mainly composed of PV- and/or 1239Lhx6- expressing neurons (A2). (A3) GP neurons projecting to both the CPu and STN (GP_{Bi}) 12401241frequently expressed Lhx6, but not FoxP2. (B) Triple immunofluorescence for GP_{CPu} neurons (N = 2. 1242rats). Only a single retrograde tracer was injected into the striatum. (C) oEPSC amplitude of GP_{Bi} neurons (N = 3. rats for each M1 and M2 labeling). Most of GP_{Bi} exhibited small amplitude of 1243oEPSCs. Green and red retrobeads were injected into the CPu and STN, respectively. Confocal 1244images of a biocytin filled GP_{Bi} neuron (arrowheads) are shown. AAV-labeled cortical axons also 1245show red fluorescence. (D) Cumulative histograms of oEPSC amplitude in GP_{Bi} and GP_{CPu} neurons. 1246The distributions are significantly different ($p = 2.2 \times 10^{-16}$ by the Kolmogorov-Smirnov test). The 12471248histogram of GP_{CPu} neurons is the same as shown in Fig. 4E.

1249

1231

Fig. 6. Distribution of cortico-striatal axons in striatal subregions

1251	(A) Distribution of M1 cortico-striatal axons (magenta) in relation to calbindin (CB) expression
1252	(green). Sagittal sections at two mediolateral (M/L) coordinates are shown (A1, M/L 3.7 mm; A2,
1253	M/L 3.2 mm). Note that M1 axons were densely distributed in the dorsolateral striatum, where CB
1254	expression was weak. (B) M2 corticostriatal axons. M2 axons were distributed in the CB(+) and
1255	dorsal CB(-) subregions at M/L 3.7 mm (B1) and M/L 3.2 mm (B2). (C) Quantitative comparison of
1256	axon distributions between M1 and M2 (for each $N = 3$ rats). (C1) Proportion of axon-containing
1257	pixels in the CB(+) striatum. M2 axons more frequently innervated the CB(+) striatum than did M1
1258	axons. (C2) Normalized fluorescence intensity in the CB(-) striatum, which reflects axon density,
1259	was not significantly different between M1 and M2. The dotted line at 1.0 indicates axon density in
1260	the CB(+) striatum. (D) Distribution of M1 axons in the striosome/matrix subregions of the striatum.
1261	Upper panel, M1 axons (magenta) are overlaid with μ -opioid receptor (MOR) immunofluorescence
1262	(green). Dotted area in the panel is magnified in the bottom two panels. The fluorescence of M1
1263	axons (bottom left) and MOR (bottom right) is shown in grayscale. MOR immunopositive
1264	striosomes are contoured by white dotted lines. Note that M1 axons seemingly avoided the
1265	striosomes in both lateral (D1, M/L 3.4 mm) and medial (D2, M/L 2.8 mm) sections. (E) Distribution
1266	of M2 axons in the striatum, as described in (D). Note that in lateral sections (M/L 3.4 mm, E1), M2
1267	axons were uniformly distributed in both matrix and striosome, whereas in medial sections (M/L 2.8
1268	mm, E2), M2 axons were observed in dorsal but not ventral striosomes (arrowheads). (F) Normalized

fluorescence intensity in the matrix (N = 3 rats for each M1 and M2 labeling). M1 axons were more densely distributed in the matrix in lateral sections (M/L > 2.9 mm, F1), whereas both M1 and M2 preferentially innervated the matrix in medial sections (M/L ≤ 2.9 mm, F2). The dotted black line represents axon density in the striosomes. The sections from the same rat were used for either CB or MOR immunostaining.

1274

1275 **Fig. 7.** Distribution of cortico-subthalamic axons

Images and drawings of BDA injection sites into rostral M1 (A1), caudal M1 (B1), M2 (C1), and 1276lateral orbitofrontal area (LO). LO injections often extended to the insular area. However, additional 1277experiments revealed that the insular cortex did not send many axons to the STN, as previously 1278reported (Tsumori et al., 2006).Cortical axons in STN are represented in two sagittal planes (M/L 2.3 1279and 2.7 mm) for M1 (A2, B2), M2 (C2), and LO (D2). The gray dotted line indicates the boundary of 1280the STN. (E) Normalized distribution of cortical axons in the STN along the A/P (E1) or D/V axis 12811282(E2). Data from sections M/L 2.3 mm and 2.7 mm are pooled (N = 3 rats for M1, N = 2 for M2, and N = 2 for LO). (F) Merged traces of axons from M1, M2, and LO (N = 2 rats for each cortex). M1 12831284(black) terminated in the central part of the STN, whereas M2 axons (green) were dense in the posterior-ventral portion. 1285

1286

1287 Fig. 8. Reciprocal projections between the striatum and GP

1288	Cholera toxin subunit B conjugated with Alexa-Fluor-488 (CTB488) was injected into the striatum
1289	(CPu), either the CB(+) (A1) or CB(-) (B1) subregions. CTB488 can be transported in both
1290	anterograde and retrograde directions. In the GP, anterogradely labeled terminals of medium spiny
1291	neurons (MSNs) (arrowheads in A2 and B2) and labeled GP neurons projecting to the CPu
1292	(arrowheads in A3 and B3) were observed. Reciprocal projections between CPu and GP correlated
1293	with CB expression. Dotted lines show the boundary of the striatum (A1, B1), the GP (B2, C2), and
1294	CB(+)/CB(-) subregions of the GP (A3, B3). Representative images from one rat for each are shown.
1295	

1296 **Fig. 9.** Projections from GP to STN

(A), (B), (C) Left, Images of BDA injection sites in the GP subregions. Sections containing the 1297 injection core (arrowheads) were counterstained for CB (magenta). Thick dotted lines indicate the 1298borders of the GP, and thin dotted lines indicate the borders of CB(+) and CB(-) subregions of the GP. 1299Right, Drawings of labeled GP axons in the STN. Labeled axons (black) in the STN were traced 1300 over STN contours (green). Rostral GP projected to rostral STN (A; N = 3 rats) and central GP to 1301 central STN (B; N = 6 rats). (C) In one case, we observed caudal GP projections to caudal STN (N =13021303 1 rat). (D) Injection around the border between the GP and the internal capsule (N = 1 rat). Axons in the STN are uniformly distributed in the STN, probably due to labeling of fibers of passage from the 1304entire GP. Four to eight STN sections are overlaid for each case. Scales shown in A pertain also to B 1305and C. The labeled axons do not include striatal MSN axons because the striatum does not project to 1306

the STN. Passing fibers of cortico-STN projections may also be labeled with tracer injections into the
GP; however, this is unlikely in our experiments because the morphology of axonal boutons in the
STN differed between cortical and GP injections (E), as reported in monkeys (Shink & Smith, 1995).

