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Abstract  

Identification of gene co-expression patterns (gene modules) is widely used for grouping 

functionally-related genes during transcriptomic data analysis.  An organism-wide atlas 

of high quality fundamental gene modules would provide a powerful tool for unbiased 

detection of biological signals from gene expression data.  Here, using a method of 

independent component analysis we call DEXICA, we have defined and optimized 209 

modules that broadly represent transcriptional wiring of the key experimental organism 

C. elegans.  Interrogation of these modules reveals processes that are activated in long-

lived mutants in cases where traditional analyses of differentially-expressed genes fail 

to do so.  Using this resource, users can easily identify active modules in their gene 

expression data and access detailed descriptions of each module.  Additionally, we 
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show that modules can inform the strength of the association between a gene and an 

annotation (e.g. GO term).   Analysis of “module-weighted annotations” improves on 

several aspects of traditional annotation-enrichment tests and can aid in functional 

interpretation of poorly annotated genes.  Interactive access to the resource is provided 

at http://genemodules.org/. 

 
Introduction 

Nearly half of the predicted protein-coding genes in Caenorhabditis elegans lack a 

functional annotation based on direct experimental evidence1.  As a result, querying 

gene annotation databases, such as the Gene Ontology (GO) or curated-pathways can 

fail to detect biologically meaningful signals in gene expression data 2-4.  An alternative 

approach to understanding gene function is to use information about genes’ 

transcriptional activity.  Gene-expression data can be used to define groups of genes 

that show similar patterns of expression, or co-variation, across multiple conditions.  

These groups are called transcriptional gene modules, with each module potentially 

representing a discrete biological phenomenon.  Gene modules are routinely 

constructed when clustering algorithms are applied to gene expression data and have 

been used successfully to identify gene regulatory mechanisms in a variety of contexts, 

from the yeast cell cycle5 and sporulation6 to human cancer cells7 to cognitive decline in 

patients with Alzheimer disease8.  Furthermore, large compendia of data sampling 

diverse perturbations have been used to define fundamental gene-expression programs 

of entire organisms9-11.   

In C. elegans, the most recent effort to generate high-quality fundamental 

transcriptional modules is now almost two decades old12.  Co-expressed genes were 
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grouped together into 43 groups (or “mountains”) based on their correlation across 553 

microarrays.  However, the compendium did not contain all genes (e.g. over 30% of the 

microarrays only contained ~11,000 of C. elegans’ 20,470 protein-coding genes) and 

each gene was assigned exclusively to one group, although it is well-established that 

genes can participate in multiple processes 13,14.  The number of perturbations for which 

gene expression data are available has also increased substantially since 2001. 

Here, we define 209 transcriptional gene modules in C. elegans using a 

heterogeneous compendium of 1386 microarrays and a method we call DEXICA, for 

Deep EXtraction Independent Component Analysis.  DEXICA builds on prior 

implementations 10,15,16 of independent component analysis (ICA) for gene module 

extraction by maximizing the biological information content of the modules.  It does so 

by varying data pre-processing methods and the number of extracted ICA components 

(modules) until the number of biological annotations is maximized.  DEXICA also uses 

an artificial neural network to partition each independent component, i.e. gene module, 

to determine which genes should be included and which should be excluded. 

We show that the 209 DEXICA C. elegans modules capture gene expression 

patterns that correspond to biological processes; for example, responses to osmotic 

stress, xenobiotics and pathogenic bacteria, and to several individual tissues.  

Furthermore, data analysis in the module space correctly reveals biological processes 

that are missed by analyses of differentially-expressed genes.  We provide a user-

friendly web interface in which users can test which of the 209 gene modules are active 

in their datasets and find detailed information about each module that helps determine 

which biological process(es) they represent.  
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Finally, we explore whether gene modules can be used to improve existing gene 

annotations.  We reason that an annotation shared among co-expressed genes is more 

likely to be relevant to their function than one that is not, and that annotations of co-

expressed genes can provisionally be “transferred” onto their poorly-annotated 

companions.  We calculate what we call “module-weighted gene annotations” by 

weighting the association between a gene and an annotation by the degree to which the 

annotation appears predictive of the gene’s module membership.  We show that matrix-

based analysis of module-weighted annotations is more sensitive and specific than 

common annotation enrichment tests.  We provide a framework for using module-

weighted annotations to detect significant GO terms and promoter oligonucleotides 

directly from expression data, and to identify novel GO terms conferred onto genes 

based on their module membership. 

 

Results 

Development of DEXICA and extraction of gene modules 

A large body of gene expression data is publicly available17,18 and has enabled 

computational prediction of gene modules10,12,19-21.  We refer to our method for going 

from a raw compendium of gene expression data to an optimized set of gene modules 

and a list of genes that belong to each module as DEXICA, for Deep EXtraction 

Independent Component Analysis (described below). 

While several methods exist for defining gene modules, independent component 

analysis (ICA) generally outperforms clustering-based approaches and principle 

component analysis in extracting biologically relevant signals from large datasets15,22-24.  
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Advantages of ICA include its ability to deal well with high dimensional data and to 

generate modules that can share genes.  Furthermore, ICA does not assume that latent 

signals in the data follow a Gaussian distribution, an important property for gene module 

prediction, as gene regulation signals appear to be primarily super-Gaussian25.  For 

these reasons, we chose to use ICA for module construction.   

Briefly, ICA is a blind source separation method that attempts to “unmix” a signal 

comprising additive subcomponents by separating it into statistically-independent 

source signals26.  In the common notation, an n x m data matrix, X, is decomposed into 

two new matrices – a n x k source matrix, S, and an k x m mixing matrix, A, where k is 

the number of independent components: 

 X = S·A (1) 

In the context of gene-expression analysis, X is a matrix of m measurements (e.g. 

microarrays) of n genes, and k independent components are interpreted as gene 

modules.  A indicates the weight of each module in each microarray and S indicates the 

relative level of inclusion of each gene in each module27 (Figure 1a). 

