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Abstract

High dimensional genomics data in biomedical sciences is an invaluable resource for
constructing statistical prediction models. With the increasing knowledge of gene
networks and pathways, this information can be utilized in the statistical models to
improve prediction accuracy and enhance model interpretability. However, in some
scenarios the network structure may only be partially known or inaccurately specified.
Thus, the performance of statistical models incorporating such network structure may
be compromised. In this paper, we proposed a weighted sparse network learning method
by optimally combining a data driven network with sparsity property to a known or
partially known prior network to address this issue. We showed that our proposed
model attained the oracle property which aims to improve the accuracy of parameter
estimation and achieved a parsimonious model in high dimensional setting for different
outcomes including continuous, binary and survival data in extensive simulations
studies. Case studies on ovarian cancer proteomics and melanoma gene expression
further demonstrated that our proposed model achieved good operating characteristics
in predicting response to chemotherapy and survival risk. An R package glmaag

implemented our method is available on the Comprehensive R Archive Network
(CRAN).

Introduction 1

The rapid advancement in high throughput genomics profiling has revolutionized 2

biomedical research towards personalized medicine for treating and preventing various 3

diseases including cancer. Several consortia have been established as part of the 4

collaborative efforts to decipher the molecular mechanisms underlying these diseases, for 5

example the Cancer Genome Atlas project have enabled researchers to access the rich 6

cancer genomics database. Together with the rapid development of machine learning 7

and artificial intelligence, these databases have been utilized extensively for improving 8

computational and statistical model building and predictions. 9

One key attribute of these dataset is the high dimensionality, i.e., p� n in which 10

the number of candidate features/predictors is much larger than the sample size. For 11

instance, in a typical DNA methylation data, several hundred-thousands of CpGs are 12

interrogated. Regularization framework has emerged as an attractive alternative to 13

address the limitations of classical feature selection method in generalized linear models 14

(GLM) including computational efficiency and multicollinearity issues. For instance, 15
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GLM regularization with l1 penalty (least absolute shrinkage and selection operator 16

(LASSO)) [28, 29] allows for simultaneous variable selection to prevent overfitting, 17

whereas [37] showed that combining l1 with l2 penalty (elastic net (EN)) not only 18

provides variable selection property but also robustness on correlated features (group 19

property). [6] and [8] argued that a good feature selection procedure should have the 20

oracle property which includes feature selection accuracy and asymptotically unbiased 21

parameters estimation. Thus, [36] and [38] proposed adaptive LASSO and adaptive EN 22

that have oracle property and can be optimized efficiently. 23

The above-mentioned methods have been shown to achieve positive performance in 24

prediction models in which no prior knowledge is available. However, the abundance of 25

genomics research has enable biological knowledge associated with the diseases to be 26

inferred from gene regulatory networks and pathways. Several well-known databases of 27

gene regulatory networks include the KEGG: Kyoto Encyclopedia of Genes and 28

Genomes (https://www.genome.jp/kegg/) ([11]) and the Reactome Pathways 29

(https://reactome.org/). If the network structure of the data is known in advance, 30

one can potentially improve the model prediction and interpretability by incorporating 31

the prior network information. One possible extension is to replace the l2 penalty with 32

a quadratic penalty that utilizes the unsigned or signed adaptive Laplacian matrix of 33

the network structure ([14, 15]), which yields better performance in both prediction and 34

variable selection. This framework has been applied to both the classification ([25]) and 35

survival ([24]) outcomes. On the other hand, [33] adapted the l1 penalty with unsigned 36

network penalty to achieve the oracle property in Gaussian regression framework. 37

Although the above-mentioned public regulatory network databases are invaluable 38

prior knowledge, one limitation is that most of the known networks only show the 39

connectivity but without information on the strengths of the connectivity . The 40

strengths of the connectivity are important factors which may influence the group 41

property generated by the prediction model. Conversely, one may also encounter a 42

dataset that only has unknown or partially known network structure. In this scenario, 43

one can still apply the graph based method by estimating the network empirically from 44

the data, e.g., the neighborhood selection method ([19]) to learn the connectivity among 45

the candidate features and use the reliability score provided by reference gene 46

association (RGA) ([31] as the strengths of connectivity. 47

Another challenge in regularization framework is to correctly tune the penalty 48

parameters. A common approach is via the cross validation, which is straightforward to 49

be applied in regularization framework. However, the cross validation approach has 50

been shown to have the tendency to overfit the data when the number of features are 51

relatively large compared to the sample size ([32]). An alternative approach is via the 52

stability selection method developed based on the consistency of variable selection 53

across multiple subsamples ([20]), and this method has been shown to perform well in 54

graph-based models ([17]). 55

In this paper, we addressed the above-mentioned limitations of existing 56

network/graph-based prediction models by proposing a mixture network prediction 57

framework that combines two candidate networks (usually one being the fixed network 58

obtained from gene regulatory network database while the other one is estimated from 59

the data). To this end, we adapted the l1 penalty in order to achieve the oracle 60

property. In addition, to attain a robust variable selection accuracy, we implemented 61

the stability selection tuning method for parameters tuning and compared this approach 62

to the cross validation method. We developed our proposed framework for various 63

outcomes including continuous, binary and survival data. 64

This paper is organized as follows. The description of our proposed method and the 65

corresponding model fitting algorithm are provided in Section 2. The Monte Carlo 66

simulations and case study are provided in Section 3 and 4, respectively. We conclude 67
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with a discussion in Section 5. 68