1311 **Fig. 10.** Schematic drawings of the cortex-basal ganglia circuitry

1312Diagram of cortico-basal ganglia-thalamus circuitry. The dotted lines represent the relatively weak innervation reported in this study for cortex to GP_{STN}, and for GP_{CPu} to dMSNs (Glajch et al., 2016). 1313 The numbers in circles indicate estimated conduction times in millisecond (ms) (Jaeger & Kita, 1314 2011). (A) M1 activation induces excitation in the striatum, STN, and GP_{CPu}. Due to the 1315electrophysiological properties of the neurons, STN and GP may be activated faster than striatal 1316 neurons. (B) M2 activation conveys additional excitation to the GP_{STN} neurons. Possible information 1317flow related to the present study is shown by red lines. Note that inhibition from the GP is here 1318considered faster (1 ms) than excitation from the STN (2-3 ms) (Jaeger & Kita, 2011). The actual 1319 timing of spike activity depends on neuron type, and excitation/inhibition interactions are complex. 1320(C) Schematic of connections among the basal ganglia nuclei with relation to M1 and M2 13211322innervation.

1323

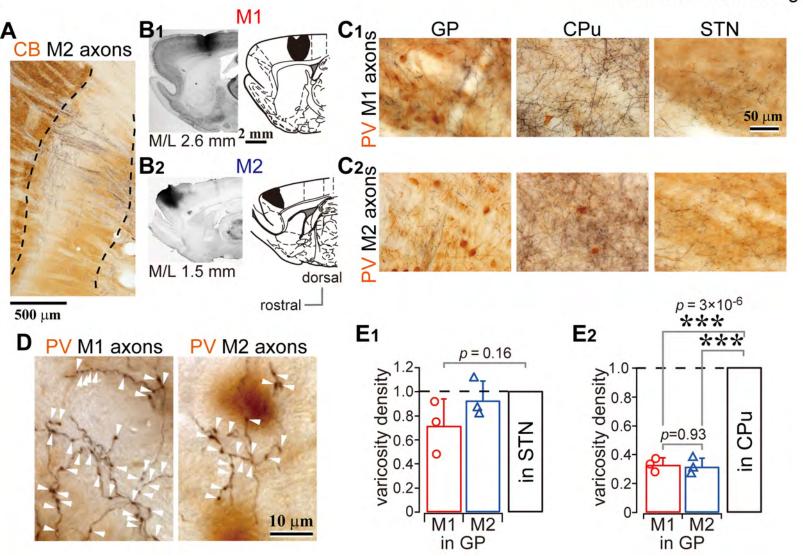
1324

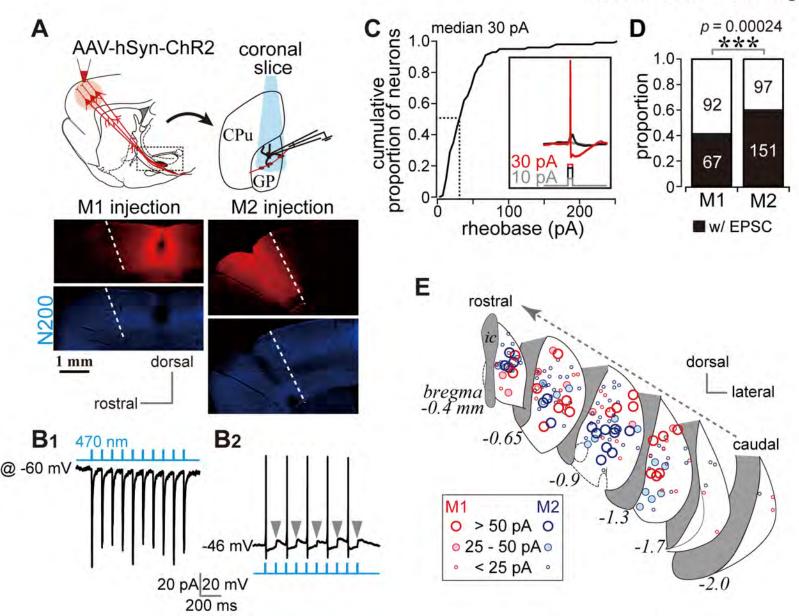
1325 **Figure-figure supplement legends**

