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Abstract 

Cryo-EM Single Particle Analysis workflows require from tens of thousands of high-quality particle projections to unveil the 

three-dimensional structure of macromolecules. Conventional methods for automatic particle picking tend to suffer from 

high false-positive rates, hurdling the reconstruction process. One common cause of this problem is the presence of 

carbon and different types of high-contrast contaminations. In order to overcome this limitation, we have developed 

MicrographCleaner, a deep learning package designed to discriminate which regions of micrographs are suitable for 

particle picking and which are not in an automatic fashion. MicrographCleaner implements a U-net-like deep learning 

model trained on a manually curated dataset compiled from over five hundred micrographs. The benchmarking, carried 

out on about one hundred independent micrographs, shows that MicrographCleaner is a very efficient approach for 

micrograph preprocessing. MicrographCleaner (micrograph_cleaner_em) package is available at PyPI and Anaconda Cloud 

and also as a Scipion/Xmipp protocol. Source code is available at 

https://github.com/rsanchezgarc/micrograph_cleaner_em.

1. Introduction. 

Cryogenic-Electron Microscopy (cryo-EM) Single Particle 

Analysis (SPA) has recently become a powerful technique 

for the determination of macromolecular structures 

achieving, in many cases, atomic resolutions. SPA consists 

of a set of complex and variable operations that, departing 

from thousands of particle projections, leads to the 

synthesis of electronic density maps of macromolecules. 

The massive number of particles that are needed for SPA 

has made of automatic particle picking one of the most 

influential steps in virtually all reconstruction workflows. 

Nevertheless, some problems intrinsic to the cryo-EM 

pipelines, such as low signal-to-noise ratio and the 

presence of high contrast artifacts and contaminants in the 

micrographs, degrades the performance of particle picking 

algorithms (Vargas et al., 2013; Zhu et al., 2004) and leads 

to the addition of false positive particles in SPA workflows. 

This problem can be mitigated trough different algorithms 

that clean and remove incorrectly selected particles after 

automatic picking (Sanchez-Garcia et al., 2018; Vargas et 

al., 2013).  

One of the most common shortcomings observed during 

automatic picking is the attraction of these methods to 

select grid carbon spots, especially at the hole edges. Due 

to its relevance, some algorithms have been designed to 

prevent particle selection in those regions. For example, 

the em_hole_finder program, included in the Appion 

package (Lander et al., 2009) is based on morphological 

image processing operations to compute masks around 

carbon holes. Similarly, EMHP (Berndsen et al., 2017) was 

designed to perform a similar task through image filtering 

and thresholding operations followed by a circle fitting 

procedure. Although very useful when grid edges are 

clearly visible, both approaches struggle in those cases 

where high contrast contaminations are present in 

micrographs. Moreover, both of them require human 

supervision to determine the presence of carbon in the 

micrographs and to set some user-defined parameters. As 

a result, its applicability is limited to supervised scenarios.  

More recently, deep learning particle pickers have been 

developed with the aim of improving picking accuracy. 

(Bepler et al., 2019; Wagner et al., 2019; Wang et al., 2016; 

Zhang et al., 2019; Zhu et al., 2017). These new particle 

pickers are more robust to false positives and most of them 

have been explicitly or implicitly designed to avoid carbon 

areas and large contaminants. One of such explicitly 

designed particle pickers is included in the Warp package 

(Tegunov and Cramer, 2019). Thus, the Warp picking 

algorithm approaches the problem of particle picking 

performing a pixel-wise classification -segmentation- of 

the micrographs in which one of the possible categories is 

undesirable region.  

Nevertheless, despite these developments, conventional 

particle pickers are still the preferred choice in recent 

publications (Gilman et al., 2019; Hiraizumi et al., 2019; 

Jain et al., 2019; Molina et al., 2019; Stone et al., 2019; Yan 
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et al., 2019). Although it is likely that deep learning particle 

pickers will become increasingly popular, they are not 

perfect and different situations will require different 

approaches, so conventional particle pickers, especially 

those based on templates, will probably remain popular. 

