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Abstract 

 

Cryo-EM workflows require from tens of thousands of high-quality particle projections to unveil the 

three-dimensional structure of macromolecules. Current methods for automatic particle picking tend to 

suffer from high false-positive rates, hurdling the reconstruction process. One common cause of this 

problem is the presence of carbon and different types of high-contrast contaminations that, in many 

cases, affect large areas of micrographs. In order to overcome this limitation, we have developed 

MicrographCleaner, a deep learning approach designed to discriminate which regions of micrographs 

are suitable for particle picking and which are not, that we will refer to as “contaminated”. 

MicrographCleaner implements a U-net-like model trained on a manually curated dataset compiled 

from over five hundred micrographs. The benchmarking, carried out on about one hundred independent 

micrographs, shows that MicrographCleaner is a very efficient approach for micrograph preprocessing. 

 

Availability and implementation 

MicrographCleaner package is available at PyPI and Anaconda Cloud repositories as 

micrograph_cleaner_em. Source code is available at 

https://github.com/rsanchezgarc/micrograph_cleaner_em. Integration with the cryo-EM software 

Scipion/Xmipp is also provided through the deepMicrographScreen protocol. 

 

1. Introduction. 

 

Cryogenic-Electron Microscopy (cryo-EM) Single Particle Analysis (SPA) has recently become a 

powerful technique for the determination of macromolecular structures achieving, in many cases, 

atomic resolutions. SPA consists of a set of complex and variable operations that, departing from 

thousands of particle projections, leads to the synthesis of electronic density maps of macromolecules. 

The massive number of particles that are needed for SPA has made of automatic particle picking one of 

the most influential steps in virtually all reconstruction workflows. Nevertheless, some problems 

intrinsic to the cryo-EM pipelines, such as low signal-to-noise ratio and the presence of high contrast 

artifacts and contaminants in the micrographs, degrades the performance of particle picking algorithms 

(Zhu et al., 2004; Vargas et al., 2013) and leads to the addition of false positive particles in SPA 

workflows. This problem can be mitigated trough different algorithms that clean and remove 

incorrectly selected particles after automatic picking (Sanchez-Garcia et al., 2018; Vargas et al., 2013).  

 

One of the most common shortcomings observed during automatic picking is the attraction of these 

methods to select grid carbon spots, especially at the holes edges. Due to its relevance, some algorithms 

have been designed to prevent particle selection in those regions. For example, the em_hole_finder 

program, included in the Appion package (Lander et al., 2009) is based on morphological image 

processing operations to compute masks around carbon holes. Similarly, EMHP (Berndsen et al., 2017) 
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was designed to perform a similar task through image filtering and thresholding operations followed by 

a circle fitting procedure. Although very useful when grid edges are clearly visible, both approaches 

struggle in those cases where high contrast contaminations are present in micrographs. Moreover, both 

of them require human supervision to determine the presence of carbon in the micrographs and to set 

some user-defined parameters. As a result, its applicability is limited to supervised scenarios. More 

recently, the Warp package (Tegunov and Cramer, 2018) included a deep learning particle picker 

algorithm that was explicitly trained to detect and avoid carbon and contaminated regions using a pixel-

wise classification -segmentation- approach.  

Following this line, and with the aim of overcoming these limitations, we have developed 

MicrographCleaner, a fully automatic, easy-to-install and easy-to-use deep learning solution that 

performs a pixel-wise classification of micrographs into two categories, desirable and undesirable 

regions for picking. Likewise Warp particle picker, MicrographCleaner relies on one of the most 

extended network architectures (Ronneberger et al., 2015), but the different choices in important 

parameters result, in turn, in quite different levels of performance. Thus, according to our 

benchmarking, MicrographCleaner is not only able to provide a more robust and accurate solution for 

carbon detection than earlier methods, but it is also able to improve the detection of other types of 

contaminations, such as ice crystals or ethane. Additionally, the usability of the two approaches is very 

different, as MicrographCleaner is an easy to handle Python package, while Warp is part of a larger 

framework restricted to Windows systems.  

 

2. Material and methods 

 

2.1 Algorithm 

 

 MicrographCleaner computes binary semantic segmentation of micrographs with the aim of 

delineating optimal regions for particle picking and isolating those areas containing high-contrast 

contaminants and other artifacts. To that end, MicrographCleaner implements a U-net-like model 

(Ronneberger et al., 2015) trained on a dataset of 539 manually segmented micrographs collected from 

16 different EMPIAR (Iudin et al., 2016) entries. The evaluation was performed on an independent set 

of 97 micrographs compiled from two EMPIAR projects and another two in-home projects (see 

Supplementary Material S4). Both training and testing sets of micrographs include examples of clean, 

carbon-containing and contamination-containing as well as mixed cases. Neural network training was 

carried out using the Adam optimizer and a combination of perceptual loss (Johnson et al., 2016) and 

weighted binary cross-entropy (see Supplementary Material S1 and S2). A previous normalization step 

is required to adjust the different intensity scales of micrographs. Thus, all micrographs are normalized 

using a robust scaling strategy and donwsampled (see Supplementary Material S3). Finally, 

overlapping patches of 256x256 pixels with strides of 128 pixels are extracted from the micrograph and 

fed to the network. 