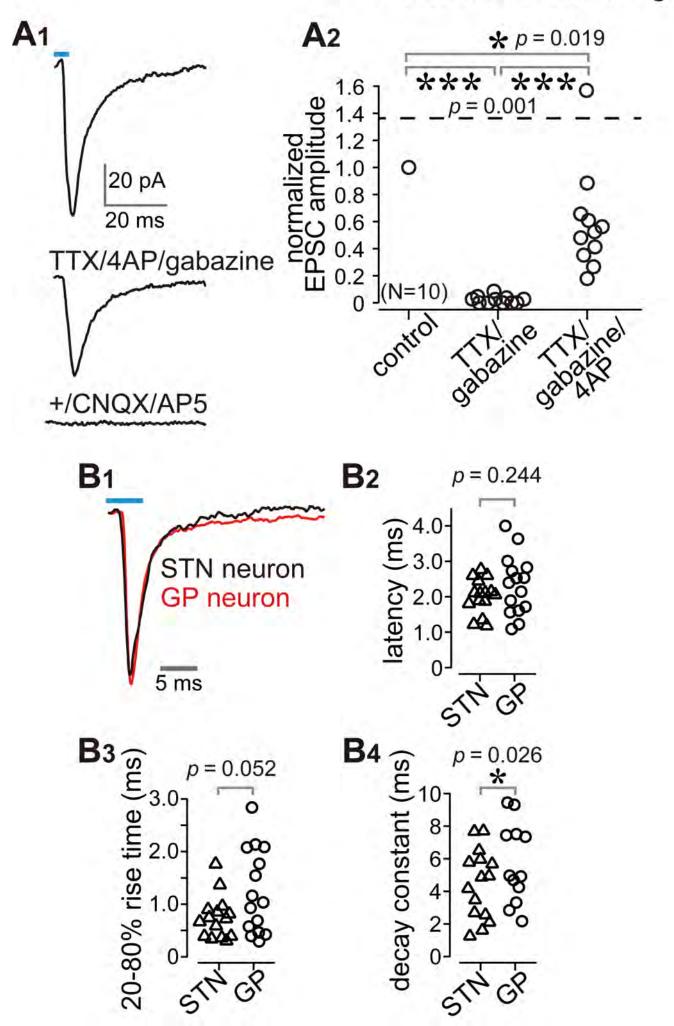
1326	Fig. 1-figure supplement 1. Example images of M2 projections to the striatum and GP (related to
1327	Fig. 1).

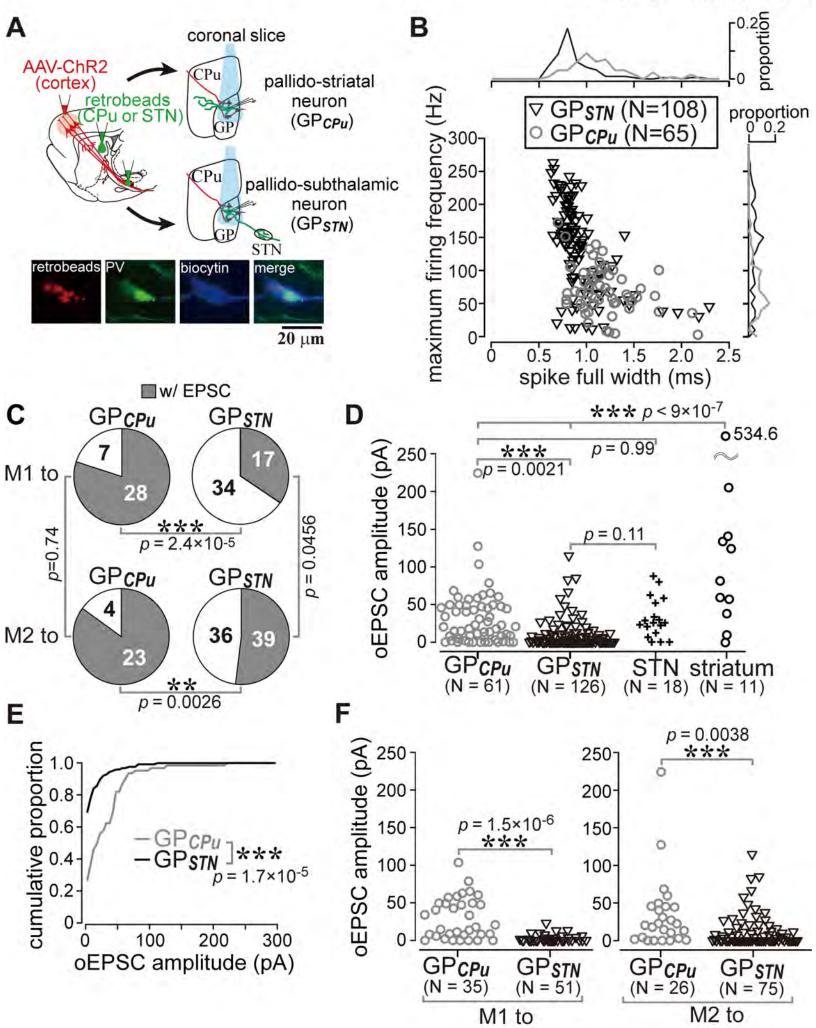
1328	Using BDA injections into M2, labeled axons are visualized in black and CB immunoactivity in
1329	brown. Axons are densely distributed in the striatum lateral to the midline (M/L 2.1-4.3 mm). In
1330	more lateral sections, axons were denser in CB(-) subregions, and were also found in striosomes
1331	(small CB[-] subregions) throughout the entire projection field (open arrowheads). In medial sections,
1332	M2 axons were observed in both CB(+) and CB(-) subregions. M2 axons were only faintly detected
1333	in ventral striosomes (filled arrowheads), whereas they were relatively dense in dorsal striosomes
1334	(open arrowheads). Note also the presence of M2 axons in CB(-) portions of the GP (arrows).
1335	
1336	Fig. 1-figure supplement 2. Cortico-pallidal projections are restricted to the ipsilateral hemisphere

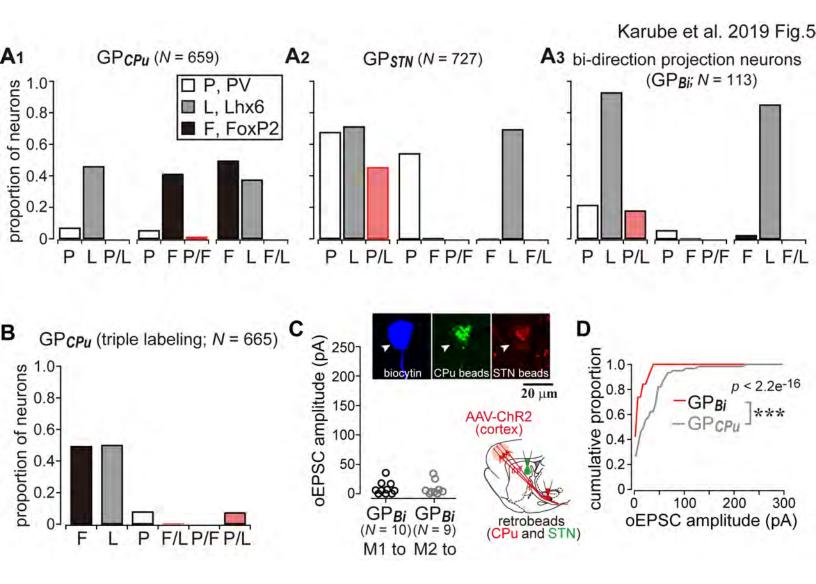
1337 (related to Fig. 1).