Following this line, and with the aim of improving classical 

particle pickers and complementing deep-learning-based 

ones, we have developed MicrographCleaner, a fully 

automatic, easy-to-install and easy-to-use deep learning 

solution that performs a pixel-wise classification of 

micrographs into two categories, desirable and 

undesirable regions for picking. Like Warp particle picker, 

MicrographCleaner relies on one of the most extended 

network architectures (Ronneberger et al., 2015), the U-

net, but the different choices in important parameters 

result, in turn, in quite different levels of performance. 

Thus, according to our benchmarking, MicrographCleaner 

is not only able to provide a more robust and accurate 

solution for carbon detection than earlier methods, but it 

is also able to improve the detection of other types of 

contaminants, such as ice crystals or ethane bubbles.  

2. Material and methods 

2.1 Algorithm 

 MicrographCleaner computes binary segmentation of 

micrographs with the aim of delineating optimal regions 

for particle picking and isolating those areas containing 

high-contrast contaminants and other artifacts. To that 

end, MicrographCleaner implements a U-net-like 

architecture (Ronneberger et al., 2015). Our model, 

carefully selected after a cross-validation process, consists 

of 5 downsampling blocks followed by 5 upsampling blocks 

with 32, 64, 128, 256, and 512 kernels per block 

respectively. Further details are described in 

Supplementary Material S1 and S4. 

Neural network training was carried out during 200 epochs 

using the Adam optimizer and a combination of perceptual 

loss (Johnson et al., 2016) and weighted binary cross-

entropy (Falk et al., 2019). Data augmentation was 

performed during training. See Supplementary Material S2 

and S4 for more details. 

2.2. Dataset and preprocessing 

MicrographCleaner was trained on a dataset of 539 

manually segmented micrographs collected from 16 

different EMPIAR (Iudin et al., 2016) entries. The 

evaluation was performed on an independent set of 97 

micrographs compiled from two EMPIAR projects and 

another two in-home projects (see Supplementary 

Material S5). Both training and testing sets micrographs 

include examples of clean, carbon-containing, 

contamination-containing and aggregation-containing 

areas as well as mixed ones that were labeled by an expert. 

Before micrographs are fed to the network, a previous 

normalization step is required to adjust the different 

intensity scales and sizes of micrographs. Thus, all 

micrographs are normalized in both intensity and size using 

a robust scaling strategy and a constant particle size 

donwsampling (see Supplementary Material S3). Finally, 

due to GPU memory limitations, the full downsampled 

micrograph is processed in chunks using a sliding window 

approach of overlapping patches of size 256x256. 

2.3. Evaluation metrics 

As evaluation criterium, we have computed the 

Intersection over Union (IoU) metric between the network 

predictions and the manually curated masks and averaged 

it for all micrographs in the testing set (mIoU). 

Consequently, mIoU is defined as: 

𝑚𝐼𝑜𝑈 =∑
|𝑃𝑖 ∩ 𝐿𝑖|

|𝑃𝑖 ∪ 𝐿𝑖|

𝑁

𝑖=1

 

 
where i is the testing micrograph index, N the number of 

testing micrographs and Pi and Li are, respectively, the 

predicted mask and the manually curated mask for testing 

micrograph i. 

2.4 Package 

MicrographCleaner has been implemented as an easy-to-

install and easy-to-employ Python 3.x package. Thus, the 

command line tool can be automatically installed from 

Anaconda Cloud and PyPI repositories whereas the GUI 

version can be installed through the Scipion (de la Rosa-

Trevín et al., 2016) plugin manager. The neural network 

was implemented using Keras (Chollet, 2015) package and 

Tensorflow (Abadi et al., 2016) backend. Micrograph 

preprocessing is carried out using the scikit-image (van der 

Walt et al., 2014) package.  

3. Results 

3.1 Carbon detection 

In order to estimate carbon detection capability, we have 

taken the subset of the testing set micrographs in which all 

contain some carbon and we have executed 

MicrographCleaner on them, achieving a mIoU of 0.78833, 

which indicates a great agreement between the carbon 

areas manually curated and the predicted ones. 
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Additionally, we have compared MicrographCleaner with 

several carbon finder programs: em_hole_finder, EMHP 

and the Warp particle picker (WPP) (see Supplementary 

Material S6 for more details). Before entering into these 

comparisons, it is important to highlight that 

MicrographCleaner and the WPP, contrary to the others, 

are fast (in the order of seconds), parameter-free and they 

do not require manual intervention in order to determine 

whether or not carbon is present in a micrograph. 