 

2.1 Package 

 

MicrographCleaner has been implemented as an easy-to-install and easy-to-employ Python 3.x 

package. Thus, the command line tool can be automatically installed from Anaconda Cloud and PyPI 

repositories whereas the GUI version can be installed through the Scipion (de la Rosa-Trevín et al., 

2016) plugin manager. The neural network was implemented using the Keras (Chollet, 2015) package 

and the Tensorflow (Abadi et al., 2016) backend. Micrograph preprocessing is carried out using the 

scikit-image (van der Walt et al., 2014) package. 
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3. Results 

 

The evaluation of MicrographCleaner was performed comparing the predicted masks with the ground 

truth of testing micrographs. To that end, the mean Intersection over Union (mIoU) metric was 

calculated considering predicted and manually curated micrograph regions (see Supplementary 

Material S2). MicrographCleaner achieved a mIoU value of 0.544. This score implies a good 

agreement between ground truth and predicted masks, especially when taking into account that the 

testing set contains clean micrographs examples together with carbon-containing and contaminated 

micrographs. Figure 1 shows the predictions for four different micrographs, illustrating that 

MicrographCleaner is capable of successfully detecting both contaminations and carbon. 

 

We also have compared MicrographCleaner with state-of-the-art carbon finder programs: 

em_hole_finder, EMHP and the Warp particle picker (WPP). Before entering into these comparisons, it 

is important to highlight that MicrographCleaner and the WPP, contrary to the others, are fast (in the 

order of seconds), parameter-free and they do not require manual intervention in order to determine 

whether or not carbon is present in a micrograph. Consequently, they can be employed in automatic 

pipelines and, thus, they are suitable for automatic Cryo-EM analysis at facilities. Yet, with the aim of 

strictly comparing carbon detection efficacy, we have taken the subset of the testing set in which all 

micrographs contain some carbon and executed the four algorithms. As it can be appreciated in Table 1 

and in Supplementary Figure 1, deep learning-based methods are very well suited for this problem as 

both Warp and MicrographCleaner stand out from the others. Still, MicrographCleaner achieves the 

best performance of all them by a wide margin, improving results over the second best, WPP, by more 

than 20% in terms of agreement between masks predictions and ground truth. Additionally, we have 

also compared the performance of MicrographCleaner and WPP on the whole testing set, measuring a 

mean Intersection over Union (mIoU) of 0.544 for MicrographCleaner and 0.331 for WPP, showing 

how the more than 20% better performance of MicrographCleaner over WPP is also maintained in that 

data set (see Supplementary Material S5) 

 

Table 1. MicrographCleaner performance for carbon detection compared to other methods. 

Algorithm mIoU stdIoU Failure percentage 

MicrographCleaner 0.78833 0.22939 3.33% 

EMHP 0.19805 0.21147 45.00% 

em_hole_finder 0.05691   0.04691 63.00% 

Warp Particle Picker 0.57297 0.23095 3.33% 
Notes: mIoU: mean Intersection over Union (mean fraction of agreement between predictions and ground truth) ; 

stdIoT: standard deviation Intersection over Union; Failure percentage: percentage of the testing set for which 

the IoU was equal to 0, that its, those micrographs in which no a single pixel of carbon was detected 

independently of the quality of the prediction. 

 

4. Conclusions 

 

MicrographCleaner is an easy-to-install and easy-to-use python package that allows efficient and 

automatic micrograph segmentation with the aim of preventing particle pickers from selecting 

inappropriate regions. To that end, MicrographCleaner relays on a U-net-like model that has being 

trained on about 500 micrographs. When compared to other methodologies, MicrographCleaner has 

proven more robust, achieving results closer to the human criterion than other state-of-the-art methods. 

As a result, we consider that MicrographCleaner is a powerful approach to be applied at the very 

beginning of cryo-EM workflows, even within on-the-fly processing pipelines, leading to cleaner sets 

of input particle and, consequently, to a better processing performance. 
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Fig 1. MicrographCleaner predictions. Red shadowed regions correspond to micrograph areas labeled 

as “non suitable” with 50% or more confidence. Top images show MicrographCleaner capability to 

detect carbon in the presence of contaminants. Bottom images show MicrographCleaner capability to 

detect a wide variety of different contaminants. 
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