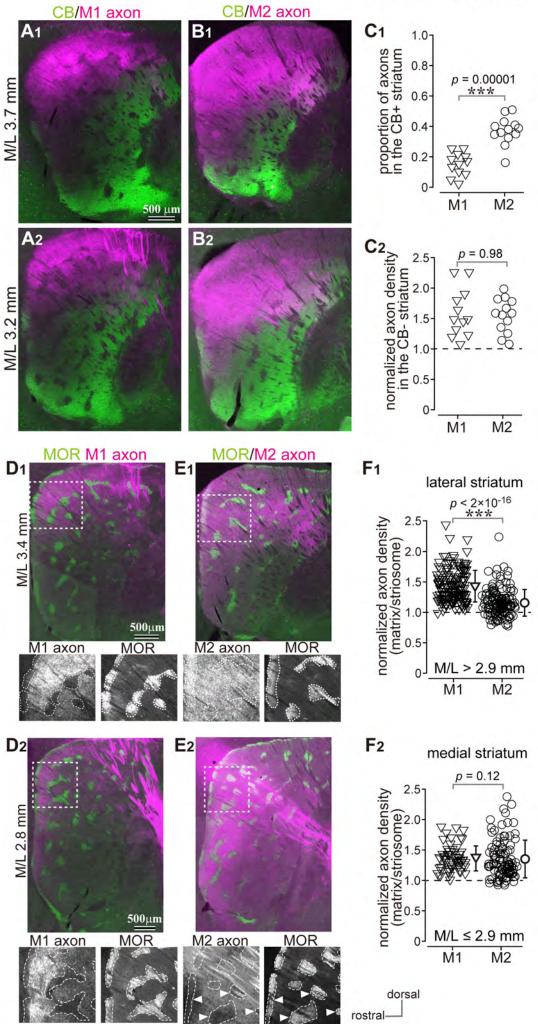

Representative images of AAV-labeled cortical axons in the basal ganglia originating in M2, in both hemispheres. **Left**, M2 axons were observed in the ipsilateral GP (**upper**) and STN (**lower**). In contrast, no fluorescent signal was observed in contralateral GP (**upper**) or STN (**lower**). The images in the contralateral hemisphere were captured with high exposures to better visualize brain structures, because no fluorescent signal was detected there. GP, globus pallidus; STN subthalamic nucleus; ic, internal capsule.

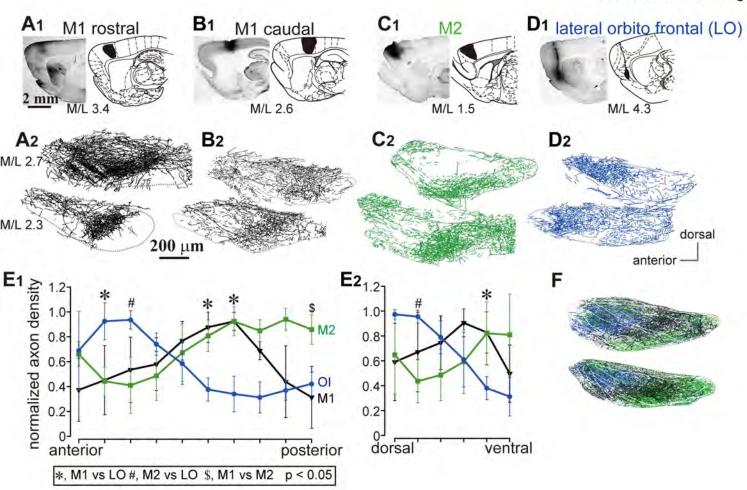

1344

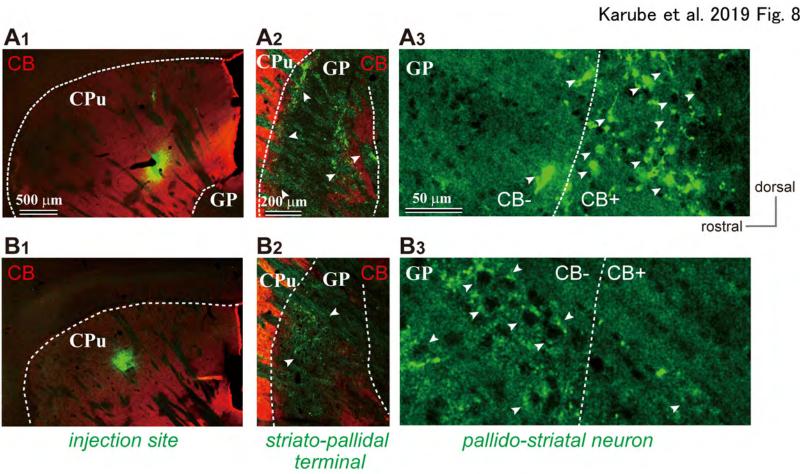

1345	Fig. 1-figure supplement 3. Number of cortical boutons in the striatum, STN, and GP originating
1346	from M1, M2, and LO (related to Fig. 1, also related to Fig. 5 and Supplementary Fig. 1).
1347	