 Using simulated data, we found that module-prediction accuracy was highest 

when the number of extracted components matched the true number of modules 

(Supplementary Figure 1).  Therefore, we sought to optimize module prediction by 

evaluating results based upon their biological information content, such as enrichment 

of Gene Ontology (GO) terms2, REACTOME pathways4, and tissue-specific 

expression28.  We applied ICA to a diverse compendium of 1386 C. elegans Affymetrix 

arrays obtained from the Gene Expression Omnibus (GEO) database18.  We then 

compared results obtained from a wide variety of preprocessing methodologies and 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 25, 2019. ; https://doi.org/10.1101/678482doi: bioRxiv preprint 

https://doi.org/10.1101/678482
http://creativecommons.org/licenses/by/4.0/


 6

total number of components extracted.  Omitting between-experiment quantile 

normalization from the preprocessing procedure produced modules that were more 

annotation rich than those produced by a published implementation of ICA-based 

module extraction 10 (Figure 2a-c).  Furthermore, annotation content of the modules was 

maximized when the number of gene modules (i.e. independent components) ranged 

from 191 to 226. 

To enable functional evaluation of the modules, it is useful to summarize them as 

discrete gene sets.  To this end, we partitioned each column of the S matrix into three 

sets of genes: one set consisting of genes excluded from the module, and two other 

sets consisting of genes regulated in opposite directions.  We refer to these latter two 

sets as “hemi-modules”, one set consisting of genes with highly positive weights and 

another consisting of genes with highly negative weights (signs assigned arbitrarily) in 

the independent component.  While others have used a fixed-threshold approach to 

component partitioning10,29,30; for example, defining genes with weights exceeding +/- 3 

standard deviations from the component mean to be “in” each hemi-module, we found 

that individual modules showed maximum annotation enrichment at different thresholds, 

suggesting that a ‘one-size-fits-all’ approach to partitioning is sub-optimal.  An 

alternative approach to partitioning that we attempted (described in Frigyesi et al.31) 

failed to converge in many cases (data not shown).  Therefore, to increase partitioning 

accuracy, we trained a function to predict partitioning thresholds from the shape of 

component distributions.  Because plots of training data revealed a complex solution 

surface, we decided to use an artificial neural network (ANN) to predict partitioning 

thresholds for each component from the skewness and kurtosis of its distribution.   The 
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output of the ANN, i.e. predicted partitioning thresholds, is shown in Supplementary 

Figure 2a.  Although using a fixed-threshold approach to module partitioning produced 

similar results qualitatively (Supplementary Figures 2b-d), it resulted in fewer significant 

annotations across the range of parameters tested than did ANN-based partitioning (p < 

2.2E-16, Supplementary Figure 2e).  Because the mean optimum number of extracted 

components (dashed vertical lines in Figure 2a-c and Supplementary Figures 2b-d) was 

similar for both threshold and ANN partitioning (209, and 209.33, respectively), we 

chose 209 as the final number of components to extract from the compendium.   

Gene modules are expected to represent sets of genes that are co-regulated at 

the level of mRNA expression or stability.  Therefore, DEXICA modules should be 

enriched for DNA regulatory sequences.  To test this, we generated a list of potential 

regulatory oligonucleotide sequences (called ‘words’) by applying the Mobydick 

algorithm32 to the set of all predicted C. elegans promoter regions and, separately, to 

the set of all predicted C. elegans 3’-UTRs.  We then calculated the statistical 

significance of the over- or under-representation of genes bearing each word in each 

gene module.  Across multiple runs with 209 components, the mean number of gene 

modules containing significant promoter words and 3’-UTR words was 106.3 and 40.6, 

respectively, significantly greater than results produced by other module prediction 

methods we tested (p < 2.2E-16, Figure 2d). 

Because the ICA algorithm employed by DEXICA, fastICA, converges to a final 

solution from a random starting point26, small differences typically exist in the output of 

different runs; these differences can be seen in the vertical spread of data points in 

Figures 2a-c, and in the error bars in Figure 2d.  While others have reconciled such 
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differences through a clustering approach applied to the output of numerous runs of the 

algorithm (so called “iterated ICA”)10,31, when applied to the C. elegans Affymetrix 

compendium, many of the final components generated by this method were highly 

correlated to one another, indicating non-independence and potential redundancy 

among the components (data not shown).  We therefore sought to choose a single, high 

quality, fastICA run output to use as predicted gene modules.  Because we considered 

word enrichment the most unbiased measure of module quality (as it relies only on DNA 

sequence data), we chose as our final module set (Supplementary Table 1) the run from 

a set of 100 with the best combined rank of significant promoter and 3’-UTR words (it 

ranked first in promoter words and third in 3’-UTR words, Supplementary Figure 3).  The 

mean module size is 385 genes, with the majority of modules having fewer than 385 

genes (the smallest module contains 49 genes and the largest contains 2383 genes). 

Co-expressed genes often share common structural elements.  For example, 

genes within operons are switched on together during recovery from growth-arrested 

states in C. elegans33 and 3’-UTR length is associated with proliferation in cancer 

cells34.   To further explore the information content of DEXICA-extracted modules, we 

tested each hemi-module for over- and under-enrichment of genes with long 3’UTRs, for 

genes appearing in operons and for genes with multiple splice forms.  Of the 418 hemi-

modules, 65 contained a significant bias toward long 3’-UTR genes and 58 contained a 

bias toward short 3’-UTR genes (q < 0.1, threshold chosen based on randomized 

control trials, see below; Figure 2e).  Twenty-one hemi-modules were significantly 

enriched and 205 hemi-modules were significantly depleted for operon genes, and 81 

hemi-modules were enriched and 80 hemi-modules were depleted for genes with 
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multiple splice variants (Figure 2e).  Control tests performed on the same module set 

but with randomly scrambled gene IDs produced no significant modules below q = 0.1 

for any of the gene properties we tested (data not shown).  Therefore, DEXICA 

successfully groups genes with common structural features into modules, consistent 

with the known relationship between gene structure and expression.   

Together, these results show that the 209 C. elegans gene modules extracted 

from a large microarray compendium are enriched for GO terms, tissue and pathway 

annotations as well as for potential regulatory DNA sequences and gene structural 

properties.  DEXICA is available as an R package 

(https://github.com/MPCary/DEXICA).  It provides tools to optimize ICA module 

extraction and partitioning based on annotation enrichment and can be applied to any 

gene expression compendium. 

 

C. elegans DEXICA modules are biologically informative 

We observed enrichment of functional annotations and oligonucleotide sequences in 

DEXICA-extracted modules with even the least optimal parameter settings (see Figure 

2).  To further test the biological significance of the final 209  modules and to begin 

annotating them, we constructed an alternate microarray compendium comprising not 

1386 individual arrays, as in the original compendium, but rather the gene fold changes 

arising from contrasting experimental and control samples in the same experiment.  

