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Quantitative metrics to objectively assess the fidelity of can-
cer models, such as cell lines, organoids, or patient-derived
xenografts (PDXs), remain elusive, with histological criteria or
the presence of specific mutations often used as driving princi-
ples. We show that molecular criteria, based on the regulatory
proteins responsible for maintaining transcriptional cell state
and its regulatory network, are effective in identifying models
that can recapitulate drug mechanism of action and drug sensi-
tivity, independent of histological consideration.
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Introduction
What constitutes an appropriate model to study the biology
of a specific tumor remains the matter of considerable debate,
with histology-based or mutational criteria being frequently
used as ad hoc criteria for model-fidelity. Unfortunately, the
latter can be misleading and negatively bias model selection.
For instance, to highlight potential pitfalls of mutation-based
fidelity assessment, we recently evaluated the suitability of 16
neuroblastoma cell lines harboring MYCN amplifications, as
high-fidelity models for the study of the MYCN-dependent
(MYCNA) subtype of this tumor (1). Surprisingly, only four
of these effectively recapitulated key tumor dependencies

and associated mechanisms that were shown to be conserved
across virtually all MYCN-subtype patients, in two indepen-
dent cohorts. Indeed, focusing on individual mutations—
albeit important ones, associated with tumor etiology—will
inevitably ignore the effect of a large complement of addi-
tional, model-specific genetic and epigenetic events.

Currently, effective assessment of tumor-model fidelity is
best performed a posteriori, for instance, by determining
whether tumor dependencies identified in a tumor model
(e.g., a cell line or organoid) are recapitulated in vivo in
a Patient Derived Xenograft (PDX) or, even better, in pa-
tients (e.g., via a clinical trial). However, these approaches
are obviously both highly inefficient and time-consuming
and would greatly benefit from the availability of method-
ologies capable of quantitatively assess model fidelity a pri-
ori. Equally important, model-fidelity may not be assessed
generically but only in the context of the specific questions
being asked. For instance, a high-fidelity model to identify
genes that are essential to tumor viability (tumor dependen-
cies) may not be equally appropriate to identify drug sensi-
tivity biomarkers.

Taken together, these observations suggest that, while criti-
cally needed, objective metrics to assess model-fidelity are
still elusive. This motivated us to develop a quantitative,
molecular-level framework (OncoMatch) to assess the fi-
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delity of a given tumor model in the context of the specific
biological question being asked. In (2), we proposed address-
ing this challenge by integrating two independent metrics:
(a) conservation of regulatory networks inferred exclusively
from patient-derived samples in the tumor-model and (b)
overlap of patient-specific Master Regulator (MR) proteins—
i.e., proteins representing the mechanistic determinants of
the transcriptional state associated with the phenotype of in-
terest (3)—with tumor-model-specific MRs. The latter are
identified based on the enrichment of their positively reg-
ulated and repressed targets in the phenotype-specific tran-
scriptional signature, using the Virtual Inference of Protein
activity by Enriched Regulon (VIPER) algorithm, which has
been extensively validated (4). Such an unbiased criterion
would be especially valuable for tumors that lack effective in
vitro or in vivo models (e.g. carcinoids or prostate cancer), or
even when an optimal model must be chosen among several
available ones, such as in neuroblastoma.
While the rationale for the proposed methodology is bi-
ologically sound, the original manuscript did not pro-
vide experimental data supporting it. As a result,
the two cell lines prioritized by OncoMatch as high-
fidelity Gastro-EnteroPancreatic NeuroEndocrine Tumors
(GEP-NETs) models (2) (H-STS and KRJ-1) have recently
come under scrutiny. Specifically, they were reported as
derived from Epstein-Barr Virus (EBV)-immortalized lym-
phoblastoid cells (5) rather than from bona fide GEP-NET
tumor cells, thus violating a key tenet of traditional model-
fidelity assessment.
In this manuscript, we confirm that H-STS and KRJ-1 cells
represent high-fidelity models for the assessment of drug
mechanism of action and drug sensitivity in GEP-NETs, by
leveraging an extensive, novel set of drug-perturbation as-
says in primary cells and explants derived from GEP-NET
patients. This suggests that quantitatively motivated assess-
ments, such as OncoMatch may effectively complement and
extend histology and mutational-based criteria in assessing
tumor model fidelity.

Results
OncoMatch analysis comprises the following three steps:
(a) assessing whether a regulatory model elucidated ex-
clusively from patient-derived tumor profiles recapitulates
molecular interactions in the proposed tumor model (b) as-
sessing the overlap between patient-derived MR proteins
with MR proteins inferred from the candidate model and
(c) integrating the p-values generated by the two metrics us-
ing Stouffer’s method, see (2) for further details on the ap-
proach.
For the GEP-NET study, we used OncoMatch to prioritize
923 cell lines as high fidelity models for the study of drug
mechanism of action and sensitivity in GEP-NET patients
(2). Cell lines included those in the Cancer Cell Line Ency-
clopedia (CCLE) (6), as well as H-STS and KRJ-1 cells, pre-
viously reported as derived from a small-bowel NET patient
(7). For VIPER analysis of patient-derived tumors, we used
a metastatic progression signature based on the genes differ-