Methodology 69

Network Regularized Regression 70

We start our exposition by reviewing the method associated with the (partial) log 71

likelihood l (β) of generalized linear model (GLM) for continuous, binary and survival 72

outcomes: 73

l (β) ∝


− 1

2

∑n
i=1

(
yi − β0 − xTi β

)2
Gaussian∑n

i=1

[
yi
(
β0 + xTi β

)
− ln

(
1 + exp

(
β0 + xTi β

))]
Logistic∑n

i=1 δi

[
xTi β − ln

(∑
j∈Ri

exp
(
xTj β

))]
Cox

where Y = (y1, · · · , yn) is the outcome vector, X =
(
xT1 , · · · , xTp

)
is the predictors 74

matrix, δi is the event indicator for right censored variable, and Ri = {j|tj ≥ ti} is the 75

risk set of subject i. None of these GLM models can be optimized in high dimensional 76

(p� n) case. One approach to circumvent this challenge is to solve the maximum 77

penalized (partial) likelihood estimator (MPLE). We proposed a network LASSO with 78

l1 adaptive weights (abbreviated as AAG), in which the MPLE in primal form is given 79

as below: 80

max {l (β)} , subject to s1

p∑
i=1

wi |βi|+ s2 |β|T L |β| ≤ t (1)

where w � 0 is the weight vector for l1 penalty, L is the normalized Laplacian matrix, 81

and s1 ≥ 0, s2 ≥ 0 and t > 0 are tuning parameters. To estimate the sign adapter for 82

the network penalty we can fit the GLM model without penalty or ridge GLM model 83

with l2 penalty (denoted β̃a), and use the estimated signs of β̃a as the sign estimate 84

([24]). Therefore we have |β|T L |β| ≈ βTdiag
{

sgn
(
β̃a

)}
Ldiag

{
sgn

(
β̃a

)}
β , βT L̂β 85

and use L̂ as the signed network to be used. Next, to estimate the weight vector w we 86

can estimate the coefficients with 1 where s1 = 0 ,i.e., no l1 penalty (denoted β̃b). The 87

l1 adapted weights w can be estimated by ŵ = 1
β̃b

([36] and [38]). The normalized 88

Laplacian matrix L is given by 89

Lij =


1 i = j

−ωij/
√
ξiξj i 6= j, (i, j) ∈ E

0 otherwise

where E is the connectivity set, ξ is the degree of the node and ω is the strength (can 90

be either positive or negative) of the connectivity which can be estimated from the 91

reference gene association network utilizing the reliability score of Pearson correlation 92

([31]). The reliability score of feature i and j denoted as Rij is given by Rij = 1
rijrji

93

where rij is the ranking of correlation between feature i and j among all the 94

correlations of feature i to others. 95

We require L to be positive definite if XTX is not invertible. If L is an identity 96

matrix, it reduces to adaptive elastic network model. This indicates that adaptive 97

elastic net model ([38]) is a special case of our AAG model when there is no connection 98

in the network (i.e., independent structure). To solve equation 1, we consider optimizing 99

the objective function 100

max

{
1

n
l (β)− λ1

p∑
i=1

wi |βi| −
λ2
2
|β|T L |β|

}
(2)
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where λ1 ≥ 0 and λ2 ≥ 0. 101

To solve equation 2 when λ1 > 0, we implemented the proximal Newton based 102

coordinate ascent algorithm derived by [9] and [22] with adaptive l1 penalty. For 103

Gaussian regression we have the coordinate-wise update given by 104

β̃
(t+1)
j ←

S
(
n−1

∑
xij

(
yi − β̃0 −

∑
k 6=j xikβ̃

(t)
k

)
− λ2

∑
k 6=j L̂jkβ̃

(t)
k , λ1wj

)
n−1

∑n
i=1 xij + λ2L̂jj

where S (a, b) = sign (a) (|a| − b)+ is the soft-thresholding operator ([5]). 105

For logistic and Cox regression, we require a quadratic approximation of the (partial) 106

log likelihood using secondary Taylor expansion given by 107

l̃ (β) =
1

2
(z − β01−Xβ)