Projecting the resulting 716-column matrix (one for each contrast) into the space 

defined by our gene modules allowed us to see which experimental perturbations 

activate or inhibit which modules.  
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 We compared the most enriched GO terms in each module to the most strongly 

activating or inhibiting experimental perturbations and observed that in many cases 

these were in obvious agreement (Supplementary Table 2).  For example, the strongest 

activator of m10 (module 10) in the compendium is a mutation in osm-7, a gene needed 

to respond to hypertonic stress through accumulation of glycerol.  Consistent with this, 

the top GO terms enriched within genes that comprise m10 describe glycerol 

metabolism and accumulation.  Module 153 is strongly activated by mutations in lin-35, 

a gene that is part of the DRM/DREAM complex, and accordingly, this module is also 

enriched for “DRM complex” GO terms.  Similarly, m200 is activated in response to the 

pathogen P. aeruginosa and the top GO terms enriched within m200 genes include 

“defense response to Gram-negative bacteria” and “innate immune response”.   

DEXICA modules can also capture gene expression patterns that distinguish 

different tissues.  For example, m23 is strongly activated by neuronal RNA and the top 

GO term enriched in this module is “neuropeptide signaling”.  Similarly, m144 

distinguishes muscle cells from other cell types in the worm and is enriched for the 

“sarcomere organization” and “striated muscle dense body” GO terms.  Together, these 

results indicate that DEXICA modules represent biologically meaningful sets of genes. 

It is important to note that a lack of an obvious agreement between the nature of 

a perturbation that strongly activates a module and the top GO terms enriched in that 

module does not necessarily indicate that a module is biologically meaningless.  On the 

contrary, this apparent disagreement can be a powerful tool for understanding complex 

transcriptional responses to perturbations.  For example, starvation of L1 larvae induces 

a developmental arrest and has widespread effects on metabolism35.  Module 51 is 
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strongly activated by starvation and is enriched for “snoRNA/nucleolus” GO terms.  

Thus, this module represents genes that play a role in ribosome biogenesis and protein 

synthesis, reduction of which is an important response to starvation.  Obvious 

agreement between a perturbation and GO terms would also be absent if a process had 

not previously been associated with a particular condition, making modules useful for 

hypothesis generation.  For example, a wild C. elegans isolate, JU1580, shows strong 

activity of m55 relative to the laboratory C. elegans strain, N2, (Supplementary Table 2) 

and genes within m55 are enriched for the “innate immune response” GO term.  This 

suggests that the immune systems of wild and lab C. elegans strains have different 

levels of basal activity, a connection that, to our knowledge, has not been proposed 

previously. 

 

Annotation of DEXICA modules 

Detailed information about modules that are active in a gene-expression experiment 

would be of primary interest to an investigator.  As a comprehensive resource, we 

created a Module Annotation Page for each of the 209 modules (see Data availability, 

Tool 3).  Each page shows the module’s significantly enriched and depleted GO terms 

(excerpted in Supplementary Table 2), REACTOME pathways, tissues of known 

expression, enriched promoter and 3-’UTR oligonucleotide words, and component 

genes (each linked to a WormBase description). 

A limitation of using GO terms and other pre-existing annotations to interpret 

gene modules is that some cellular activities are poorly annotated (see UPRmt example 

below).  For this reason, an additional strategy to understanding what a given module 
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represents is to examine its activity under a variety of conditions.  To facilitate this, in 

the Module Annotation Pages we have also provided a ranked list of perturbations (from 

the 716 we generated) that activate each module significantly (also see Supplementary 

Table 2).  While it is unlikely that a typical gene module can be described completely 

using a single semantic annotation due to the complexity of gene regulatory networks, 

we suggest processes that modules likely represent based on our comparison of 

module activity under several conditions and our examination of enriched annotations 

(Supplementary Table 2).  In a typical workflow, once the active modules in a gene 

expression experiment are identified by a researcher, we recommend that the 

researcher consult Module Annotation Pages and Supplementary Table 2 to infer the 

biological process(es) described by the modules of interest. 

 

DEXICA modules reveal processes missed by conventional tools  

Mitochondrial unfolded protein response 

To test the utility of DEXICA modules for interpreting C. elegans gene expression data, 

we asked whether we could identify known biological processes activated in a mutant 

with a complex phenotype.  Mutations in components of the electron transport chain 

reduce respiration, slow development and reproduction and increase lifespan in C. 

elegans36.  The mitochondrial unfolded protein response (UPRmt) is induced in response 

to a stoichiometric imbalance between nuclear and mitochondrial proteins within 

mitochondria, and this process is known to be active in long-lived respiration 

mutants37,38.  However, analysis of significantly differentially expressed genes in the isp-

1 respiration mutant, either using GO terms or KEGG pathways, failed to identify UPRmt 
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or, for that matter, any process related to mitochondria or a response to stress (Figure 

3a).  

Calculation of module activity (Tool 1) revealed that m47, m66 and m169 display 

the highest activity in the isp-1 mutant (Figure 3b).  These modules are strongly active 

in other respiratory chain mutants as well (see Module Annotation Pages), but the most 

strongly activating non-respiration perturbation of m47 is a mutation in spg-7, a 

mitochondrial protein quality-control protease, disruption of which is known to induce 

UPRmt 39 (Figure 3b).  This result suggested that m47 may encompass UPRmt genes.  If 

so, then m47 should be active in animals with constitutive activity of the transcriptional 

UPRmt regulator, ATFS-1.  To test this prediction, we calculated module activity in atfs-1 

gain-of-function mutants (this perturbation was not part of the original compendium, 

GEO Accession number GSE73669).  Indeed, induction of the UPRmt transcriptional 

response in otherwise healthy animals using this mutation strongly and specifically 

induced activity of m47 (Figure 3c).  Furthermore, genes that belong to m47 showed 

concordant expression in the isp-1 respiration mutant, in response to UPRmt induction 

by disruption of spg-7, and in response to constitutive activity of ATFS-1 in normal 

animals (Figure 3c, d).  As expected, mutation of atfs-1 prevented these changes in 

animals with an induced UPRmt (spg-7 RNAi) (column 4 Figure 3d).  Moreover, two 

chaperone genes known to be induced during UPRmt (hsp-6 and dnj-10) are part of 

m47.  Taken together, these data strongly suggest that m47 represents genes induced 

by ATFS-1 during UPRmt.  Therefore, analysis of module activity, but not GO term or 