Consequently, they can be employed in automatic 

pipelines and, thus, they are suitable for automatic Cryo-

EM analysis at facilities. As it can be appreciated in Table 1 

and in Supplementary Material SM1, deep learning-based 

methods are very well suited for this problem as both Warp 

and MicrographCleaner stand out from the others. Still, 

MicrographCleaner achieves the best performance of all 

them by a wide margin, improving results over the second 

best, WPP, by more than 20% in terms of agreement 

between masks predictions and ground truth.  

Table 1. MicrographCleaner performance for carbon 

detection compared to other methods. 

Algorithm mIoU stdIoU 

MicrographCleaner 0.78833 0.22939 

EMHP 0.19805 0.21147 

em_hole_finder 0.05691   0.04691 

Warp Particle Picker 0.57297 0.23095 
Notes: mIoU: mean Intersection over Union (mean fraction of 

agreement between predictions and ground truth); stdIoU: 

standard deviation Intersection over Union. 

3.2. Undesirable regions and contaminants detection 

MicrographCleaner evaluation for undesirable regions and 

small contaminants detection was performed comparing 

the predicted masks with the ground truth for all the 

testing micrographs. Under this test, MicrographCleaner 

achieved a mIoU value of 0.544. This score, although worse 

that the score for carbon detection, implies a good 

agreement between ground truth and predicted masks, 

especially when taking into account that the testing set 

contains clean micrographs examples together with 

carbon-containing and contaminated micrographs. Figure 

1 shows the predictions for four different micrographs, 

illustrating that MicrographCleaner is capable of 

successfully detecting both contaminants and carbon. 

Additionally, we have also evaluated the global 

performance of WPP on the whole testing set, showing a 

mIoU of 0.331 and performing worse than 

MicrographCleaner for 77% of the micrographs. This 

supposes that the 20% better performance of 

MicrographCleaner over WPP for carbon detection is also 

maintained when contaminants detection is also 

considered. The predictions for some micrographs using 

both MicrographCleaner and WPP are shown in 

Supplementary Material Figure SM2.  

Fig 1. MicrographCleaner identifies non-suitable regions. Red 

shadowed regions correspond to micrograph areas labeled as 

“non-suitable” with 50% or more confidence. Top images show 

MicrographCleaner capability to detect carbon in the presence 

of contaminants. Bottom images show MicrographCleaner 

capability to detect a wide variety of different contaminants. 

3.3. Use cases 

In this section we present two examples, not included in 

the training and testing sets, in which both traditional 

particle pickers and deep-learning-based pickers struggle 

discerning problematic regions and contaminants from 

clean regions and thus, they both could benefit from 

MicrographCleaner. As deep learning representatives, we 

have chosen Topaz (Bepler et al., 2019) and the Cryolo 

(Wagner et al., 2019) particle pickers. Both Cryolo and 

Topaz algorithms were trained using ten manually curated 

micrographs. Additionally, the Cryolo general model, that 

does not require any training, was also employed. Relion 

autopicker (Scheres, 2015) was chosen as the 

representative of traditional particle pickers. Further 

details can be found in Supplementary Material S8. 

3.3.1. EMPIAR-10156 

The main difficulties for particle pickers that EMPIAR-

10156 dataset (von Loeffelholz et al., 2018) presents is that 

it contains large areas of carbon (even more than 50% of 
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the micrograph) and that the intensity of these areas is not 

uniform neither within an individual micrograph nor at the 

whole dataset. Thus, as it is illustrated in Figure 2, both the 

Relion and the Cryolo particle pickers (using a general 

model and a trained one) tend to pick particles located at 

the carbon region, whereas Topaz particle picker is able to 

avoid most of the carbon region but still selects many false 

positives at the edge.