T
l
′′

η (z − β01−Xβ) + C
(
η, β̃

)
where z = η−

(
l
′′

η

)−1
l
′
, η = β̃01+Xβ̃, C

(
η, β̃

)
is a term which does not depend on β, 108

β̃ is the working update of β, and β0 = 0 for Cox model. For Cox model we only need 109

to calculate the diagonal entries of l
′′

η and fix all the off-diagonal entries to be zeros to 110

speed up the computation, based on the argument provided by [22] where the 111

off-diagonal entries of l
′′

η are small compared to the diagonal entries. For logistic model 112

l
′′

η is already in a diagonal matrix form. Therefore, let u be the diagonal elements of l
′′

η , 113

we have 114

lQ (β) = −1

2

n∑
i=1

ui
(
zi − β0 − xTi β

)2
Note that the Gaussian model is a special case in which ui = 1 and zi = yi. The 115

coordinate-wise update step for logistic model is given by 116

β̃
(t+1)
j ← S (A−B, λ1wj)

n−1
∑n
i=1 u

(t)
i x2ij + λ2L̂jj

. (3)

A = n−1
n∑
i=1

u
(t)
i xij

z(t)i − β̃(t)
0 −

∑
k 6=j

xikβ̃
(t)
k


B = λ2

∑
k 6=j

L̂jkβ̃
(t)
k

The working update for logistic model is given by 117

z
(t)
i = β̃0 + xTi β̃ +

yi − µ(t)
i

µ
(t)
i

(
1− µ(t)

i

)
u
(t)
i = µ

(t)
i

(
1− µ(t)

i

)
118

µ
(t)
i =

1

1 + exp
(
−Xβ̃(t)

) .
For Cox model, we used Breslow’s ([2]) method to handle tied survival time. The 119

working update is given by 120

z
(t)
i = η

(t)
i +

1

u
(t)
i

δi −∑
j∈Ci

die
η
(t)
i∑

k∈Rj
eη

(t)
k


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121

u
(t)
i =

∑
j∈Ci

di
eη

(t)
i

[∑
k∈Rj

eη
(t)
k − eη

(t)
i

]
[∑

k∈Rj
eη

(t)
k

]2
122

η(t) = Xβ̃(t)

where Rj is the set of k for the jth sample with tk ≥ tj , Ci = {j|tj ≤ ti} is the set of 123

indices j for the ith sample with tj ≤ ti and di is the number of tied samples in survival 124

time for the ith sample. 125

Mixture Network Tuning 126

In real data analysis, obtaining the correctly specified complete network structure could 127

be infeasible for model fitting. In addition, in scenarios where the network structure is 128

known, the strengths/weight of the connectivity might not be available. To circumvent 129

these issues, we proposed a mixture network method that combines a pre-specified 130

network L1 and a data driven network L2 in the following penalized likelihood 131

framework: 132

max

{
1

n
l (β)− λ1

p∑
i=1

wi |βi| −
λ2
2
|β|T (cL1 + (1− c)L2) |β|

}

where 0 ≤ c ≤ 1 is the network weight. If L1 and L2 are both positive definite, the final 133

mixture network L = cL1 + (1− c)L2 is also positive definite, thus the consistency 134

property still holds. To obtain the network weight c we recommend fixing λ1 = 0 when 135

tuning the weight between networks and only search for the combination of λ2 × c for 136

computational efficiency. As suggested by [4] we searched λ2 over 137{
0.01 · 20, 0.01 · 21, · · · , 0.01 · 27

}
. To tune the parameter c we recommend searching 138

over the set {0, 0.1, 0.2, · · · , 1}. We tuned the two networks via cross validation method 139

and chose the value of c that optimized the cross validation performance. Upon 140

identifying the optimal c we fixed the final mixed network with L̂ = cL1 + (1− c)L2 141

when tuning λ1 and λ2. 142

To estimate a data-driven network L2, we obtained the connectivity using the R 143

package huge ([35]) with penalized neighborhood selection method ([19]) tuned by 144

rotation information criterion (RIC). However, this method does not provide the 145

strength of connectivity. Therefore, we estimated the strengths/weights using the 146

reliability score provided by the reference gene association network ([31]). 147

Parameter Tuning 148

We compared two frameworks for tuning λ1 and λ2. The first is the cross validation 149