KEGG pathway enrichment analyses, was able to correctly identify a key biological 

process using gene expression data from isp-1 mutants. 
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Why did GO term enrichment analysis fail to recover the “mitochondrial unfolded 

protein response” term (GO:0034514)?  To our surprise, there are only eight C. elegans 

genes annotated with this GO term (haf-1, ubl-5, gcn-2, atfs-1, clpp-1, dve-1, hsp-6 and 

hsp-60).  Among these, only hsp-6 and hsp-60 are induced during UPRmt, whereas the 

others are genes needed for activation of UPRmt.  In the KEGG pathway database, 

UPRmt is not included as a discrete entry, but is part of the “Longevity regulating 

pathway – worm” (map04212) entry, and similar to GO, primarily includes inducers 

rather than mediators of the UPRmt.  These examples illustrate how incomplete 

annotations and/or overly general groupings (e.g., containing both activators and 

mediators) can result in a failure of standard annotation enrichment methods to detect 

biological signals in gene expression data. 

Nargund et al. have defined a set of ATFS-1-targeted genes based on up-

regulation of these genes with or without atfs-1 and in the absence or presence of 

mitochondrial stress40.  While module analysis was able to reveal UPRmt without 

reliance on any pre-existing gene annotations or pre-defined gene sets, we wondered 

whether GSEA41 analysis of isp-1 gene expression data using this gene set would have 

been able to identify ATFS-1 activity.  The Nargund et al. ATFS-1 gene set showed 

enrichment within isp-1 genes, but this enrichment was not statistically significant 

(Supplementary Figure 4).  In contrast, when we tested enrichment of the ATFS-1 gene 

set within modules, we found a highly significant enrichment within m47 (Figure 3e).  

These results show that given a set of functionally related genes, testing enrichment of 

that set within modules can be more informative than testing enrichment within a ranked 
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list of gene changes, likely because modules comprise groups of genes that are 

functionally related. 

 

Hypoxia inducible factor 1 

Reduction-of-function isp-1 mutations extend lifespan in a manner dependent on the 

hypoxia inducible factor 1 (HIF-1)42, but, unexpectedly, we found that the overlap 

between the significant genes obtained by comparing isp-1 or hif-1 mutants to wild type 

was not statistically significant (Χ2 test p-value = 0.17; Supplementary Figure 5a).  The 

other highly-active modules in isp-1 mutants besides m47 are m66 and m169.  We 

wondered if these modules represent genes regulated by HIF-1.  Indeed, when we 

compared gene module activity in hif-1 and isp-1 mutants, we found a strong anti-

correlation (Pearson correlation between SVE = -0.730, p = 4.7E-36; Supplementary 

Figure 5b) driven by m66 and m169.  The negative correlation is consistent with the 

finding that the life extension observed when isp-1 activity is reduced requires activity of 

HIF-1.  The idea that HIF-1 directly regulates transcription of genes in m66 and m169 is 

further supported by the fact that the canonical HIF-1 binding site [(A/G)CGTG] is the 

top oligonucleotide sequence enriched in the promoters of the genes comprising these 

modules (q-values 8.13e-105 and 1.47e-28, respectively).  The similarity between 

module activity in isp-1 and hif-1 datasets, despite a lack of similarity among their most 

differentially expressed genes, suggests that the role of HIF-1 in regulating the lifespan 

of isp-1 mutants may be to instigate small but coordinated expression changes in many 

genes, most of which fail significance tests for differential expression in one or both 

datasets.  These results demonstrate that gene modules are sensitive toward 
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identification of transcriptional signatures and therefore can be useful for analysis of 

datasets where few gene changes reach statistical significance. 

 

Gene modules as a hypothesis generation tool 

As shown above, the correlation between the module activities of hif-1 and isp-1 was 

substantial (r = -0.730).  To determine how often two sets of module activities generated 

from different experiments could be expected to show this degree of similarity, we 

determined module activity correlations for all possible pairs of the 716 experimental 

contrasts, excluding pairs in which both contrasts originated from the same experiment 

(i.e., from the same GEO series).  This produced 188,805 contrast pairs, 13,376 

(7.08%) of which showed a statistically significant correlation (Holm corrected p-value < 

0.05).  As expected, the highest-ranking pairs were the same experiment performed by 

different labs or at different times.  The strength of the hif-1 and isp-1 correlation would 

have fallen within the top 1%, had those experiments been part of the contrast set.  We 

include the full set of contrast comparisons in Supplementary Table 3, as gene 

expression changes that activate similar modules but that are generated by different 

experiments could prove useful to others for hypothesis generation.  For example, had 

we observed the similarity between the hif-1 and isp-1 projections, we might have 

hypothesized a role for hif-1 in isp-1 mutants before such a role was discovered from 

genetic screening42. 

 

Using modules to improve gene annotations  
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Because gene annotations can be incomplete and biased, knowledge about which 

genes tend to be co-expressed in an organism can help inform which annotations are 

more likely to be biologically relevant and help infer annotations of orphan genes based 

on annotations of other module members (see Supplementary information for additional 

discussion).  To this end, we devised a calculation of scores, which we call “module-

weighted annotations”, based both on how much a given annotation is enriched in each 

module (matrix E, Figure 1b-c) and the degree to which a given gene belongs to that 

same module (matrix H, Figure 1c).  

 

Module-weighted GO terms 

To test the utility of module-weighted annotations, we first examined whether they 

generally recapitulate traditional (Boolean) annotations.  If so, then genes traditionally 

associated with each annotation should have larger weights for those annotations 

(when normalization is omitted from their calculation) than do other genes (two-sample 

KS test, alpha level = 0.05).  For this analysis we used GO terms as annotations and 

restricted the set to terms with at least 15 annotated genes in order to ensure robust 

signals; this set comprised 1651 GO terms.  In 98.6% (1628/1651) of cases, genes 

associated with each term had significantly larger module-weighted annotations than did 

other genes, indicating that module-weighted GO annotations do recapitulate Boolean 

annotations. 