entially expressed between each hepatic metastasis and a set
of cluster-matched primary tumors (2). For cell lines, differ-
ential expression was computed against P-STS cells, repre-
senting a bona fide primary small bowel GEP-NET model, as
confirmed by mutational analysis (8).
From this comprehensive analysis, H-STS and KRJ-1
emerged as the 4th and 6th highest-fidelity models (Suppl.
Fig. 4 in (2)), respectively, and were further selected for their
established ability to grow as xenografts and because they
were originally reported as GEP-NET patient derived.
Since the identity of these cells was later revised as B-cell-
derived (5), we first asked whether other B-cell-derived lines
in CCLE would also emerge as high-fidelity models for GEP-
NET studies or whether H-STS and KRJ-1 cells were clear
outliers. As shown in Fig. 1, OncoMatch analysis of other
normal and transformed B cells consistently identified them
as low-fidelity models for GEP-NETs, with a median aver-
age rank of 591, across all cell lines, and the top cell line —
ST486, an EBV-negative Burkitt’s lymphoma— ranked 22nd.
These data suggest that H-STS and KRJ-1 constitute, at the
very least, highly unusual B-cell-derived lines in terms of
their ability to recapitulate the regulatory network and MR
activity of 36% (25/69) of metastatic GEP-NET patients, and
up to 65% (45/69), when xenografted in immunocompro-
mised mice (Fig. 2 in (2)). Consistently, use of these cells
as GEP-NET models was limited to patient samples with
high OncoMatch-based priority (p < 10−10, Bonferroni Cor-
rected (BC)).
To further and more objectively evaluate the suitability of
these cell lines for OncoTreat analysis of GEP-NETs, as
well as to corroborate the published results (2), we report on
three novel and distinct analyses made possible by the recent
completion of drug screening assays with 126 drugs in pri-
mary, rectal-NET patient derived cells (P0NETCL) and with
selected, OncoTreat-predicted drugs in GEP-NET-patient-
derived explants, cultured and treated in organotypic culture
conditions.
Of the drugs originally profiled in H-STS cells (2), 95 were
also profiled in P0NETCL cells, supporting direct compari-
son of Mechanism of Action (MoA) inference based on the
overlap of proteins, whose activity was significantly affected
by the drug (9), see Methods. Perturbational profiles include
RNASeq data generated using the PLATESeq (10) method-
ology at 24h following cell perturbation with each of the
126 compounds. For each compound, the maximum sub-
lethal concentration (ED20) —based on 10-point dose re-
sponse curves in triplicate, as originally described in (2)—
and 1/5th of that concentration were profiled in duplicate.
MoA conservation between P0NETCL and H-STS was
highly significant, with 60 of the 95 assessed drugs (63%)
showing highly significant MoA similarity at a highly conser-
vative statistical threshold (p < 10−10, BC), suggesting that
H-STS cells accurately recapitulate the MoA inferred from
bona fide GEP-NET cells (Fig. 2a). Indeed, MoA conser-
vation was at least as good as conservation between positive
control pairs represented by tumor-type-matched cell lines,
for which perturbational profiles were also available. These
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Fig. 1. GEP-NET model score for 923 cell lines. Distribution of the model score, computed by integrating the GEP-NET interactome network-score and the number of
MR-matched metastases, as described in (2), for the H-STS and KRJ-1 cells (red), and 921 cell lines from the Cancer Cell Line Encyclopedia (CCLE) (6), which were
grouped by tissue type, including: B-cells (blue), T-cells, kidney, myeloma, liver hepatocellular carcinoma (LIHC), head and neck squamous carcinoma (HNSC), acute myeloid
leukemia (LAML), mesothelioma (MESO), glioblastoma (GBM), bladder urothelial carcinoma (BLCA), esophageal carcinoma (ESCA), ovarian carcinoma (OV), pancreas
adenocarcinoma (PAAD), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), sarcoma (SARC), thyroid cancer (THCA), colorectal carcinoma (CRC),
uterine corpus endometrial carcinoma (UCEC), breast carcinoma (BRCA), prostate carcinoma (PRAD), neuroblastoma (NBL).

include U87 and HF2597 (Glioblastoma (GBM)), AsPC-
1 and PANC-1 (Pancreas Adenocarcinoma (PDAC)), and
LNCaP and DU-145 (Prostate Adenocarcinoma (PRCA)). In
particular, MoA similarity for entinostat in P0NETCL and
H-STS was highly significant (p < 10−11, BC, see red dot
on Fig. 2a). This is relevant, since entinostat was pre-
dicted to effectively reverse MR-activity in the largest subset
of GEP-NET patients (2) and is currently being tested in a
clinical trial. In sharp contrast, MoA conservation between
P0NETCL and each of the six cell lines (negative controls)
was poor, consistent with their assessment as low-fidelity
GEP-NET model by OncoMatch

We then assessed overlap of OncoTreat predictions in 69
GEP-NET hepatic metastases (p < 10−5, BC), using pertur-
bational profiles from either H-STS or P0NETCL cells (see
Methods and Fig. 2b). We observed maximum OncoTreat
prediction reproducibility at intermediate levels of compound
bioactivity, suggesting that drugs with very high bioactivity
levels may be more pleiotropic, thus resulting in lower MoA
specificity. Consistent with MoA conservation, we observed
significant OncoTreat prediction overlap for P0NETCL and
H-STS cells (p < 10−130, Fisher’s Exact Test (FET)); odds
ratio = 6.7), significantly stronger than the one for P0NETCL
cells and the six low-fidelity cell line models (negative con-
trols) (p = 0.015, U-test; odds ratio = 2.39 ± 0.29; median
± median absolute deviation). This further confirms Onco-
Match predictions of H-STS cells as high-fidelity models for
the study of GEP-NET drug activity, based on both overall
MoA and OncoTreat prediction conservation.