(CV) framework, where we performed the CV via deviance (l̂ (full)− l̂ (train)) or robust 150

measure including negative mean absolute error (MAE) for Gaussian model, area under 151

the receiver operating characteristic curve (AUC) for logistic model and concordance 152

index (C) for Cox model. For Gaussian model, the deviance measure is equivalent to 153

negative mean squared error (MSE). One can either use the maximum (max) rule, i.e., 154

obtaining (λ1, λ2) that maximizes the CV measure or the one standard error (1se) rule, 155

i.e., obtaining (λ1, λ2) that results in the most parsimonious model within one standard 156

error of the CV measures. We also imposed a p/2 constraint to the number of variables 157

to improve computational speed. 158

Although CV is a convenient framework and has been shown to achieve good 159

performance in low dimensional data, it may result in overfitting in high dimensional 160

case ([32]). An alternative approach is via the stability selection (SS) proposed by [20] 161
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which measures the feature selection stability across subsampling replicates, and has 162

been shown to be robust in graphical models ([17]). 163

Suppose we randomly draw K samples (usually K = 100) with bn/2c or b10
√
nc 164

observations depending on the sample size as suggested by [20] and [17], the selection 165

probability of feature j is given by 166

P̂λ1,λ2 (j) =
1

K

K∑
k=1

I
(
β̂λ1,λ2

j (Sk)
)

where Sk is the kth subsample. The selection variance is given by 167

v̂arλ1,λ2 (j) = P̂λ1,λ2 (j)
[
1− P̂λ1,λ2 (j)

]
.

A stable method should have a low selection variance, thus the instability score across 168

all features is defined as 169

ÎS (λ1, λ2) =
2

p

p∑
j=1

v̂arλ1,λ2 (j) .

To make the score comparable across different λ2’s, we consider a monotone 170

transformation of the instability score given by 171

ĪS (λ1, λ2) = sup
x≥λ1

ÎS (x, λ2)

such that the instability path decreases with increasing λ1 for each fixed λ2. By 172

combining the instability score together, we find the maximum score that is lower than 173

a specific cutoff, usually 0.15 and use the corresponding (λ1, λ2) as the selected tuning 174

parameter. 175

Tuning λ1 and λ2 usually works iteratively by searching λ1 for each fixed λ2 until all 176

possible values of λ1 × λ2 have been considered. According to the strong rules for 177

discarding predictors ([30]), it is not necessarily to consider all predictors for every λ2. 178

In particular, we can discard predictors that are not likely to be retained in the model 179

under the Karush-Kuhn-Tucker (KKT) condition. We applied the strong rules in our 180

model to improve computational speed. 181

Theoretical Properties 182

Group Effect 183

We showed how the network penalty adjusts for the multicollinearity issues by proving 184

the group effect. Without loss of generality, we assumed that the response vector y for 185

Gaussian models and predictor matrix X have been standardized. We assume that 186

feature i and j are linked and only linked to each other and that the sign of estimation 187

is correct. Assume further that the sample correlation of Xi and Xj is ρij , the sign is 188

consistent with the coefficient, the l1 penalty weight for feature i is wi and the strength 189

of connectivity for feature i and j is ωij and 0 ≤ ωij ≤ 1. We have 190∣∣∣∣∣∣β̂i∣∣∣− ∣∣∣β̂j∣∣∣∣∣∣ ≤ √2 (1− |ρij |) + λ1 |wi − wj |
λ2 (1 + ωij)

.
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Oracle Property 191

We provided the theoretical proof for the oracle property on our proposed method to 192

ensure that the model is robust with respect to variable selection and coefficient 193

estimation. Gaussian and logistic models are in the exponential family whereas the Cox 194

proportional hazard model is not, thus the oracle property for Cox model is different 195

from Gaussian and logistic models. We proved the oracle property for Cox model and 196

exponential family GLM (not limited to Gaussian and logistic models) separately in the 197

following subsections. 198

0.0.1 Generalized Linear Model in Exponential Family 199

For GLM in exponential family, e.g., Gaussian and logistic models, the likelihood 200

function can be written as l (Y |X, θ) = h (Y ) exp
(
Y T θ − φ (θ)

)
where θ = Xβ and β is 201

the true coefficient vector. We denote the maximum penalized likelihood estimation β̂ as 202

β̂(n) = argmaxβ

{
1

n

[
Y TXβ − φ (Xβ)

]
− λ(n)1

p∑
i=1

ŵi |βi| −
λ
(n)
2

2
βTLβ

}
,

where ŵ = 1
˜|β|

where β̃ is a root-n-consistent estimator of β such as the OLS estimator 203

and r > 0. Let A∗n =
{
i|β̂(n)

i 6= 0
}

and A denote the selected features and true 204

predictor set, respectively. In our case 205

φ (Xβ) =

{
1
2β

TXTXβ Gaussian

1T ln (1 + exp (Xβ)) Logistic

Suppose that
√
nλ

(n)
1 → 0, nλ

(n)
1 → +∞,

√
nλ

(n)
2 → 0 and Λmax (L) ≤ λL < +∞, 206

where Λmax (·) represents the largest eigenvalue of a given matrix. Given the two 207

regularity conditions: 208

1. Fisher information matrix I (β) = E
[
φ

′′
(xβ)XTX

]
and nλ

(n)
2 L are finite and 209

positive definite. 210

2. There exists a sufficiently large open set O where β ∈ O and ∀B ∈ O we have 211∣∣∣φ′′′
(XB)

∣∣∣ ≤M (X) < +∞ and E [M (X) |xixjxk] < +∞ for any 1 ≤ i, j, k ≤ p, 212

we have the following two properties: 213

1. Variable selection consistency: limn P (A∗n = A) = 1. 214

2. Asymptotic normality:
√
n
(
β̂
(n)
A − βA

)
d→ N

(
0, I−1A

)
. 215

0.0.2 Cox’s Proportional Hazards Model 216

The Cox model is not within exponential family, thus the proof of the oracle property 217

requires some modifications as shown in [7]. Define the at-risk and counting process as 218