We ranked each GO term by the weight of its most strongly associated gene 

(Table 1).  GO terms with the most highly weighted genes were “ribosome” (CC) and 

“structural constituent of ribosome” (MF).  Consistent with this finding, genes involved in 
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ribosome biogenesis are known to be transcriptionally co-regulated43.  On the other 

hand, GO terms associated with signal transduction and kinase activity showed the 

lowest gene weights.  These results are statistically significant (see Online methods) 

and show that some types of gene groupings (e.g., genes encoding kinases) often used 

in the analysis of gene expression data may not actually represent functions that are 

coordinately regulated at the gene transcript level.  Therefore, we suggest that 

researchers use caution when interpreting a result that certain annotations, like 

“kinases”, appear to be enriched in a transcriptomics experiment. 

A sensitive test will tend to give similar results despite small amounts of random 

noise being added to the input data.  To test the sensitivity of a module-weighted 

annotation-based enrichment test, we obtained gene fold changes for the 5 most recent 

C. elegans Affymetrix experiments deposited to the GEO database.  These experiments 

were not included in the data used to construct the modules.  We then added varying 

amounts of Gaussian noise to the fold changes and for each level of noise, we 

calculated enrichment z-scores for each GO term using three different methods: the 

Kolmogorov-Smirnov (KS) test, the t-test (n.b., one-sample and two-sample t-tests 

produced nearly identical results, data not shown), and scalar projection of the gene fold 

changes onto a module-weighted GO term matrix.  We then compared these results to 

those obtained by each method when no noise was added (Figure 4a.)  Dissimilarity to 

the initial results (zero added noise) increased rapidly with added noise for both the KS 

test and t-test, while the projection-based results were similar (ρ > 0.75) at even the 

highest noise levels tested (5 standard deviations), suggesting that the projection-based 

test is more sensitive than both the KS and t-tests. 
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A specific test will tend to show dissimilar results when given dissimilar inputs.  

To test the specificity of module-weighted annotation analysis, we selected the 100 

most dissimilar experiments (correlation of gene fold changes near zero) from a set of 

188,805 comparisons.  We compared the results of projecting the gene fold changes 

from each experiment onto the module-weighted annotation matrix to the results 

obtained from the KS and t-tests and found that the experiments showed the weakest 

similarity in the significance levels of annotations when using the projection method (p = 

5.2e-13, Figure 4b).  These results show that annotation enrichment analysis using 

module-weighted annotations may provide more reliable biological insights than gene 

set enrichment analyses that rely on the KS (GSEA41) or t-tests (PAGE44, GAGE45).  

Module-weighted GO terms for each gene are provided in Supplementary Table 4 and 

their significance in a query gene expression dataset can be tested using our C. 

elegans gene-modules analysis tools (see Data availability Tool 6). 

 

Module-weighted promoter words 

While any Boolean gene annotation may be converted into a module-weighted 

annotation, module-based weights seem particularly well suited for describing 

regulatory sequences, such as putative transcription factor and microRNA binding sites.  

To this end, we generated weighted annotations for each of the 5230 words in the 

promoter word dictionary we constructed using the Mobydick algorithm (described 

above and in Methods). 

 To validate predicted regulatory word weights, we searched the literature, the 

JASPAR database of transcription factor binding profiles46, and the GEO database for 
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C. elegans transcription factors with both an experimentally-characterized DNA-binding 

profile and, separately, a microarray experiment that measured gene expression in a 

loss-of-function mutant of the transcription factor gene.  This search yielded 6 

transcription factors: daf-12, daf-16, hif-1, hlh-30, lin-14, and nhr-23.  We then projected 

the loss-of-function microarray experiment data (positively- and negatively-changing 

genes separately) onto the module-weighted word matrix, R (Figure 1c), and calculated 

z-scores for each word.  Finally, we compared the top-scoring words to the DNA-binding 

profiles of the respective transcription factors.  If the predicted promoter-word weights 

are accurate, then words that resemble the binding profile should score highly in this 

analysis. 

 For hif-1 and nhr-23, the most significantly enriched words in the positively and 

negatively changing genes, respectively, matched the canonical binding sites (Table 2).  

A word matching the hlh-30 binding site scored 6th overall among the up-regulated 

genes, and for daf-12, four of the top 20 words for the up-regulated genes contained 

GAACT or AACTT, which partially matched the reverse compliment of a reported daf-12 

binding half-site, AGTTCA47.  In the daf-16 data set, several words matching the so-

called “daf-16 associated element” (DAE)48 scored highly.  However, none of the four 

words matching the canonical daf-16 binding site, T(G/A)TTTAC were among the words 

comprising our Mobydick promoter-word dictionary, precluding these from being 

represented in the analysis.  The canonical binding site for the final transcription factor, 

lin-14, is GAAC, but like the canonical daf-16 binding site, neither this word nor its 

reverse compliment was present in the promoter word dictionary, precluding it from 

representation.  Taken together, these results suggest that module weighted regulatory 
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sequences can be used to determine important regulatory sites in a gene expression 

experiment, and further validate our method for calculating weighted annotations. 

 Finally, we tested whether analysis of module-weighted promoter words could 

reveal the activity of the HIF-1 transcription factor in isp-1 respiration mutants, missed 

by analysis of significant genes but implied by analysis of gene module activity 

(described above).  We calculated promoter word z-scores for the isp-1 microarray data 

set and compared the results to those for hif-1.  As predicted, we observed a very 

strong anti-correlation between the promoter word z-scores for isp-1 mutants and those 

for hif-1 mutants (Figure 4c, R = -0.581, p < 2.2E-16) and four of the six most active 

words matched the canonical HIF-1 binding site [(A/G)CGTG; underlined in Figure 4c].  

These results further support the utility of module-weighted promoter oligonucleotides 

for identifying biologically relevant regulatory sequences directly from gene expression 

data.   

 

Module-weighted annotations as a hypothesis generation tool 

Our process of weighting gene annotations using modules provisionally transfers 

annotations that are enriched in a module to all gene members of that module 

(proportional to each gene’s inclusion).  This can be useful for studying individual genes 

(see Data availability Tool 5 and Supplementary Table 4) – if a query gene has a 

strongly-weighted association to a GO term with which it is not traditionally associated, it 

means that this gene is co-expressed with other genes that are traditionally associated 

with the GO term.  For example, most of the module-weighed GO terms associated with 

the small ribosomal subunit S16 (rps-16) have something to do with the ribosome or 
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translation (see Data availability Tool 5), implying that rps-16 is tightly co-expressed 

with other genes involved in ribosome biogenesis and not much else.  On the other 

hand, while sod-3, a superoxide dismutase, does have significant weights for GO terms 

with which it is traditionally associated (e.g. oxidoreductase activity, superoxide 

metabolic process and response to superoxide), catalase activity ranks more highly for 

sod-3.  This means that sod-3 is co-expressed with genes annotated as catalases.  