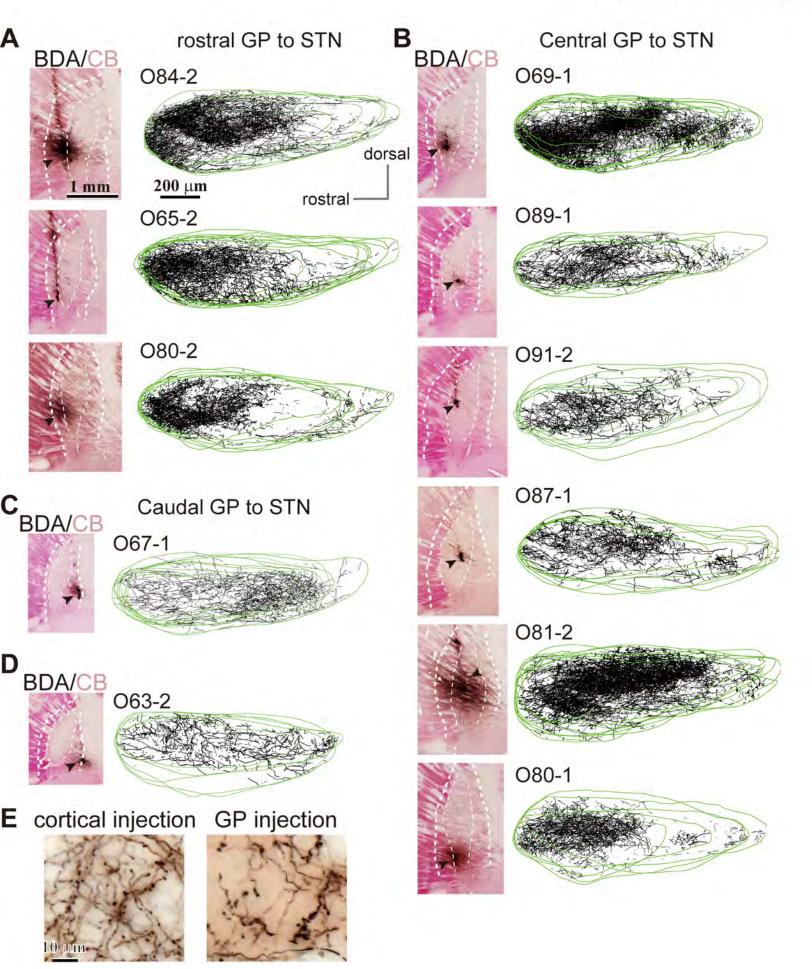

- Fig. 7-figure supplement 1. Representative distribution of STN-projecting cortical neurons (relatedto Fig. 5).
- 1350(A) Left, retrogradely labeled cortical neurons projecting to the STN. Note that many L5A neurons were labeled in the frontal cortical area. Right, calbindin (CB) immunofluorescence (green) in the 1351same section. Cortical layers are indicated with Roman numerals. (B) Plots of STN-projecting 1352cortical neurons (black dots). Most labeled neurons are located in the frontal area including AI (the 1353anterior insular area), the Cg (cingulate area), the LO (lateral orbitofrontal area), M1 (primary motor 1354area), M2 (secondary motor area), and the VO (ventral orbitofrontal area). Some neurons are also 1355located in S1 (primary somatosensory area) and the RSD (retrosplenial dysgranular area). (C) 1356CTB555 was injected into the STN. ic, internal capsule; ZI, zona incerta. The effects of faint tracer 1357leak to cortex and thalamus are considered negligible because very few labeled neurons are observed 1358in L2/3 or L6, respectively. 1359