Ni (t) = δiI
(
T̃i ≤ t

)
and Yi (t) = I

(
T̃i ≥ t

)
where T̃i = min (Ti, Ci) (Ti is the failure 219

time and Ci is the censoring time for the ith subject), and the Fisher information 220

matrix as 221

I (β) =

∫ 1

0

v (β, t) s(0) (β, t)h0 (t) dt
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where 222

v (β, t) =
s(2) (β, t)

s(0) (β, t)
−
(
s(1) (β, t)

s(0) (β, t)

)(
s(1) (β, t)

s(0) (β, t)

)T
,

s(k) (β, t) = E
[
x (t)

⊗k
Y (t) exp

(
x (t)

T
β
)]

, k = 0, 1, 2 and h0 (t) is the baseline 223

hazards function. Here we assume all the regularity conditions (A-D) in [? ] hold. We 224

assume that A is the true predictor set and AC the complement set. Given that 225√
nλ

(n)
1 → 0, nλ

(n)
1 → +∞,

√
nλ

(n)
2 → 0 and Λmax (L) ≤M < +∞, the root-n 226

consistent estimator β̂(n) satisfies the following conditions: 227

1. Sparsity: β̂
(n)

AC = 0 228

2. Asymptotic normality:
√
n
(
β̂
(n)
A − βA

)
d→ N

(
0, I−1A

)
. 229

Monte Carlo Simulations 230

We conducted a Monte Carlo study to evaluate the performance of our proposed model. 231

We considered two network structures namely (1) the autoregressive (AR) structure 232

where each feature is connected and only connected to its neighbor, and (2) the HUB 233

structure where the features formed groups with one dominant feature within each 234

group. 235

In our simulation, we generated p = 200 features and n = 500 samples in which 100
samples were used as training data and the remaining 400 samples were set aside as test
data. The features were generated from a multivariate Gaussian distribution with mean
zero and diagonal covariance one. We assigned three twenty-feature groups with
absolute coefficients 0.5, 1 and 2 and random signs for the noninformative features (i.e.,
those with zero coefficients).

β =

±2, · · · ,±2︸ ︷︷ ︸
20

,±1, · · · ,±1︸ ︷︷ ︸
20

,±0.5, · · · ,±0.5︸ ︷︷ ︸
20

, 0, · · · , 0︸ ︷︷ ︸
140

T

For Gaussian models, we generated Gaussian noise with mean zero and standard 236

error ‖β‖2 /2. For logistic models, we generated the outcome variable from the 237

Bernoulli distribution with probability of the success as the logistic score of the 238

predictors. For Cox models, we generated Weibull baseline hazards with shape 239

parameter 5, scale parameter 2 and censoring time following a uniform distribution 240

U (2, 15) which leads to a censoring rate of approximately 30%. 241

Cross Validation with p/2 Constraints 242

We compared our proposed model to the elastic net model (implemented in the R 243

package glmnet) and network-LASSO regression without the l1 adaptive weights 244

(implemented in the R package glmgraph). Since glmgraph is not implemented for 245

Cox model, we wrote our own codes for fitting the Cox models in network-LASSO 246

regression without the l1 adaptive weights. To assess the effect of network 247

misspecification, we considered the scenarios where we used (1) the correct network 248

(cor), (2) the incorrect network (AR misspecified as HUB and vice versa) (wr), and (3) 249

the estimated network (est). The signs of network were estimated empirically. We 250

compared this signed network model to our proposed mixture network model that 251

combined (1) a correct network with an incorrect network, (2) a correct network with 252

an estimated network, and (3) an incorrect network with an estimated network. The 253
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results of the AR structure as the true network are shown in Tables 1. The tuning 254

parameters were chosen via cross validation with one standard error rule and the 255