While it is unlikely that sod-3 has a novel catalase activity, it is more likely that 

expression of sod-3, a superoxide dismutase, is coordinated with expression of 

catalases, since hydrogen peroxide produced by sod-3 is further degraded by catalases 

to avoid damage to the cell.  Some of the other top-ranking module-weighted GO terms 

for sod-3 describe dioxygenase activity.  Similarly, this may indicate that dioxygenases 

generate superoxide radicals, and therefore increased expression of these enzymes is 

typically correlated with increased expression of a superoxide dismutase.  Therefore, 

analysis of module-weighted annotations of individual genes can help form hypotheses 

about novel gene functions and transcriptional co-regulation of distinct biological 

processes. 

 

Discussion 

We have captured much of the transcriptional wiring of C. elegans by extracting gene 

co-expression modules from a large compendium of data.  These 209 modules 

represent transcriptional signatures of diverse biological processes that can occur in C. 

elegans and, along with the tools we provide, can be used as a resource for analyzing 

gene expression data.  Because genes are grouped into modules based purely on how 
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they behave in experimental assays, and because modules encompass both previously-

annotated and unannotated genes alike, modules can reveal signals within 

transcriptomic data that otherwise would be missed due to incomplete knowledge of 

gene function, subtle gene expression changes or noisy data. 

 Experimentally, gene-expression modules can be used to deconvolve complex 

phenomena into subsets of co-regulated genes, genes that likely act together to 

mediate a specific process.  The modules can be annotated extensively, as we have 

done, and these annotations can be applied provisionally to all genes in the module.  

Regulatory factors associated with specific annotations (like 5’ or 3’ oligonucleotide 

words) can be implicated as well, and functional links can be revealed between 

dissimilar conditions that activate the same modules. 

ICA has been applied to the prediction of gene modules before, but we could find 

no examples in the literature of optimizing the process using biological metrics in the 

manner that we describe.  Combined with the improved ability to partition independent 

components provided by our artificial neural network approach, we expect that DEXICA 

will be useful for constructing gene modules for other organisms.  The DEXICA software 

and our C. elegans modules and data are freely available as R packages online (see 

Data availability).  

While we have taken steps to maximize module prediction accuracy for the 

microarray compendium we assembled, many additional gene modules may exist in C. 

elegans that were not perturbed sufficiently in the samples comprising the compendium 

to be detected.  These gene modules would remain hidden.  As new areas of research 

are explored and new experiments are published, however, new fundamental gene 
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modules may be discovered.  For example, most of the gene expression data in our 

compendium was collected using whole animals.  Data collected from isolated cells or 

tissues could help produce modules that are active in a relatively small number of cells.  

The DEXICA package can be used to create new and improved gene modules using 

compendia with expanded information content. 

The impetus for constructing gene modules in C. elegans was to create gene 

groupings that do not rely on the existing annotations, because annotations of many 

genes are missing or incomplete.  We then wondered whether numeric scores based on 

gene co-expression could actually improve the existing gene annotations, leading us to 

develop the concept of module-weighted annotations.  By weighting an association 

between each gene and each annotation by the degree to which that annotation 

appears to predict gene modularity, annotations that are shared by co-expressed genes 

are “boosted” and those that are not are diminished.  It is important to note, however, 

that relevance scores between genes and annotations could be calculated using other 

metrics of gene behavior as well (e.g. a gene might be weakly associated with a term in 

the context of gene expression but strongly associated with it in the context of physical 

protein interactions).  

We have found that analysis of module-weighted GO terms is less sensitive to 

noise than are typical statistical over-representation tests.  Furthermore, because 

module-weighted annotations incorporate information about gene expression, they 

effectively model the gene-gene correlation structure of the system.  This is useful 

because typical over-representation tests do not perform well with gene sets that have a 

high level of gene-gene correlation (i.e. annotations assigned to genes that are strongly 
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co-expressed are more likely to be significant49-51 .  GSEA, for example, deals with 

gene-gene correlation issue using permutation.  We show that module-weighted GO 

terms produce significantly fewer false positives than do over-representation tests (see 

Figure 4b).  Therefore, we think that module-weighted annotations are a promising new 

way to address the gene-gene correlation problem and are working to develop it further 

for annotation enrichment analysis. 

Module-weighted annotations may be especially useful for promoter/3’-UTR word 

analysis.  Projection of gene expression changes onto the module-weighted word matrix 

allows identification of potential regulatory sequences directly from a list of gene fold 

changes, bypassing many steps required by traditional regulatory sequence detection 

(sequence retrieval, repeat masking, over-representation analysis, and background 

correction).  More importantly, this analysis is more likely to yield true positive results 

because it makes use of a large amount of historical data (via the modules) to filter out 

sequences with no apparent regulatory function.  

We used module-weighted word analysis to analyze data from six transcription 

factor perturbation microarray experiments.  Four of the six produced high scoring 

promoter words that closely matched the known DNA binding sites of the corresponding 

transcription factors.  For the two that did not, daf-16 and lin-14, words that exactly 

matched the factors’ canonical binding sites were not present in the promoter word 

dictionary generated by the Mobydick algorithm, and results for these factors could be 

poor for this reason.  Interestingly, the second highest scoring word for the genes down-

regulated upon daf-16 perturbation was GGAAG, and this word occurs twice more as a 

substring among the top 20 scoring words.  This sequence is a partial match to an 
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alternative daf-16 binding site reported in hookworm52, G(A/G)(C/G)A(A/T)G, suggesting 

that this site may be functional in C. elegans as well. 

 Finally, because annotations shared among a significant fraction of the genes in 

a module are “transferred” to all genes in the module, module-weighted annotations can 

be used provisionally to infer novel functions for genes, which is especially useful for 

studying poorly annotated genes. 