Fig 2. MicrographCleaner improves particle picking on EMPIAR-10156 dataset. Coordinates selected with Cryolo pretrained general model 

(CG), Cryolo manually trained model (CM), Topaz (T) and Relion autopicker (R) are respectively displayed in columns one to four. Top row 

images correspond to the remaining particles after applying MicrographCleaner mask (MC) to the low threshold Topaz, Cryolo general and 

Cryolo manual solutions and the Relion autopicker outcome. As it can be appreciated, MicrographCleaner removes the particles selected in 

the carbon area and its edge while preserving much more true positive particles than using stricter thresholds. Red box represents the lowest 

confidence particle according the picking algorithm. 

It is interesting to consider that, although the number of 

particles picked at the carbon area/edge can be easily 

decreased using stricter thresholds, it comes at a cost of 

ruling out true positive particles. Thus, as it is shown in 

Figure 2, large enough thresholds for discarding most of 

the false positive particles cause the rejection of some true 

positive particles, which in the end translate to the 

precision/recall tradeoff in which most people favor the 

latter option aiming to remove false positives in successive 

steps. On the other hand, MicrographCleaner is able to 

mask out those false positive particles while not affecting 

the true positive ones, hence it can be used as a 

complement for any particle picker independently of 

threshold decisions. This behavior is illustrated in Figure 2, 

in which MicrographCleaner proposed solutions are better 

than the solutions obtained directly by the other methods 

at different thresholds. For more details see 

Supplementary Material S8. 

3.3.2. EMPIAR-10265 

The EMPIAR-10265 dataset (Lee et al., 2019) is extremely 

challenging. In this dataset, the particles of most 

micrographs are difficult to visualize, whereas in some 

others they are easily recognizable (see Figure 3 and 4 

respectively). Due to this profound disparity, the 

performance of the employed deep-learning-based 

methods is worse than in other datasets, and although 
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they are able to avoid large contaminated regions, they still 

incorrectly select many small contaminants as particles, as 

it is illustrated in Figure 3 and 4. Again, like in the previous 

example, the number of selected contaminants can be 

reduced by increasing the threshold but, as a result, the 

total number of particles is severely reduced. 

Fig 3. MicrographCleaner improves particle picking on EMPIAR-10265 dataset. Coordinates selected with Cryolo pretrained general model 

(CG), Cryolo manually trained model (CM), Topaz (T) and Relion autopicker (R) are respectively displayed in columns one to four. Top row 

images correspond to the remaining particles after applying MicrographCleaner mask (MC) to the low threshold Topaz, Cryolo general and 

Cryolo manual solutions and the Relion autopicker outcome. As it can be appreciated, MicrographCleaner removes many of the contaminants 

incorrectly selected as particles while preserving much more true positive particles than using stricter thresholds. Red box represents the 

lowest confidence particle according the picking algorithm. 

Thus, the process of threshold selection for this dataset is 

not trivial, as micrographs differ severely and thresholds 

that detect most of the particles in some micrographs 

discard many particles in others. As a consequence, 

manual inspection for each micrograph should be 

performed to obtain the best balance between the number 

of removed contaminants and total number of recovered 

particles. Alternatively, although still expensive, more 

micrographs could be manually picked in order to train 

further some of the methods. 

On the other hand, when MicrographCleaner is applied to 

the particles that have been selected using a conservative 

threshold, more true positive particles can be recovered 

while ruling out most of the small contaminants that were 

incorrectly selected (see Figure 3 and 4).  This ultimately 

improves the quality of the set of picked particles and also 

simplifies threshold selection, that can be set to more 

conservative values with the confidence that contaminants 

will be equally removed. See Supplementary Material S8 

for additional information. 
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Fig 4. MicrographCleaner improves particle picking on EMPIAR-10265 dataset. Coordinates selected with Cryolo pretrained general model 

(CG), Cryolo manually trained model (CM), Topaz (T) and Relion autopicker (R) are respectively displayed in columns one to four. Top row 

images correspond to the remaining particles after applying MicrographCleaner mask (MC) to the low threshold Topaz, Cryolo general and 

Cryolo manual solutions as well as the Relion autopicker outcome. As it can be appreciated, MicrographCleaner removes many of the 

contaminants incorrectly selected as particles while preserving much more true positive particles than using stricter thresholds. Red box 

represents the lowest confidence particle according to the respective picking algorithm. 