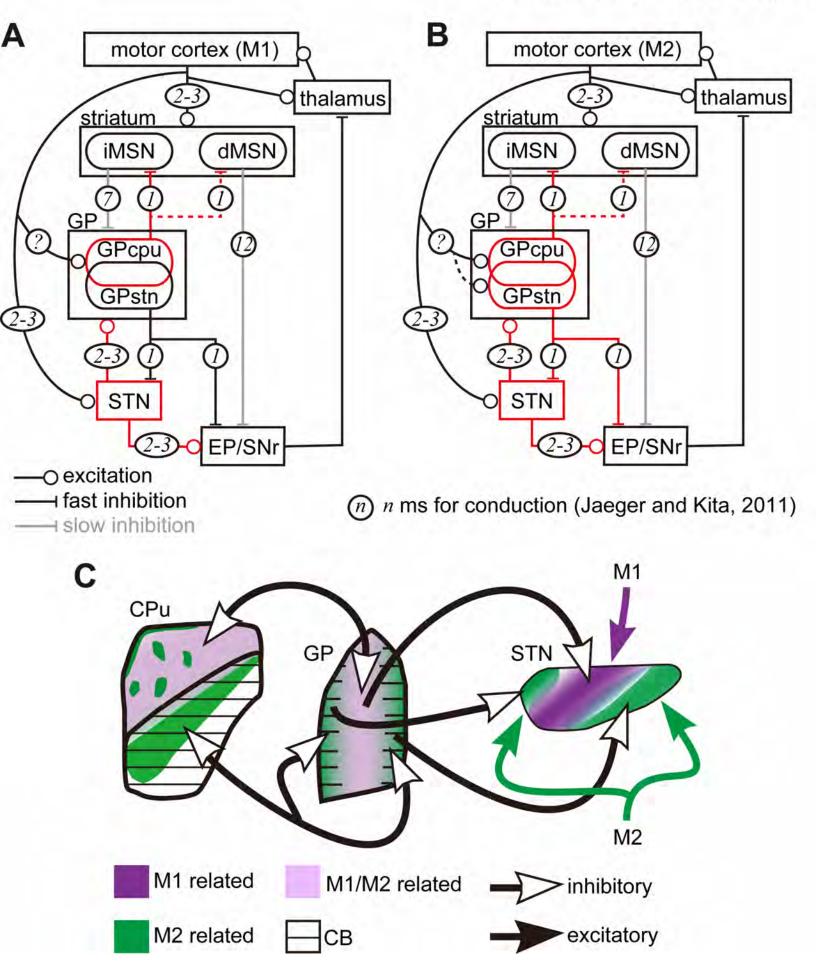

1360

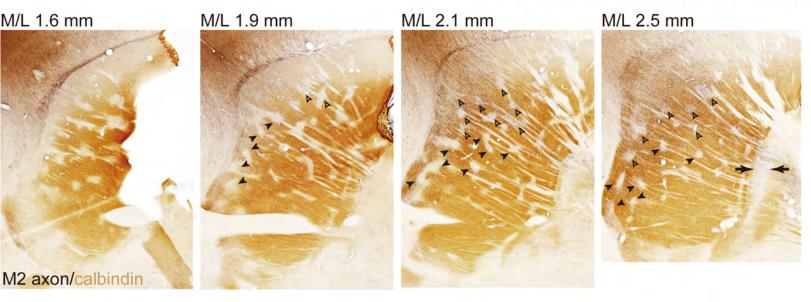








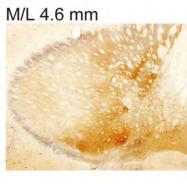


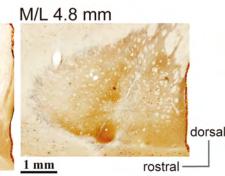


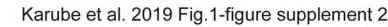
Karube et al. 2019 Fig.10

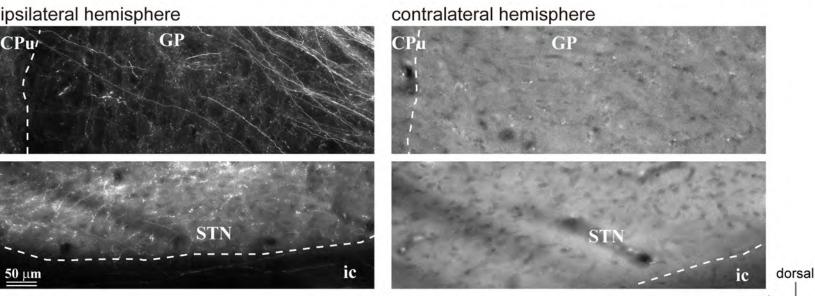
Karube et al. 2019 Fig.1-figure supplement 1

M/L 3.2 mm

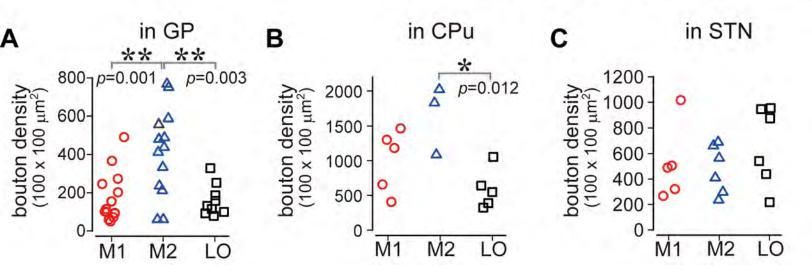


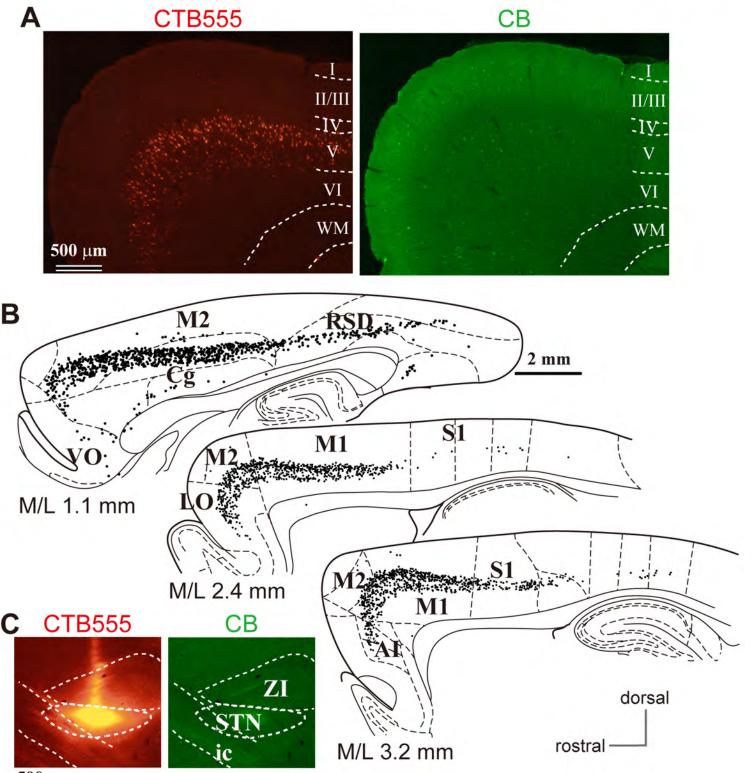

M/L 3.9 mm


M/L 3.1 mm



M/L 3.6 mm





rostral —

Karube et al. 2019 Fig.1-figure supplement 3

Karube et al. 2019 Fig. 7-figure supplement 1

⁵⁰⁰ μm

1 Supplementary materials

2 Orbitofrontal cortex (OFC) and anterior cingulate cortex (Cg) are involved in action (Schoenbaum et al., 2009). OFC provides behavioral flexibility via response inhibition 3 4 and associative learning (but see previous reference). The OFC requires integration of sensory signals and internal states such as motivation with ongoing action selection and 5 6 prediction of reward, to compute causal relationships between action selection and 7 specific outcomes (Passingham & Wise, 2012). The Cg includes the rostral cingulate 8 motor area (CMAr) (Morecraft & Van Hoesen, 1998), which lies in the cingulate sulcus, 9 ventral to the presupplementary motor area, and in primates sends axonal projections to 10 the spinal cord (Luppino, Matelli, Camarda, & Rizzolatti, 1994). The Cg and supplementary motor area (SMA) provide internal guides for action (Thaler, Chen, Nixon, 11 12 Stern, & Passingham, 1995) correlated with motivation and voluntary behavior. The caudal cingulate motor area (CMAc), however, is preponderantly implicated in sensory-13 driven movement (Paus, 2001) and is thus related to action selection. Similarly to the 14 OFC, the CMA promotes the switching of actions in response to changes in circumstances 15 16 and internal desires (Amemori & Graybiel, 2012; Nakayama et al., 2015; Tanji, 1987), 17and is related to preparatory processes (Risterucci, Terramorsi, Nieoullon, & Amalric, 18 2003). CMAr projects to the M1, SMA, preSMA, premotor cortex, and brainstem,

bioRxiv preprint doi: https://doi.org/10.1101/677377; this version posted June 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