In an effort to further mitigate technical artifacts associated
with primary cultures, we generated perturbational profiles
of explants derived from hepatic metastases of GEP-NET
patients. These retain the three-dimensional architecture of
the tissue and provide more faithful representation of stromal
and extracellular matrix contributions. Since explants had
to be treated within 24h, their drug sensitivity could not be
assessed a priori by OncoTreat. As a result, drugs were pre-

prioritized based on top OncoTreat predictions at the primary
site level, including pancreatic (P-NET), small-bowel (SI-
NET), and rectal (RE-NET) (Supplementary Table 1). Each
explant was treated with as many drugs as allowed by tissue
availability. From 14 explants with sufficient tissue availabil-
ity to test at least 3 drugs, eight were confirmed as bona fide
GEP-NET matches, based on transcriptome analysis (Fig. 3),
see methods, and were used in subsequent analyses. This al-
lowed assessing experimental reversal of MR-activity follow-
ing treatment with selected drugs, based on actual (a poste-
riori) OncoTreat predictions using the RNASeq of each ex-
plant and using the H-STS perturbational profiles. A con-
servative statistical significance threshold was used to assess
MR-activity reversal (p < 10−5, BC).
Of 40 tested drugs, 13 were correctly predicted to reverse
MR activity (True Positives), 14 were correctly predicted to
have no MR reversal activity (True Negatives), 5 were in-
correctly predicted to have activity (False Positives), and 8
were incorrectly predicted to have no activity (False Nega-
tives) by H-STS-based OncoTreat analysis (68% prediction
accuracy, p < 0.05, FET). This shows that, despite their his-
tological differences, H-STS cells represent effective mod-
els to predict drug-mediated MR-activity-reversal in explants
from bona fide GEP-NET patient metastases.
Interestingly, MoA conservation was highly predictive of
OncoTreat-predicted drug activity (p < 0.001, FET). In-
deed, out of 40 drugs evaluated in explant assays, only 3
(7.5%) showed significant MoA conservation but inconsis-
tent OncoTreat-predicted sensitivity (i.e., sensitive when pre-
dicted insensitive or vice-versa), and only 4 (10%) showed
conservation of predicted OncoTreat activity without statisti-
cally significant MoA conservation (Fig. 5).
Entinostat was prioritized only for RE-NETs. As such, it
was tested only in the two RE-NET-derived explants, where
its activity was correctly predicted by H-STS-based On-
coTreat. Specifically, consistent with OncoTreat predictions,
the analysis showed effective MR-reversal in one explant
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a b

Fig. 2. MoA and OncoTreat-prediction conservation. (a) Proportion of drugs showing conserved MoA (p < 10−10, BC), averaged over a running-window of 40 drugs, ranked
from lowest to highest bioactivity (see methods), between (i) P0NETCL and H-STS cells (solid black diamonds), (ii) tumor-matched cell line pairs (positive controls) (colored
solid markers) and (iii) P0NETCL and six low-fidelity cell line models (negative controls) (colored crosses). (b) Conservation of H-STS and P0NETCL-based OncoTreat-
predictions across 69 GEP-NET hepatic metastases, computed by Fisher’s exact test over the same 40-drug running-window basis (solid black circles). Negative control
curves were generated by comparing P0NETCL-based OncoTreat predictions to those using perturbational profiles from 6 low-fidelity cell line models (colored crosses).
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Fig. 3. Identification of GEP-NET metastases derived explants expressing GEP-NET specific genes. The heatmap shows the supervised classification likelihood of each
explant against 34 tissue types in TCGA. Explant tissue recapitulating the transcriptome of GEP-NET tumors (SGEP −NET > 0.5) are highlighted in blue. Other explants
are either contaminated by infiltrating tissue or may represent a different tumor histology.

(NET5, true positive) and correct lack of MR-reversal ac-
tivity in another (P0NET, true negative) (Fig. 4). Interest-
ingly, also consistent with original results (2), the explant
predicted as not entinostat-sensitive was correctly predicted
as belinostat-sensitive. Lack of sensitivity to third HDAC-
inhibitor, vorinostat, was also correctly predicted, suggesting
that H-STS-based OncoTreat analysis is effective at discrim-
inating sensitivity to drugs with closely-related MoA. Con-
sistent with these results, an independent study in bona fide
NeuroEndocrine Tumor (NET) cells, reported higher sensi-
tivity to HDAC inhibitors compared to control cells (5).

Discussion
Taken together, these data suggest that while the H-STS and
KRJ-1 cells do not represent histology-matched GEP-NET
models, they effectively recapitulate (a) drug MoA as as-
sessed in bona fide GEP-NET derived cells and (b) criti-
cal regulatory and tumor-dependency features of GEP-NETs.
This raises the broader question of what constitutes an op-
timal model. As discussed in (1), cancer models selected
purely based on histology or on the mutational state of key
genes can be ineffective in recapitulating patient-relevant tu-
mor biology. Indeed, tumor cells undergo profound repro-
gramming events, often driven by their aberrant ploidy and

epigenetics, yielding transcriptional states that are quite dif-
ferent from their presumed tissue of origin. For instance,
another neuroendocrine tumor, Merkel cell carcinoma, was
recently shown to be likely B cell rather than Merkel cell de-
rived (11). As a result, the presence of a single genetic alter-
ation of interest, e.g. MYCN amplification, cannot be taken
out of context given the large number of additional somatic
events —genetic and epigenetic— that contribute to produc-
ing immortalized cell lines. We propose that an objective
molecular criterion, based on mechanism conservation, as in-
troduced in (2), may provide a valuable additional metric for
model selection, even when histology-matched models may
not be available.
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Fig. 5. Assessment of drug MoA conservation between GEP-NET metastasis explants and H-STS cells. Bars represent the statistical significance of the MoA conservation,
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taining 10% FBS and antibiotics, HF2597 cells were grown in
DMEM/F12 containing 1% N-2 Supplement (Gibco 17502-048),
500 mg/l BSA, 25 mg/l Gentamicin, 0.5% Antibiotic/antimicotic
(Invitrogen 15240-062), 20 ng/ml FGFβ and 20 ng/ml EGF; Pan-
creas adenocarcinoma AsPC-1 were grown in RPMI-1640 con-
taining 10% FBS and antibiotics, PANC-1 were grown in DMEM
supplemented with 10% FBS and antibiotics; Prostate carcinoma
LNCaP were grown in phenol red-free RPMI-1640 supplemented
with 10% FBS and antibiotics, DU-145 cells were grown in EMEM
supplemented with 10% FBS and antibiotics. All cells used in these
studies were below passage 30. U87, AsPC-1, PANC-1, LNCaP
and DU-145 cells were obtained from ATCC and STR profiled.
P0NETCL cells were obtained from a fresh RE-NET hepatic metas-
tasis; necrotic or non-tumor tissue was removed prior to dissocia-
tion. The sample was dissociated using the Miltenyi Dissociation
Kit, human (130-095-929) using the manufacturer’s protocol. Dis-
sociated cells were filtered through a 70 µm filter and counted and
checked for viability using a Countess cell counter (ThermoFisher).
P0NETCL cells were grown in RPMI-1640 containing 10% FBS.