number of parameters were constrained to be at most p/2. 256

Table 1. Model Comparison with AR Structure as True Network

Gaussian
Method MAE MSE Pearson Spearman
EN 7.283 (0.740) 84.340 (17.447) 0.839 (0.033) 0.824 (0.036)
Graph cor 6.343 (0.849) 64.578 (22.617) 0.886 (0.049) 0.875 (0.049)
Graph wr 7.006 (0.682) 77.896 (14.883) 0.859 (0.026) 0.845 (0.028)
Graph est 6.828 (0.698) 74.217 (15.408) 0.864 (0.028) 0.851 (0.032)
AAG cor 5.788 (0.543) 53.025 (9.909) 0.896 (0.023) 0.884 (0.026)
AAG wr 6.685 (0.472) 70.723 (9.827) 0.859 (0.022) 0.846 (0.025)
AAG est 6.372 (0.525) 64.188 (10.550) 0.873 (0.023) 0.861 (0.026)
MixAAG corwr 5.770 (0.531) 52.756 (9.899) 0.896 (0.022) 0.886 (0.025)
MixAAG corest 5.794 (0.522) 53.180 (9.497) 0.896 (0.021) 0.885 (0.025)
MixAAG wrest 6.557 (0.516) 68.010 (10.817) 0.865 (0.024) 0.852 (0.028)

Logistic
Method AUC ACC MCC Biserial
EN 0.839 (0.059) 0.746 (0.049) 0.501 (0.097) 0.716 (0.114)
Graph cor 0.906 (0.041) 0.812 (0.047) 0.630 (0.090) 0.867 (0.087)
Graph wr 0.893 (0.031) 0.795 (0.037) 0.599 (0.069) 0.834 (0.063)
Graph est 0.877 (0.040) 0.777 (0.041) 0.564 (0.077) 0.803 (0.082)
AAG cor 0.931 (0.024) 0.833 (0.033) 0.676 (0.060) 0.939 (0.054)
AAG wr 0.889 (0.028) 0.792 (0.031) 0.591 (0.059) 0.839 (0.063)
AAG est 0.891 (0.031) 0.793 (0.033) 0.596 (0.061) 0.844 (0.071)
MixAAG corwr 0.931 (0.027) 0.834 (0.035) 0.677 (0.066) 0.937 (0.063)
MixAAG corest 0.930 (0.025) 0.831 (0.034) 0.672 (0.061) 0.936 (0.058)
MixAAG wrest 0.892 (0.033) 0.791 (0.040) 0.594 (0.072) 0.846 (0.073)

Cox
Method C
EN 0.858 (0.031)
Graph cor 0.911 (0.022)
Graph wr 0.876 (0.027)
Graph est 0.879 (0.027)
AAG cor 0.931 (0.018)
AAG wr 0.869 (0.022)
AAG est 0.900 (0.018)
MixAAG corwr 0.929 (0.019)
MixAAG corest 0.929 (0.018)
MixAAG wrest 0.900 (0.019)

In the results, EN represents elastic (glmnet) method, Graph represents network 257

LASSO without l1 adaptive weights, AAG represents our proposed network LASSO 258

with l1 adaptive weights and MixAAG represents our proposed network LASSO with l1 259

adaptive weights and mixture network. For Gaussian model, we compared mean 260

absolute error (MAE), mean squared error (MAE), Pearson and Spearman correlation. 261

For logistic model, we compared the area under the receiver operating characteristic 262

curve (AUC) calculated via [21] method, accuracy (ACC), Matthews correlation 263

coefficient (MCC) and biserial correlation. For Cox model, we compared the 264

concordance index (C). We reported the mean and standard deviations of these metrics 265

across 100 replicates. 266
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From the simulation results, our proposed method with l1 adaptive weights yields 267

better performance compared to elastic net and network-LASSO without l1 adaptive 268

weights. For both the AR and HUB structures, incorporating the correctly network 269

yields significantly better results compared to the case where network is misspecified as 270

expected. On the other hand, the network mixture approach (i.e., mixing an incorrect 271

network with an estimated data driven network) yields better performance compared to 272

a model with a wrong network or elastic net model. 273

Cross validation vs stability selection 274

In practice we constrain the number of selected features to be no more than p/2 similar 275

to the default method of R package glmgraph to speed up computation. However, this 276

constraint may not be desirable if the true number of informative features is greater 277

than p/2. An alternative approach is the stability selection (SS) method as described 278

earlier. In this subsection we compared the variable selection accuracy between cross 279

validation without p/2 constraint and the stability selection method. We reported the 280

MCC of the estimate coefficients, and Sensitivity (Sn) for large, medium, and small 281

effect sizes and Specificity (Sp) averaged over 100 replications. The results for the AR 282

structure are shown in Table 2. 283

Table 2. Cross Validation vs Stability Selection with AR Structure on Variable Selection
Accuracy

Gaussian
Method MCC Sn large Sn medium Sn small Sp
CV corwr 0.637 (0.075) 0.974 (0.045) 0.737 (0.150) 0.364 (0.183) 0.902 (0.138)
CV corest 0.638 (0.082) 0.973 (0.040) 0.748 (0.136) 0.362 (0.161) 0.916 (0.051)
CV wrest 0.604 (0.063) 0.926 (0.074) 0.587 (0.142) 0.228 (0.163) 0.936 (0.139)
SS corwr 0.614 (0.066) 0.984 (0.034) 0.804 (0.126) 0.469 (0.186) 0.868 (0.042)
SS corest 0.613 (0.074) 0.982 (0.038) 0.799 (0.136) 0.481 (0.181) 0.867 (0.041)
SS wrest 0.597 (0.069) 0.974 (0.042) 0.735 (0.123) 0.359 (0.159) 0.893 (0.044)