3.4. MicrographCleaner complements 2D-classification 

Although the previous section demonstrates that 

MicrographCleaner is able to reduce false positive levels 

for many particle pickers, it could also be argued that this 

reduction is not of enormous impact as such a reduction 

will be equally achieved by the subsequent steps of the 

image processing workflow, especially, at the 2D-

classification step. With the aim of testing this hypothesis, 

we have conducted one 2D classification analysis for each 

of the particle sets picked by the four particle pickers 

considered in Section 3.3.1 and we have compared the 

outcome of all of them with the particle sets processed 

with MicrographCleaner. Figure 5 illustrates the 

experiment for one of the picked sets of particles (see 

Supplementary Material S9 for additional information and 

other examples).  

Roughly speaking, our results point out that 2D-clustering 

is a much more aggressive strategy that removes many 

more particles that MicrographCleaner (between 20% and 

40% compared to 9% to 25%). Obviously, these results 

should not be surprising as MicrographCleaner was not 

designed to remove some types of false positive cases (e.g. 

background) that 2D-classification can.  

However, the most interesting conclusions can be drawn 

when counting the number of particles removed by 

MicrographCleaner that were not ruled out after 2D-

classification (it is acknowledged that particle pruning 

through 2D classification has a certain subjectivity, difficult 

to reproduce precisely). Thus, we have measured that 

between 19% and 29% of the particles discarded by 

MicrographCleaner survived to the 2D-classification 

process.  Even more interestingly, when a second step 2D-

classification is performed, the number of not removed 

particles, although smaller, is still of consideration 
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(between 10% to 20%, see Supplementary Material S9). 

These numbers suggest that MicrographCleaner and 2D-

classification should better be regarded as complementary 

options rather than competitors. 

Fig 5. MicrographCleaner complements 2D-classification. A: Gallery of 2D averages obtained from the set of particles collected by Cryolo 

manually trained on EMPIAR-10265 dataset. B, from left to right: (left) Particles originally picked by Cryolo and used as input for 2D-

classification; (middle) the previous set of particles after cleaning by a round of 2D classification (note that discarded particles correspond to 

those ones belonging to rejected 2D classes, which are marked with a red cross in A); (right) Cryolo original set of particles after application 

of MicrographCleaner. It can be appreciated that MicrographCleaner removed all particles picked on carbon but 2D-classification did not. 

4. Discussion 

Deep learning particle pickers are increasingly gaining 

popularity. Their ability to avoid contaminated regions and 

their reported superior accuracies compared to traditional 

approaches can explain this trend. Yet, traditional particle 

pickers are still the preferred option in recent publications.  

Irrespective of the particular method that a researcher 

considers appropriated for a particular case, we introduce 

here an approach that is specifically tailored to detect 

those particles that are located in problematic areas of the 

micrograph. In other words, rather than concentrating on 

reporting specimen-like images, we focus on detecting 

those areas of the micrograph that are likely to contribute 

with less quality images, so that we can select from any 

picking method only those particles that are coming from 

the best areas of the micrograph. Interestingly, we also 

show how this contextual approach can complement very 

well other traditional particles selection procedures, such 

as pruning by 2D classification, in that a quite substantial 

percentage of images tend to be accepted by 2D 

classification cleaning that, however, our method detects 

and discard. Thus, similarly to the general trend in the 

machine learning field in which top performing solutions 

are based on ensembles of methods, it is very likely 

(indeed, it is our vision) that top performing image 

processing or preprocessing workflows will likely be 

constructed by combining different approaches, 

MicrographCleaner included, especially when facing 

difficult samples. 

5. Conclusions 
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MicrographCleaner is an easy-to-install and easy-to-use 

python package that allows efficient and automatic 

micrograph segmentation with the aim of preventing 

particle pickers from selecting inappropriate regions on the 

micrograph. To that end, MicrographCleaner relays on a U-

net-like model that has being trained on about 500 

micrographs. When compared to other methodologies, 

MicrographCleaner has proven more robust, achieving 

results closer to the human criterion than other methods 

for both carbon and contaminants detection. In conclusion, 

we consider that MicrographCleaner is a powerful 

approach to be applied at the very beginning of cryo-EM 

workflows, even within on-the-fly/streaming processing 

pipelines, leading to cleaner sets of input particle and, 

consequently, to a better processing performance. 
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