Generation of drug-perturbation databases. For each drug and
for each cell line (H-STS, U87, HF2597, AsPC-1, PANC-1, LNCaP
and DU-145), the maximum sub-lethal concentration (ED20) was
established by 10-point dose response curves in triplicate, using to-
tal ATP content as read-out. For P0NETCL, drug response curves
could not be performed without compromising cell state. Thus, con-
centration was selected based on the H-STS ED20 when assayed in
equivalent conditions. Briefly, 2,000 cells/well were plated in 384
well plates. Small molecule compounds were added with a 96 well
pin-tool head 12h after cell plating. Viable cells were quantified 48h
later by ATP assay (CellTiterGlo, Promega). Relative cell viabil-
ity was computed using matched DMSO control wells as reference.
ED20 was estimated by fitting a 4-parameter sigmoid model to the
titration results. Then, cells plated in 96 well plates, were perturbed
with a library of small molecule compounds at their corresponding
ED20 concentration and 1/10 of it (Supplementary Table 2). Cells
were lysed at 24h after small molecule compound perturbation and
sequencing libraries were prepared according to the PLATESeq pro-
tocol (10) and sequenced on the HiSeq4000 platform (Illumina) at
the Columbia Genome Center. RNA-Seq reads were mapped to the
Homo sapiens assembly 38 reference genome and counted at the
gene level by the STAR aligner software (12). ENSMBL gene iden-

tifiers were mapped to Entrez Gene identifiers. The expression data
was then normalized by equivariance transformation, based on the
negative binomial distribution with the DESeq R-system package
(Bioconductor). At least 2 replicates per each condition were ob-
tained.

Explant treatment prioritization. To optimally preserve cell state,
explants cultured in organotypic conditions had to be treated within
24h from collection. As such, drugs could not be prioritized on an
explant by explant basis. As a result, we leveraged the top predic-
tions by OncoTreat (2) averaged across each primary tumor organ
site to identify a set of drugs for explant treatment (Supplementary
Table 1).

Explant collection, selection, and treatment. Explants were
collected, cultured, and treated at three institutions, including
Columbia University (IRB:AAAN7562), Dana Farber Cancer Cen-
ter (IRB:02-314), and Memorial Sloane Kettering (IRB:10-018).
Tissues were stored at Columbia Pathology (IRB:AAAB2667).
Core needle biopsy specimens, approximately 0.5 cm3 to 1.0 cm3

in size, were procured from hepatic metastases of GEP-NET pa-
tients. Immediately following procurement, touch prep analysis was
performed as a Quality Control (QC) measure to determine the pres-
ence of viable tumor cells. All specimens passing QC analysis were
embedded in non-permanent embedding media (4–6% agarose) and
sectioned using a Leica Vibratome VT1000. In general, the softer
the tissue the slower was the slicing speed (0.03–0.08 mm/sec neo-
plastic tissue; 0.01–0.08 mm/sec normal tissue). Vibration ampli-
tude was set at 2.95–3.0 mm. Precision-sliced sections 200–400 µm
thick (minus permanent embedding media) were transferred imme-
diately to a multi-well plate containing media and allowed to accli-
mate for one hour prior to drug exposure. Optimal drug concen-
trations were determined according to ED20 data in cell lines, see
Supplementary Table 1. All treatments were performed in dupli-
cate, under standard tissue culture conditions. Treated sections were
OCT-embedded. From the fresh frozen sample, a section was H&E
stained to confirm presence and abundance of tumor cells. Once
confirmed total RNA was extracted for RNASeq profiling, using
the TruSeq library preparation protocol and sequenced on an HiSeq
4000 (Illumina) at the Columbia Genome Center. RNASeq reads
were mapped to the Homo sapiens assembly 38 reference genome
and counted at the gene level by the STAR aligner software (12).
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ENSMBL gene identifiers were mapped to Entrez Gene identifiers.
The expression data was then normalized by equivariance transfor-
mation, based on the negative binomial distribution with the DESeq
R-system package (Bioconductor).

Explants quality assessment. In total, 150 samples from 14
GEP-NET hepatic metastases were analyzed. We used supervised
machine learning to identify explants as bona fide GEP-NET de-
rived, using a GEP-NET classifier. Specifically, for the positive and
negative controls, the gene expression probability density of each
gene was estimated by fitting a 2-gaussian mixture model to the log-
transformed, RPKM-normalized expression of either 212 patient-
derived GEP-NET profiles (2) or 10,900 tumor samples in TCGA,
representing 33 distinct tumor types in total. A set of 1,600 genes
that optimally discriminate each tumor type, including GEP-NET,
against the background of all other tumors was assembled by se-
lecting the top 100 genes most differentially expressed in each of
the 33 tumor types. Then, we quantified the gene expression pro-
file similarity of each explant sample against each GEP-NET and
TCGA samples by correlation analysis. Thus, each explant Ei was
associated with a ranked vector Xi, representing the similarity of
the explant to each of the 11,112 reference tumor samples. Finally,
a tumor type score was computed for each explant, based on the
enrichment of the vector Xi in samples from that tumor type, by
gene set enrichment analysis, using the aREA algorithm (4). Scores
were scaled based on the maximum possible enrichment score for
each tumor-type. The relative likelihood for the GEP-NET class
(SGEP-NET) was computed from the distribution of GEP-NET
scores for bona fide GEP-NET tumors (212 samples) vs. the corre-
sponding scores for all the non GEP-NET tumors (10,900 samples).
Of the 150 drug-treated and control explant samples, 99 showed a
GEP-NET tumor-type score SGEP-NET> 0.5, and were considered
as bona fide GEP-NET-derived (Supplementary Fig. 2). Finally, we
removed explants with low tissue availability, which were perturbed
with fewer than 3 drugs, generating a final list comprising 83 high-
quality samples from 8 distinct explants, including 2 RE-NETs:
P0NET and NET5; 2 SI-NETs: SBNET8 and SBNET10, and 4 P-
NETs: MSKpNET5, MSKpNET7, MSKpNET11 and pNET4.