 

Methods 

 

Compendium construction 

To build the compendium of 1386 C. elegans Affymetrix arrays, we first downloaded all 

CEL files with the appropriate platform ID (GPL200) from the GEO database available 

on March 1, 2014, excluding those for which the organism was not C. elegans and the 

sample type was not RNA.  We excluded arrays from experiments for which fewer than 

8 hybridizations were performed in order to mitigate the effect that under-sampled 

conditions might have on predicted modules.  We then performed a quality control step 

using the quality assessment functions provided in the simpleAffy (v2.40.0) R package 

(http://bioinformatics.picr.man.ac.uk/simpleaffy/), discarding arrays that did not meet the 

quality thresholds recommended in the simpleAffy documentation. 

We generated expression values for probesets separately for each experiment 

(determined by GEO series IDs) using the RMA preprocessing procedure provided in 

the affy (v1.40.0) R package53, then used the bias (v0.0.5) R package54 to remove 

intensity-dependent biases in expression levels.  We then concatenated the expression 

matrices for each experiment into a single matrix.  Next, we either performed between-
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experiment quantile normalization on the entire matrix using the limma (v3.18.13) R 

package55, or omitted this step, depending on preprocessing method to be tested.  

Finally, we scaled and centered the arrays and centered the genes such that the mean 

of each row and column were zero and the standard deviation of each array was 1.  

 

Conducting ICA 

To conduct ICA of the gene expression matrix, we used the fastICA (v1.2-0) R package 

(http://CRAN.R-project.org/package=fastICA) with default parameters except for the 

“method” parameter, which we set to “C” to increase computational speed, and the 

“row.norm” parameter, which we set to ”TRUE” in order to balance the total 

compendium variance between genes with subtle changes in expression values and 

those with large changes in expression values. 

 

Partitioning of independent components 

To convert independent components to discrete sets of genes, we employed two 

methods.  In the first, for each component, we assigned all genes with a weight <= -3 to 

the negative hemi-module, and all genes with a weight >= 3 to the positive hemi-

module.  In the second, we created an artificial neural network using the neuralnet 

(v1.32) R package (http://CRAN.R-project.org/package=neuralnet) to predict positive 

and negative partitioning thresholds for each independent component, based on the 

component’s skewness and kurtosis (see Supplementary Methods), then assigned 

genes whose weights exceeded these thresholds to the corresponding hemi-modules. 
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Obtaining gene annotations and microarray data 

To obtain GO term and REACTOME pathway annotations for genes we used the 

biomaRt (v2.18.0) R package56, using the ensembl mart for data retrieval.  To obtain 

tissue annotations for C. elegans genes, we downloaded all available data from the 

GFP Worm database (http://gfpweb.aecom.yu.edu/)28, which contains annotated 

expression patterns of promoter::GFP fusion constructs; in total, this dataset provided 

annotations for 1821 genes across 89 tissue types (n.b., we considered the same tissue 

in different development stages to be distinct tissue types).  To obtain fold changes for 

isp-1 mutants, we used data previously published by our group in which isp-1(qm150) 

mutants were compared to wild type controls57.  To obtain fold changes for hif-1 

mutants, we used the maanova (v1.33.2) R package 

(http://research.jax.org/faculty/churchill) and data previously published by Shen, et al.58, 

to calculate the induced gene fold changes upon mutation of hif-1.  All other microarray 

data was obtained directly from the authors of the original publications of from the GEO 

database (see Supplementary Methods). 

 

Optimizing gene module prediction 

To optimize gene module prediction, we performed ICA with a variety of different data 

preprocessing options (e.g., the choice of preprocessing algorithm (RMA, GCRMA, 

PLIER, MAS 5.0), background, perfect match, bias correction, and normalization 

methods), and with a varied number of extracted components from 5 to 500 by 

increments of 5.  For each parameter combination, we repeated ICA 5 times. 
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We tested the biological validity of the independent components generated by each ICA 

run by determining the number of annotations that were enriched in at least one hemi-

module.  We chose not to optimize based on the number of modules with at least one 

significant annotation, as tests using simulated data showed that this approach could 

lead to signals being split into multiple, less accurate representations (data not shown).  

We first calculated a p-value for the enrichment of genes associated with each 

annotation term in each hemi-module using the hypergeometric test.  We then applied 

the Simes method59 for multiple hypothesis testing (alpha = 0.05) to the set of p-values 

for each annotation term.  The Simes method is similar to the Benjamini-Hochberg 

method60 for controlling the false discovery rate, but differs in a way that makes it more 

appropriate here: it aims to answer the question , “Given a set of p-values, what is the 

likelihood that at least one null hypothesis is false?”, while the Benjamini-Hochberg 

method asks, “What fraction of rejected null hypotheses are actually true (i.e., falsely 

discovered)?”  Failure of the Simes test indicates that at least one null hypothesis is 

false at the specified alpha level.  To verify the accuracy of our module quality statistics, 

we repeated all tests using module definition matrices in which gene IDs had been 

randomly shuffled.  

 

Quantification of module activity in gene expression data 

To project a data vector, x, such as a set of gene expression fold changes, onto a set of 

gene modules, we used the scalar projection method, in which a mixing vector, a, is 

calculated from the dot product of the data vector and the unit vectors comprising the 

module definitions, ��, as shown in equation 2: 
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  � � � · �� (2) 

 

The resulting mixing vector, a, provides an indication of the weight of each module 

definition vector in the projected data, x.  Projection of a data matrix, X, which generates 

a mixing matrix, A, was carried out using the same procedure. 

 

To calculate signed variance explained (SVE), we calculated the relative variance 

explained (VE) for each module from a as follows, where n is the total number of 

modules: 

  (3) 

��� �  
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�

∑ �
�

� �

���

 

 

We then multiplied these values, which are strictly positive, by -1 in each case where ai 

< 0 to obtain SVE.  

 

Generation of E matrix 

First, ANN-based partitioning of the module definition matrix, S, was used to generate 

matrix Sp.  Sp contains two gene sets per independent component (which we refer to as 

hemi-modules), for a total of 418.  Using a matrix of known Boolean associations 

between genes and annotations, B, we calculated a hypergeometric probability for each 

annotation in each hemi-module.  We used the frequency of genes bearing a particular 
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annotation in the hemi-module, the frequency of such genes in the compendium, the 

number of genes in the hemi-module, and the number of genes not in the hemi-module 

as the q, m, k, and n input parameters, respectively, to the phyper() function of the stats 

(v3.0.3) R package (http://www.R-project.org/).  