Logistic
Method MCC Sn large Sn medium Sn small Sp
CV corwr 0.482 (0.102) 0.976 (0.056) 0.778 (0.212) 0.492 (0.280) 0.718 (0.216)
CV corest 0.482 (0.101) 0.975 (0.048) 0.775 (0.206) 0.498 (0.281) 0.725 (0.200)
CV wrest 0.421 (0.081) 0.844 (0.135) 0.443 (0.223) 0.258 (0.196) 0.855 (0.153)
SS corwr 0.536 (0.086) 0.957 (0.054) 0.638 (0.143) 0.319 (0.162) 0.883 (0.030)
SS corest 0.537 (0.083) 0.959 (0.057) 0.643 (0.127) 0.314 (0.156) 0.883 (0.029)
SS wrest 0.432 (0.086) 0.895 (0.075) 0.496 (0.128) 0.277 (0.129) 0.860 (0.035)

Cox
Method MCC Sn large Sn medium Sn small Sp
CV corwr 0.705 (0.094) 0.979 (0.034) 0.848 (0.100) 0.539 (0.165) 0.910 (0.062)
CV corest 0.709 (0.089) 0.981 (0.034) 0.847 (0.102) 0.536 (0.168) 0.914 (0.049)
CV wrest 0.618 (0.078) 0.946 (0.054) 0.703 (0.134) 0.352 (0.143) 0.916 (0.057)
SS corwr 0.656 (0.077) 0.976 (0.038) 0.862 (0.101) 0.590 (0.167) 0.866 (0.032)
SS corest 0.659 (0.072) 0.979 (0.037) 0.858 (0.103) 0.588 (0.159) 0.868 (0.034)
SS wrest 0.583 (0.073) 0.956 (0.045) 0.761 (0.114) 0.427 (0.128) 0.871 (0.027)

From Table 2, the logistic model fitted via cross validation without p/2 constraint 284

yields lower MCC and Sp compared to the stability selection. For Gaussian and Cox 285

model the cross validation and stability selection have similar performance. The cross 286

validation approach is also more computationally efficient (e.g., for Gaussian model, 287

with 100 samples and 20 features, five-fold cross validation took 0.05s while 100 288
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Table 3. Log Platinum Free Interval in Proteomic Ovarian Cancer Prediction

Method MAE MSE Pearson Spearman # features
CV EN 0.947 1.439 0.461 0.438 1026
CV MixAAG 0.897 1.344 0.464 0.473 146
SS MixAAG 0.904 1.414 0.388 0.384 193

replicated stability selection took 4.80s). 289

Case Study 290

Platinum Therapy in Ovarian Cancer 291

We applied our proposed method to ovarian cancer proteomics dataset from the Cancer 292

Genome Atlas (TCGA) generated by the Johns Hopkins University (JHU) and Pacific 293

Northwest National Laboratory (PNNL) ([34]). The dataset was downloaded from the 294

National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium 295

(CPTAC) (https://cptac-data-portal.georgetown.edu/cptacPublic/). Ovarian 296

cancer is one of the most lethal gynecologic malignancy which is difficult to be detected 297

early. Most ovarian cancer cases are only detected in late stage and treated with 298

chemotherapy using a platinum compound drug. Unfortunately, the platinum therapy is 299

not effective for all patients as some patients develop resistance to the treatment. To 300

improve ovarian cancer survival, it is important to predict whether a patient will 301

response to the treatment. In this case study, we used the proteins as candidate features 302

to predict two types of outcome measurements, namely the platinum free interval, a 303

continuous measurement for the treatment sensitivity and platinum status (sensitive 304

versus resistant by dichotomizing platinum free interval, i.e., platinum free interval 305

greater than 6 months was marked as sensitive). Our sample size consisted of 95 306

sensitive patients and 34 resistant patients. We used ComBat ([10] and [12]). Since the 307

missing values in mass spectrometry proteomics data can be attributed to detection 308

limit ([27]), we imputed the missing values by the minimum value of each protein 309

divided by
√

2 ([23]). The set of features with more than 20% missing were removed 310

from our study. The pre-processed and normalized dataset consisted of 6451 candidate 311

features/proteins for our subsequent analysis. Among the 129 samples, we randomly 312

assigned 92 (71.3%) samples to form the training set and the remaining 37 (28.7%) as 313

test set. We pre-screened the features using feature-wise Gaussian and logistic 314

regression on log platinum free interval and platinum status, respectively in training 315

data and retained the candidate features with p-values ≤ 0.15. 1026 and 881 features 316

were retained for log platinum free interval and platinum status, respectively. To obtain 317

a prior network structure, we downloaded the protein-protein interaction network 318