MoA Analysis. Differential gene expression signatures were com-
puted for H-STS and P0NETCL by comparing profiles from each
drug-treated sample with those from plate-matched vehicle controls
(DMSO), using a moderated Student’s t-test as implemented in the
limma package from Bioconductor (13). Gene expression signa-
tures for the explants were computed by comparing each drug per-
turbation vs. the explant-matched vehicle control, with exception
of MSKpNET5 and pNET4 that, due to QC limitations (GEP-NET
transcriptome recapitulation), were compared against untreated con-
trols. Individual gene expression signatures were then transformed
into protein activity signatures, based on the GEP-NET regulatory
network —with exception of the positive controls shown in Fig. 2a,
for which tissue lineage-matched regulatory networks were used—
using the VIPER algorithm (4), as implemented in the viper package
from Bioconductor.

Comparative MoA analysis in P0NETCL cells. MoA similarity
between P0NETCL and other cell lines was quantified by comparing
drug-induced protein activity signatures. For this, a reciprocal en-
richment analysis was performed (14) by computing the enrichment
of the top/bottom 50 most differentially active proteins in response
to drug perturbation in cell line “A” on the drug-induced protein ac-
tivity signature of cell line “B”, and then by integrating (average) the
result (normalized enrichment score) with the corresponding one to

the enrichment of the top/bottom 50 most differentially active pro-
teins in cell line “B” on the drug-induced protein activity of cell line
“A”. Enrichment and p-value were computed by the aREA algorithm
(4). When two concentrations for a given drug were available, the
concentration showing the strongest MoA conservation was used.
Drug perturbation bioactivity was computed as the area over the cu-
mulative distribution for the absolute value of drug-induced differ-
ential protein activity, expressed as the normalized enrichment score
computed by the aREA algorithm (9), and scaled to the maximum
value across all drug perturbations.
To highlight the relationship between cell-line-specific drug bioac-
tivity and MoA conservation, for each cell line pair to be compared,
we rank-sorted all drug perturbations based on the lower of the two
bioactivities assessed in each cell line pair. Then, we averaged over
a running-window of size 40-drugs to compute the fraction of drugs
showing significant MoA conservation (p < 10−10, BC). The 40-
drug window whose average bioactivity was closest to the entinostat
bioactivity was highlighted with a red circle (Fig. 2a).
Drug MoA conservation was also evaluated for the perturbations
performed in the GEP-NET patient-derived explants, by comparing
their MoA to the corresponding one from the matching drug pertur-
bations performed in H-STS cells.

OncoTreat Analysis. OncoTreat analysis was performed as pre-
viously described (2). Briefly, drugs were prioritized for each
GEP-NET hepatic metastasis sample and explant based on their
ability to invert their master regulator program. As previously
described (2), gene expression signatures were obtained for each
GEP-NET hepatic metastasis sample by comparison against the
pool of cluster-matched primary samples. For the explants, gene ex-
pression signatures were obtained by comparing the transcriptome
of each explant against the tissue of origin-matched primary tumors.
Protein activity signatures were subsequently derived from the gene
expression signatures by VIPER analysis (4). Master regulator pro-
teins were identified as the top/bottom 50 most differentially active
proteins in each GEP-NET hepatic metastasis tumor and explant.
Finally, drugs were prioritized by computing the enrichment of the
master regulator proteins of each explant on each drug-induced pro-
tein activity signature with the aREA algorithm (4). P-values were
estimated by the analytical approximation implemented in the aREA
algorithm, which have been shown to be practically equivalent to
estimations obtained by permuting the proteins in the signature uni-
formly at random (4). P-values were corrected to account for multi-
ple hypothesis testing by the Bonferroni’s method.

Comparative OncoTreat analysis in P0NETCL cells. Overlap
of either H-STS-based or P0NETCL-based OncoTreat drug predic-
tions for 69 GEP-NET hepatic metastases was assessed and com-
pared to the overlap of H-STS-based OncoTreat inferences with
those based on perturbational profiles from 6 additional unrelated
cell lines (negative controls). Drugs were rank-sorted based on their
bioactivity, using the minimum bioactivity computed in each pair
of selected cells. Results were averaged over a running-window
of 40 drugs to increase the number of data points used to compute
the overlap between OncoTreat predictions and also to smooth the
results as a function of drug bioactivity. The overlap of drugs con-
sidered as significantly inverting the pattern of activity of GEP-NET
hepatic metastases (p< 10−5, BC) was quantified by the odd’s ratio
and statistical significance estimated by the Fisher’s exact test.

Statistical analysis. Enrichment analysis, including model match-
ing based on MR conservation, MoA conservation, and OncoTreat
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analysis, was computed by the aREA algorithm and statistical sig-
nificance was estimated by the analytical approximation imple-
mented in the algorithm (4). The significance for the overlap of
OncoTreat predictions was estimated by the Fisher’s exact test. Sta-
tistical significance for the difference in odds’ ratio when comparing
the conservation of OncoTreat results was estimated by one-sample
Wilcoxon’s signed rank test (U-test). All statistical tests were per-
formed with the R-system. All p-values were Bonferroni corrected
to account for multiple hypothesis testing.