19	including the pons and spinal cord (Sessle & Wiesendanger, 1982). The OFC and Cg have
20	different cognitive functions in primates and rodents (Bissonette et al., 2008; Bissonette
21	et al., 2013; Bissonette & Roesch, 2015; Friedman et al., 2015; Nakayama et al., 2015;
22	Sul et al., 2010). Thus, the OFC and Cg are important for motor behavior as well as being
23	motor areas, and we therefore investigated axon projections to the basal ganglia from
24	lateral orbitofrontal cortex (LO) and rostral Cg.
25	
26	Supplementary results
27	Cortico-striatal and cortico-pallidal projections from LO and anterior cingulate cortex
28	(Cg)
28 29	(<i>Cg</i>) For comparison, we investigated axons from LO and Cg, which are also located in the rat
29	For comparison, we investigated axons from LO and Cg, which are also located in the rat
29 30	For comparison, we investigated axons from LO and Cg, which are also located in the rat frontal cortex LO axons were distributed in the medio-ventral part of the striatum,
29 30 31	For comparison, we investigated axons from LO and Cg, which are also located in the rat frontal cortex LO axons were distributed in the medio-ventral part of the striatum, whereas Cg axons were distributed in the medial striatum (Suppl Fig. 1, 2). LO axons
29 30 31 32	For comparison, we investigated axons from LO and Cg, which are also located in the rat frontal cortex LO axons were distributed in the medio-ventral part of the striatum, whereas Cg axons were distributed in the medial striatum (Suppl Fig. 1, 2). LO axons were sparse in the dorsal striatum but dense in the caudal and ventral part of the dorsal
29 30 31 32 33	For comparison, we investigated axons from LO and Cg, which are also located in the rat frontal cortex LO axons were distributed in the medio-ventral part of the striatum, whereas Cg axons were distributed in the medial striatum (Suppl Fig. 1, 2). LO axons were sparse in the dorsal striatum but dense in the caudal and ventral part of the dorsal striatum as well as in the nucleus accumbens. In addition, these axons preferentially

37	that of M2 axons; however, Cg axons did not preferentially project to the striosomes
38	(Suppl. Fig. 2) (Averbeck, Lehman, Jacobson, & Haber, 2014; Friedman et al., 2015;
39	Gabbott et al., 2005; Hintiryan et al., 2016).
40	LO axons also passed through the GP, but they branched less frequently, and axon
41	collaterals were apparently not abundant (Suppl. Fig. 1). Actually, motor areas (both M1
42	and M2) provided more boutons than did LO, as expected based on the axon distribution.
43	LO did not preferentially innervate the dorsal striatum or GP but preferred the nucleus
44	accumbens, ventral pallidum, hypothalamus, and extended amygdala (Gabbott et al.,
45	2005). LO projections to GP were not as dense as those to STN (Suppl. Fig. 1D1). The
46	LO bouton density in the GP was approximately 30% of that in the striatum (Suppl. Fig.
47	1 D2). In contrast, the Cg projected to the medial GP and issued as many axon collaterals
48	as did motor cortical areas (Suppl. Fig. 2).
49	
50	Supplementary Figure legends
51	Supplementary Fig. 1. LO projections to the basal ganglia
52	(A) LO projections to the striatum. (A1) AAV injections into the LO. (A2) A

representative LO projection to the striatum. LO axons (red) are distributed in the caudal 53

and ventral part of the dorsal striatum (M/L 2.6 mm). (A3) Immunofluorescence for µ-54

55	opioid receptor (MOR, green). Arrowheads indicate the striosomes, which are MOR(+),
56	innervated by the LO axons seen in A2 and A3. Dotted square areas in A2 and A3 are
57	magnified in the right-most column. (B) BDA injection into LO. (C) Brightfield images
58	of LO axons in GP, striatum (CPu), and STN. Note that axon and terminal densities in GP
59	were apparently lower than those in the striatum or STN. (E) Quantitative comparison of
60	axon density in the GP normalized with that in the STN (D1) and striatum (D2). See also
61	Fig. 1.
62	
63	Supplementary Fig. 2. Cingulate cortex (Cg) projections to the basal ganglia
64	(A) Cg projections to the striatum (CPu) in sagittal sections (M/L 2.10 mm). Cg axons
64 65 66	(A) Cg projections to the striatum (CPu) in sagittal sections (M/L 2.10 mm). Cg axons
65 66	(A) Cg projections to the striatum (CPu) in sagittal sections (M/L 2.10 mm). Cg axons are dense in the CB-negative subregions of the striatum. As in the case of M2 axons, Cg
65	(A) Cg projections to the striatum (CPu) in sagittal sections (M/L 2.10 mm). Cg axons are dense in the CB-negative subregions of the striatum. As in the case of M2 axons, Cg axons were less dense in the CB-negative striosomes. (B) Cg projections to the GP. Cg
65 66 67	(A) Cg projections to the striatum (CPu) in sagittal sections (M/L 2.10 mm). Cg axons are dense in the CB-negative subregions of the striatum. As in the case of M2 axons, Cg axons were less dense in the CB-negative striosomes. (B) Cg projections to the GP. Cg axon collaterals were dense in the CB(-) central GP. Thick axon bundles pass through the

71 **Suppl. Table 1.** Primary antibodies used in this study

Antigen	igen Host Supplier		Catalog number	RRID	Worki
	species				dilutio
Calbindin	mouse	Sigma	C9848	AB_476894	1:4000
Calbindin	rabbit	Frontier	calbindin-Rb-Se-1	AB_2571568	1:2000
		Institute			
FoxP2	rabbit	Abcam	ab16046	AB_2107107	1:2000
Lhx 6	mouse	Santacruz	sc-271433	AB_10649856	1:1000
MOR	guinea	Millipore	AB1774	AB_91022	1:5000
	pig				
MOR	rabbit	Neuromics	RA10104	AB_2156525	1:1000
PHA-L	goat	Vector	AS2224	AB_2315141	1:2000
Parvalbumin	mouse	Sigma	P3171	AB_2313693	1:4000
Parvalbumin	guinea	Synaptic	195004/16	AB_2156476	1:5000
	pig	Systems			