(protein links within human sapiens) from the STRING database ([26]) and combined 319

with the Laplacian matrix estimated from the training data. The signs and strengths of 320

connectivity of the network were estimated using the method described in Sections 2.1 321

and 2.2. For platinum status prediction, a cutoff value that maximized the Youden’s 322

index in training data was used to compute the accuracy (ACC), Matthew’s correlation 323

coefficient (MCC), Youden index (J), Sensitivity (Sn) and Specificity (Sp) in test data. 324

The results are shown in Tables 3 and 4. 325

Both the predictions of log platinum free interval and platinum status showed that 326

elastic net (EN) method tend to overfit the data since the model chose α = 0 (ridge 327

regression) as the optimal value, thus all the features were retained. On the other hand, 328

our proposed mixture network method selected a smaller number of features and 329

achieved better prediction performance. The results also indicated that the ovarian 330
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Table 4. Platinum Status in Proteomic Ovarian Cancer Prediction

Method AUC ACC MCC J Sn Sp Biserial # features
CV EN 0.623 0.622 0.111 0.123 0.679 0.444 0.279 881
CV MixAAG 0.683 0.514 0.183 0.206 0.429 0.778 0.376 394
SS MixAAG 0.690 0.486 0.083 0.095 0.429 0.667 0.399 171
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cancer proteomics dataset has an inherent network structure, thus out proposed method 331

is suitable for modeling this type of data. 332

Survival Time in Skin Cutaneous Melanoma 333

Skin cutaneous melanoma (SKCM) is an aggressive malignancy that arises from 334

uncontrolled melanocytic proliferation. Gene expression has been shown to be a 335

promising biomarker for predicting survival in SKCM ([1], [3] and [18]). We applied our 336

proposed method to the Cancer Genome Atlas (TCGA) SKCM gene expression data 337

generated using the RNA-Seq platform. Gene expression values were summarized using 338

RSEM ([13]) and normalized via the quantile normalization procedure ([16]). Our data 339

consisted of the overall survival time of 436 patients with 217 events. We first 340

pre-screened the candidate features, i.e., genes by individual Cox regression and 341

retained 864 features with p-values ≤ 0.15. We randomly divided the data into training 342

(305 patients) and test (131 patients) sets. The network structure was based the 343

melanoma pathway from KEGG, combined with an estimated network in which the 344

signs and strengths were estimated via the method described in Section 2.1 and 2.2. We 345

compared the results of our proposed methods to elastic net models. The results are 346

shown in Figure 1. We trained the models and obtained the optimal cutoff value for the 347

log rank test. We used the selected cutoff in the test data to divide the patients into 348

high and low risk groups, and evaluated the prediction via the Kaplan-Meier curves and 349

log rank tests. We reported the concordance index (C) in test data and the number of 350

features selected in the training data. 351

The results showed that our proposed methods with cross validation performed the 352

best (best C index and lowest number of retained features). Our proposed method via 353

stability selection had comparable performance to elastic net method via cross 354

validation. 355
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Figure 1. Survival Risk in Gene Expression SKCM Prediction
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Conclusion 356

Incorporating network structure in the prediction model has been shown to be 357

important in high dimensional genomics studies for accurate feature selection and model 358

interpretability. In this paper we proposed a mixture network regularized generalized 359

linear model which allows us to optimally combine a prior network and a data driven 360

network. This is particularly useful in the scenarios in which the prior network is not 361

known with certainty. Our model safeguards against incorporating an incorrect prior 362

network by allowing an optimally mixed network structure in the model. 363

Our simulation studies showed that the proposed l1 adaptive method yields higher 364

prediction and feature selection accuracies across different scenarios. We also found that 365

cross validation may not be the best approach for feature selection in high dimensional 366

data, especially for binary classification. An alternative strategy is the stability 367

selection method which was shown to yield better performance than cross validation in 368

such scenarios, though it requires a much higher computational cost. Based on our 369

simulation results, we suggested using the stability selection method for parameter 370

tuning in binary classification problem, whereas cross validation is often sufficient for 371

Gaussian and Cox outcomes. 372

An interesting future work includes replacing the l1 penalty with a grouped LASSO 373

penalty to allow for group-wise instead of feature-wise selection. However, the challenge 374

would be to ensure that the group structure inferred from the group LASSO penalty is 375

consistent with the group structure from the data driven network. One possibility is to 376

define the grouped LASSO penalty after obtaining the network mixture within an 377

iterative framework. Another future research is to apply the AAG method to other 378

exponential family, for example, the Poisson and negative binomial regression for 379

modeling count data outcomes. Our proposed model glmaag is available on the 380
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Comprehensive R Archive Network (CRAN). 381
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