Code availability. All the code used in this work is freely avail-
able for research purposes. VIPER and aREA algorithms are part of
the “viper” R-system’s package available from Bioconductor (see
URLs). The context-specific regulatory network models are avail-
able from Figshare and Bioconductor (see URLs).
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Supplementary Information

Supplementary Table 1. Drugs prioritized for the GEP-NET hepatic metastasis explants perturbations. The table shows a
short MoA description and the concentration used, which was estimated as the ED20 at 48h in dose-response cell viability
assays.

Drug MoA description Conc.

Pancreatic NETs
imatinib Multi-target v-Abl, c-Kit and PDGFR inhibitor (IC50 = 0.6, 0.1, and 0.1 µM) 5 µM
SCH-79797 Non-peptide PAR1 receptor antagonist (IC50 = 70 nM) 60 nM
brivanib ATP-competitive inhibitor against VEGFR2 (IC50 = 25 nM) 7 µM
CD-437 Synthetic retinoid that is an RAR-γ-selective agonist 240 nM
CHM-1 Inducer of apoptosis 84nM
capmatinib (INC280) ATP-competitive inhibitor of c-MET (IC50 = 0.13 nM) 10 µM
sunitinib Multi-targeted RTK inhibitor targeting VEGFR2 (Flk-1) and PDGFR-β 45 nM

Small-bowel NETs
imatinib Multi-target v-Abl, c-Kit and PDGFR inhibitor (IC50 = 0.6, 0.1, and 0.1 µM) 5 µM
SCH-79797 Non-peptide PAR1 receptor antagonist (IC50 = 70 nM) 60 nM
brivanib ATP-competitive inhibitor against VEGFR2 (IC50 = 25 nM) 7 µM
NVP-231 Ceramide kinase (CerK) inhibitor (IC50 = 12 nM in vitro) 270 nM
CHM-1 Inducer of apoptosis 84 nM

Rectal NETs
entinostat Inhibits HDAC1 and HDAC3 (IC50 = 0.51 µM and 1.7 µM) 430 nM
belinostat Inhibits HDAC1 and HDAC3 (IC50 = 0.2 µM) 45 nM
vorinostat Inhibits HDAC1 and HDAC3 (IC50 = 10 nM and 20 nM) 245 nM
tivantinib Non-ATP-competitive c-Met inhibitor with Ki of 0.355 µM 710 nM
topotecan Topoisomerase I inhibitor for MCF-7 (IC50 = 13 nM) 14 nM
PAC-1 Procaspase-3 activator (EC50 of 0.22 µM) 4 µM
gemcitabine Nucleic acids synthesis inhibitor 1.4 nM
vincristine Microtubules polymerization inhibitor 0.8 nM
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Supplementary Table 2. Drug concentrations used to perturb 8 cell lines.