72 MOR, µ-opioid receptor; PHA-L, Phaseolus vulgaris leucoagglutinin

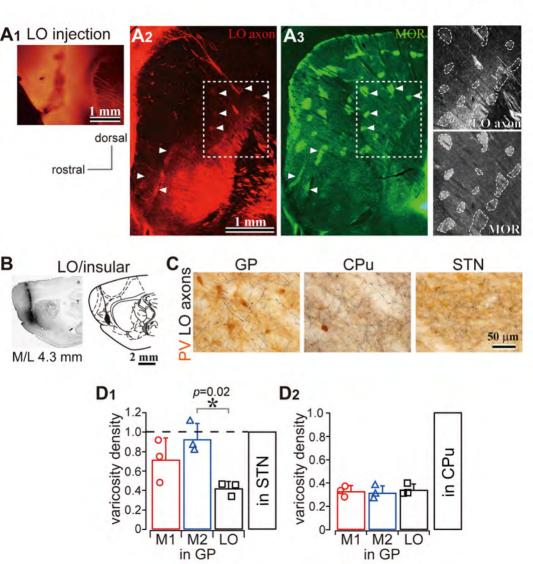
73

74 Suppl. Table 2. Secondary antibodies used in this study

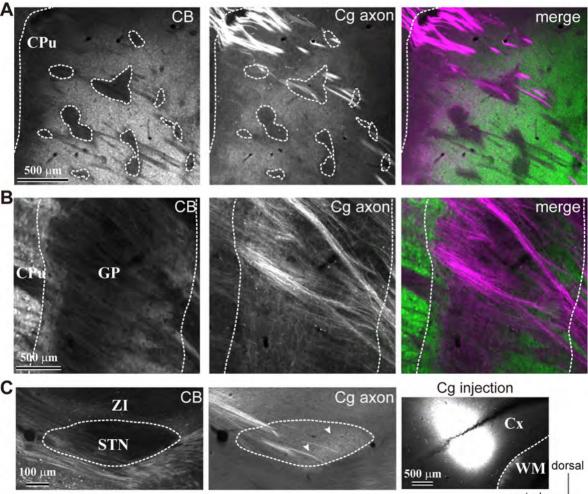
Secondary antibody	Host	Supplier	Catalog no.	RRID	Dilution
	species				
anti-rat Alexa	donkey	*	A21208	AB_141709	1:500
Fluor®488					
anti-mouse Alexa	donkey	*	A10036	AB_2534012	1:500
Fluor®546					
anti-mouse Alexa	goat	*	A31575	AB_2536185	1:500
Fluor®635					
anti-rabbit Alexa	goat	*	A31556	AB_221605	1:500
Fluor®405					
anti-rabbit Alexa	goat	*	A31577	AB_2536187	1:500
Fluor®635					
anti-guinea pig Alexa	goat	Abcam	ab175678	-	1:500
Fluor®405					
anti-guinea pig Alexa	goat	*	A11076	AB_141930	1:500
Fluor®594					

bioRxiv preprint doi: https://doi.org/10.1101/677377; this version posted June 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

anti-guinea pig Alexa	goat	*	A21105	AB_2535757	1:500


Fluor®633

- 75 All antibodies are polyclonal. * Thermo Fisher Scientific (Waltham, MA), Abcam
- 76 (Cambridge, UK)
- 77


78 Supplementary References

- Amemori, K., & Graybiel, A. M. (2012). Localized microstimulation of primate pregenual
 cingulate cortex induces negative decision-making. *Nat Neurosci, 15*(5), 776-785.
 doi:10.1038/nn.3088
- Averbeck, B. B., Lehman, J., Jacobson, M., & Haber, S. N. (2014). Estimates of projection
 overlap and zones of convergence within frontal-striatal circuits. *J Neurosci, 34*(29),
 9497-9505. doi:10.1523/JNEUROSCI.5806-12.2014
- Bissonette, G. B., Martins, G. J., Franz, T. M., Harper, E. S., Schoenbaum, G., & Powell, E.
 M. (2008). Double dissociation of the effects of medial and orbital prefrontal cortical
 lesions on attentional and affective shifts in mice. *J Neurosci, 28*(44), 11124-11130.
 doi:10.1523/JNEUROSCI.2820-08.2008
- Bissonette, G. B., & Roesch, M. R. (2015). Rule encoding in dorsal striatum impacts action
 selection. *Eur J Neurosci, 42*(8), 2555-2567. doi:10.1111/ejn.13042
- Luppino, G., Matelli, M., Camarda, R., & Rizzolatti, G. (1994). Corticospinal projections from
 mesial frontal and cingulate areas in the monkey. *Neuroreport, 5*(18), 2545-2548.
- Morecraft, R. J., & Van Hoesen, G. W. (1998). Convergence of limbic input to the cingulate
 motor cortex in the rhesus monkey. *Brain Res Bull*, 45(2), 209-232.
- Risterucci, C., Terramorsi, D., Nieoullon, A., & Amalric, M. (2003). Excitotoxic lesions of the
 prelimbic-infralimbic areas of the rodent prefrontal cortex disrupt motor preparatory
 processes. *Eur J Neurosci, 17*(7), 1498-1508. doi:10.1046/j.1460-9568.2003.02541.x
- Sessle, B. J., & Wiesendanger, M. (1982). Structural and functional definition of the motor
 cortex in the monkey (Macaca fascicularis). *J Physiol, 323*, 245-265.
- Tanji, J. (1987). Neuronal acitivyin the primate non-primary cortex is different from that in
 the primary motor cortex. In R. Porter (Ed.), *Motor areas of the cerebral cortex.* (pp. 142-150). Chichester: John Wiley and Sons Ltd.
- Thaler, D., Chen, Y. C., Nixon, P. D., Stern, C. E., & Passingham, R. E. (1995). The functions
 of the medial premotor cortex. I. Simple learned movements. *Exp Brain Res*, 102(3),
 445-460.
- 106

Karube et al. 2019 Suppl Fig.1

Karube et al. 2019 suppl Fig. 2

rostral-