Compound P0NETCL H-STS U87 HF2597 AsPC-1 PANC-1 LNCaP DU-145

Afatinib 185 nM, 35 nM 1 µM 187 nM 185 nM 90 nM 55 nM 185 nM 185 nM
Alisertib 65 nM, 10 nM 44 nM, 4 nM 1.3 µM 1.5 µM 10 µM 55 nM 10 µM 170 nM
Alpelisib 370 nM, 70 nM 19.4 µM 370 nM 370 nM 370 nM 370 nM 370 nM 370 nM
AZD1775 85 nM, 15 nM 80 nM 212 nM 330 nM 115 nM 115 nM 240 nM 115 nM
Bafetinib 1 µM, 200 nM 3.24 µM 5 µM 1 µM 2 µM 2.5 µM 7 µM 8.5 µM
Bardoxolone Methyl 220 nM, 40 nM 150 nM 621 nM, 155 nM 500 nM 1 µM 1 µM 1 µM 500 nM
Belinostat 45 nM, 10 nM 32.5 nM, 3.25 nM 3.5 µM 1 µM 1 µM 1 µM 500 nM 130 nM
BGJ398 2.5 µM, 500 nM 4.56 µM 3.2 µM 5 µM 6.5 µM 6 µM 8 µM 8 µM
Bortezomib 200 nM, 10 nM 20 nM, 8.8 nM 10 nM 5 nM 100 nM 190 nM 55 nM 15 nM
Brivanib 5.5 µM, 1 µM 7 µM 6.2 µM 9 µM 10 µM 2.5 µM 10 µM 10 µM
Ceritinib 1 µM, 200 nM 2.8 µM 745 nM 500 nM 170 nM 1 µM 1 µM 500 nM
Crizotinib 190 nM, 35 nM 480 nM 181 nM 190 nM 190 nM 190 nM 190 nM 190 nM
Dasatinib 2.6 nM, 0.5 nM 4 nM 345 nM 345 nM 345 nM 345 nM 345 nM 20 nM
Dinaciclib 3.25 nM, 0.65 nM 9 nM 0.938 nM 5 nM 175 nM 10 nM 15 nM 5 nM
Docetaxel 0.35 nM, 0.1 nM 2 nM 6.4 µM 0.9 nM 2 nM 1.8 nM 6 µM 1.65 nM
Doxorubicin 25 nM, 5 nM 8 nM 78 nM 15 nM 30 nM 15 nM 30 nM 45 nM
Entinostat 30 nM, 5 nM 6.84 µM, 684 nM 1 µM 1.5 µM 1.5 µM 500 nM 500 nM 120 nM
Epigallocatechin 85 nM, 5 nM 15.12 µM 436 nM 500 nM 500 nM 500 nM 500 nM 500 nM
Everolimus 65 nM, 15 nM 5.88 µM 10 µM 95 nM 2.5 µM 2.5 µM 1 µM 500 nM
FK866 8.5 µM, 1.5 µM 20 µM 52 nM 0.9 nM 3.95 nM 8.5 µM 8.5 µM 2.05 nM
Flavopiridol 10 nM, 2 nM 48 nM 33 nM 35 nM 80 nM 80 nM 55 nM 60 nM
Foretinib 115 nM, 20 nM 214 nM 550 nM 150 nM 255 nM 315 nM 2.5 µM 225 nM
Gemcitabine 1.4 nM, 0.25 nM 150 nM, 50 nM 8.5 nM 15 nM 5 nM 20 nM 4.5 µM 2.55 nM
Gossypol 2 µM, 500 nM 4.44 µM 2.4 µM 1.5 µM 2 µM 2 µM 2 µM 2 µM
GSK461364 5 nM, 1 nM 50 nM, 10 nM 514 nM 15 nM 32.5 µM 5 nM 500 nM 5 nM
HMN-214 100 nM, 20 nM 100 nM 515 nM 500 nM 500 nM 500 nM 500 nM 500 nM
Ibrutinib 500 nM, 100 nM 2.4 µM 354 nM 350 nM 350 nM 350 nM 350 nM 350 nM
Imatinib 5 µM, 1 µM 20 µM, 2 µM 5.5 µM 5 µM 5 µM 5 nM 5 µM 5 µM
KW-2449 250 nM, 50 nM 5.52 µM 5.8 µM 1 µM 7 µM 8 µM 8 µM 250 nM
KX2-391 20 nM, 5 nM 24 nM 17 nM 65 nM 40 nM 25 nM 200 nM 30 nM
Linifanib 1 µM, 200 nM 5 µM 1.4 µM 1.5 µM 1 µM 1 µM 1 µM 1 µM
Luminespib 100 nM, 5 nM 20 nM 2.3 nM 2.7 nM 10 nM 5 nM 1 µM 5 nM
Midostaurin 9 µM, 500 nM 2.84 µM 1.8 µM 80 nM 1 µM 75 nM 10 µM 230 nM
Mitomycin 125 nM, 25 nM 440 nM 1.9 µM 1 µM 50 nM 90 nM 500 nM 55 nM
MK-2206 10 nM, 2 nM 6.84 µM, 684 nM 756 nM 1 µM 500 nM 10 nM 10 nM 1 µM
Neratinib 250 nM, 50 nM 250 nM 230 nM 225 nM 225 nM 225 nM 225 nM 225 nM
Nilotinib 2.5 µM, 500 nM 7.68 µM 2.294232354 µM 2 µM 335 nM 130 nM 2 µM 2 µM
Obatoclax mesylate 10 nM, 2 nM 680 nM, 68 nM 0.938 nM 20 nM 60 nM 25 nM 335 nM 100 nM
Onalespib 30 nM, 5 nM 70 nM 313 nM 60 nM, 40 nM 55 nM 85 nM 10 nM 65 nM
Paclitaxel 0.6 nM, 0.1 nM 3 nM 6.8 nM 0.9 nM 1.9 nM 4.15 nM 6.5 µM 2.25 nM
Panobinostat 5 nM, 1 nM 5 nM 12 nM 20 nM 10 nM 35 nM 5 nM 10 nM
Pictilisib 50 nM, 10 nM 50 nM 821 nM 110 nM 1 µM 1 µM 500 nM 500 nM
Plicamycin 180 nM, 35 nM 24 nM 80 nM 180 nM 180 nM 180 nM 180 nM 180 nM
Rigosertib 100 nM, 20 nM 100 nM 254 nM 3 nM 50 nM 500 nM 100 nM 75 nM
Rosiglitazone 2 µM, 500 nM 20 µM 2.2 µM 2 µM 20 nM 2 µM 2 µM 2 µM
SB-743921 0.4 nM, 0.1 nM 0.4 nM 10 nM 0.2 nM 125 nM 110 nM 130 nM 75 nM
Serdemetan 155 nM, 30 nM 600 nM 156 nM 155 nM 155 nM 155 nM 155 nM 155 nM
SNX-2112 10 nM, 2 nM 66 nM, 6 nM 29 nM 20 nM 70 nM 20 nM 285 nM 20 nM
Sunitinib 45 nM, 10 nM 1.76 µM, 176 nM 49 nM 45 nM 45 nM 45 nM 45 nM 45 nM
Tivantinib 170 nM, 30 nM 709 nM, 70.9 nM 811 nM 185 nM 345 nM 1 µM 1.5 µM 500 nM
Topotecan 60 nM, 10 nM 13.8 nM, 1.38 nM 98 nM 10 nM 190 nM 25 nM 190 nM 65 nM
Vorinostat 245 nM, 45 nM 200 nM 1.4 µM 1.5 µM 1.5 µM 500 nM 280 nM 500 nM
YM155 20 nM, 5 nM 0.7 nM, 0.06 nM 15 nM 0.9 nM 50 nM 10 nM 70 nM 15 nM
Buparlisib 275 nM, 55 nM 1.2 µM 1 µM 500 nM 2 µM 160 nM 500 nM
PHA-665752 2.5 µM, 500 nM 2.88 µM 2.5 µM 1.5 µM 4.5 µM
BIO 2 µM, 500 nM 3 µM 2 µM 1.5 µM
Brefeldin A 2.5 µM, 500 nM 42 nM 30 nM 50 nM
MST-312 30 µM, 1.5 µM 1.68 µM 365 nM 1.5 µM
Parthenolide 55 nM, 10 nM 800 nM 500 nM 500 nM
TW-37 4 µM, 500 nM 4 µM 2.5 µM 2 µM
Vincristine 0.8 nM, 0.15 nM 0.8 nM 3.2 nM 25 nM
Nutlin-3 20 µM, 1 µM 840 nM 255 nM
NVP-231 270 nM, 50 nM 270 nM, 28 nM 3 µM
Ouabain 25 nM, 5 nM 26 nM 25 nM
PAC-1 4 µM, 1 µM 4 µM 2 µM
Parbendazole 50 nM, 10 nM 54 nM 75 nM
Piperlongumine 1 µM, 200 nM 1.04 µM 1 µM
Arachidonyl 7.5 µM, 1.5 µM 7.44 µM
AZD8055 10 µM, 2 µM 20 µM, 2 µM
BMS-754807 10 µM, 500 nM 720 nM
Capmatinib 10 µM, 2 µM 20 µM
CD-437 235 nM, 45 nM 236 nM
Ciclopirox 5 µM, 1 µM 5 µM, 3 µM
DBeQ 1.5 µM, 300 nM 1.6 µM
Erastin 10 µM, 2 µM 15 µM, 10 µM
Fingolimod 4 µM, 1 µM 4 µM
Fluvastatin 20 µM, 1 µM 760 nM
GSK1210151A 1.5 µM, 300 nM 1.32 µM, 880 nM
GW-405833 5 µM, 1 µM 5.4 µM
Istradefylline 10 µM, 2 µM 20 µM
KHS101 1.5 µM, 300 nM 1.2 µM
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Compound P0NETCL H-STS U87 HF2597 AsPC-1 PANC-1 LNCaP DU-145

Ku-0063794 40 nM, 10 nM 40 nM
LEE011 10 µM, 2 µM 26.32 µM
Manumycin A 4 µM, 1 µM 4.32 µM
Methylstat 1 µM, 200 nM 720 nM, 72 nM
ML210 40 nM, 10 nM 40 nM
Necrosulfonamide 4 µM, 1 µM 4 µM
PF-3758309 200 nM, 10 nM 8 nM
PF-573228 2 µM, 500 nM 2.08 µM
Pluripotin 100 nM, 5 nM 5 nM, 4 nM
SCH-529074 10 µM, 500 nM 480 nM
SCH-79797 60 nM, 10 nM 60 nM
SU11274 2 µM, 500 nM 1.52 µM
Y-27632 3 µM, 500 nM 3.36 µM
YK-4-279 1 µM, 200 nM 650 nM, 65 nM
Altretamine 10 µM, 2 µM 10 µM 10 µM 10 µM 10 µM 10 µM 10 µM
Amsacrine 10 nM, 2 nM 1.8 µM 195 nM 6.5 µM 500 nM 500 nM 110 nM
Azacitidine 1 µM, 200 nM 11.582 µM, 388 nM 3.5 µM 2 µM 4 µM, 500 nM 1 µM, 500 nM 20 nM
Bosutinib 45 nM, 10 nM 377 nM 375 nM 500 nM 375 nM 500 nM 375 nM
Cilengitide 10 µM, 2 µM 20 µM 10 µM 5 µM 50 nM 0.3 nM 10 µM
Cyclosporine 10 µM, 2 µM 10 µM 10 µM 5 µM 2.5 µM 10 µM 10 µM
Cytarabine 160 nM, 30 nM 1.4 µM 500 nM 10 µM 6.5 µM 10 µM 180 nM
Dactinomycin 0.1 nM, 0.025 nM 0.209 nM 0.2 nM 10 nM 10 nM 1.75 nM 2.65 nM
Daunorubicin 20 nM, 5 nM 68 nM 5 nM 60 nM 125 nM 45 nM 30 nM
Epirubicin 25 nM, 5 nM 162 nM 3 nM 160 nM 160 nM 160 nM 65 nM
Etoposide 300 nM, 15 nM 3 µM 185 nM 10 µM 2.5 µM 10 µM 500 nM
Exemestane 1 µM, 200 nM 1.5 µM 1.5 µM 1.5 µM 10 nM 1 µM 1.5 µM
Floxuridine 9 µM, 1.5 µM 10 µM 10 µM 8.5 µM 10 µM 10 µM 500 nM
Fluorouracil 10 µM, 2 µM 10 µM 1 µM 10 µM 1 µM 10 µM 10 µM
Homoharringtonine 1.65 nM, 0.3 nM 22 nM 10 nM 20 nM 3.7 nM 10 nM 15 nM
Idarubicin 20 nM, 5 nM 24 nM 15 nM 20 nM 20 nM 20 nM 20 nM
Irinotecan 110 nM, 5 nM 1.5 µM 65 nM 1 µM 60 nM 2.5 µM 300 nM
Ixazomib 25 nM, 5 nM 36 nM 70 nM 155 nM 155 nM 155 nM 35 nM
Lapatinib 10 µM, 2 µM 10 µM 2 µM 2.5 µM 7 µM 4 µM 7.5 µM
Methotrexate 10 µM, 2 µM 10 µM 10 µM 10 µM 50 nM 10 µM 10 nM
Mitoxantrone 5 nM, 1 nM 12 nM 5 nM 155 nM 80 nM 30 nM 10 nM
Mycophenolate mofetil 335 nM, 65 nM 1.9 µM 135 nM 10 µM 500 nM 6.5 µM 1.5 µM
Oxaliplatin 2 µM, 500 nM 1.6 µM 2.5 µM 2.5 µM 2.5 µM 2.5 µM 2.5 µM
Pazopanib 3 µM, 500 nM 8.6 µM 2 µM 6 µM 10 µM 7.5 µM 10 µM
Ponatinib 5 nM, 1 nM 137 nM 40 nM 135 nM 135 nM 135 nM 135 nM
Sonidegib 7 µM, 1 µM 5.9 µM 8.5 µM 8 µM 8 µM 8 µM 8 µM
Temsirolimus 45 nM, 10 nM 693 nM 1 µM 1 µM 1 µM 1 µM 90 nM
Teniposide 0.65 nM, 0.15 nM 629 nM 20 nM 1.5 µM 120 nM 1 µM 45 nM
Tofacitinib 305 nM, 60 nM 309 nM 305 nM 305 nM 305 nM 305 nM 305 nM
Vandetanib 10 µM, 500 nM 7.2 µM 500 nM 110 nM 20 nM 125 nM 1.5 µM
BI 2536 10 nM, 1.8 nM 257 nM 2.95 nM 1.65 nM 1 µM 2.9 nM
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