We used these p-values to populate a matrix, E, with a row for each hemi-

module and a column for each annotation.  For under-represented annotations, we 

entered the log(p-value) in the matrix, and for over-represented annotations we entered 

the –log(p-value). 

 

Generation of module-weighted annotations 

Our calculation of module-weighted annotations takes advantage of the fact that, in 

modules generated by ICA, prior to partitioning, each gene has a weight in each 

module.  Given a score or weight for each annotation in each module, this allows genes 

to be associated with annotations via a matrix product calculation.  In the E matrix (see 

above) highly positive values correspond to strongly enriched annotations in a hemi-

module, highly negative values correspond to strongly depleted annotations.  We 

transform the gene module matrix, S, into an unpartitioned hemi-module matrix, H, by 

concatenating it with a negative copy of itself column-wise: 

 

 � � �� 	�
 (4) 

 

The product of this matrix with the E matrix produces matrix R, which relates genes to 

annotations: 
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 � · � � � (5) 

 

As a final step, we normalize the values in this matrix row-wise, i.e, separately for each 

annotation, by subtracting the mean and dividing by the standard deviation. 

 

Analysis of GO terms based on gene weights 

To test whether the ranking of GO terms based on gene weights (Table 1) is statistically 

significant, we constructed a list comprising all words used in all GO terms, excluding 

words shorter than three letters and uninformative words (e.g. “the” and “for”.)  We then 

tested each word for bias toward appearing near the top or bottom of the ranked GO 

term list.  In agreement with our initial observations, the most significantly top-biased 

words pertained to macromolecular complexes, such as “nucleosome”, “cilium”, and 

“ribosomal”, and the most significant bottom-biased words pertained to cell signaling, 

such as “signal”, “kinase”, and “receptor”.  Many of the GO terms containing cell 

signaling words were generic in nature, e.g., protein kinase regulator activity, thus, our 

results may partially be explained by a lack of co-regulation among constituents of 

different signaling pathways.  However, some specific cell signaling terms, e.g., Notch 

signaling pathway also appeared near the bottom of the ranked GO term list, suggesting 

that the genes annotated with such terms are either not strongly co-regulated at the 

gene expression level or that the biological conditions represented by the compendium 

did not perturb their expression enough to form modules with our method. 
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Analysis of expression data with module-weighted annotations 

 

To test whether a set of gene fold-changes were significantly enriched for specific 

annotations, given a module-weighted annotation matrix, R, we calculated the dot 

product of the data vector, x, comprising the set of gene fold-changes, and the R matrix: 

 

 � � � · � (6) 

 

The resulting vector, a, provides an indication of the degree to which genes with strong 

weights for each annotation also have strong fold-changes.  To generate p-values from 

these, we permuted the fold-change vector, x, 1000 times to create a background 

distribution for each annotation, which we then used to determine z-scores. 
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Data availability 

The authors declare that all data supporting the findings of this study are available 

within the paper and its supplementary tables.  Dynamic access to the data is also 

provided through a graphical user interface at http://genemodules.org/.  Specifically, 6 

separate functionalities are provided: 

 

Tool 1: Determine which of the 209 modules defined here are active in the user’s gene 

expression data (by inputting a list of gene-expression fold changes) 

Tool 2: Using the partitioned 209 modules as gene sets, test whether a list of user-

specified genes is enriched in any particular module 

Tool 3: Detailed description of each of the 209 C. elegans gene modules  

Tool 4: Visualize how genes assigned to a module change under a variety of conditions 

(conditions can be chosen from the 716 perturbations derived from our microarray 

compendium or provided by a user)  

Tool 5: Get module-weighted GO terms associated with a user-specified gene 

Tool 6: Identify the top module-weighted GO terms in the user’s gene expression data 

 

 
Code availability 

Code described in this study is available as an R package: DEXICA R package 

https://github.com/MPCary/DEXICA.  A small dataset to demo the package can be 

downloaded from https://github.com/MPCary/DEXDATA.Celegans. 

 

To install: 
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install.packages("devtools")  

library(devtools)  

install_github("MPCary/DEXICA", build_vignettes = TRUE) 

install_github("MPCary/DEXDATA.Celegans") 
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Figure 1. Schematic of module prediction using DEXICA and derivation of 

module-weighted annotations. 

(A) A matrix of gene expression data, X, is decomposed using independent component 

analysis (ICA) into a gene module definition matrix, S, and a matrix containing the 

weight of each module in each microarray, A.  Rows of the S matrix indicate the relative 

degree of inclusion of a given gene in each module.  (B) Annotation enrichment within 

modules is calculated using matrices B and Sp.  Known associations between genes 

and annotations are captured in a Boolean matrix B, where 1 indicates an association 

between a gene and an annotation and 0 indicates a lack of an association. S is 

partitioned into Sp, where 0 indicates a gene’s exclusion from a module, while 1 

indicates a gene’s assignment to the positive hemi-module and -1 to the negative hemi-

module (a hemi-module comprises genes that have extreme weights and the same sign 

in a given column of the S matrix).  Enrichment of genes associated with each 

annotation in each hemi-module is calculated using hypergeometric tests and log(p-

values) are recorded in a new matrix, E.  (C) To generate module-weighted annotations, 

the S matrix is first transformed into a matrix, H, which indicates the weight of each 

gene in each hemi-module. H contains twice as many columns as S because there are 

two hemi-modules per module.  The dot product between H and E results in the R 

matrix, where a row indicates the weighted association between a gene and each 

annotation.  The color intensity in R indicates annotation weights that would result given 

the indicated expression values in X and the Boolean annotations in B.  Color saturation 

in all matrices except B (Boolean) and Sp (trivalued) indicate relative numeric values, 
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with least saturated colors (i.e., white) indicating highly negative values, and most 

saturated colors indicating highly positive values.   
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Figure 2.  Optimization of gene modules.  To determine the optimal preprocessing 

method and the optimal number of components (gene modules) to extract from a gene 

expression compendium of C. elegans microarray data, we calculated the number of 

Gene Ontology terms (A), C. elegans tissues (B), and REACTOME pathways (C) that 

were significantly enriched in at least one gene module.  Black points show results from 

a compendium produced using a preprocessing procedure used by Engreitz et al.10; red 
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points show results for the best alternative preprocessing method that we tested.  Black 

dashed lines indicate the point on the x-axis of each graph at which loess regression 

curves showed the greatest difference between red points and results from randomized 

controls (grey points). (D) The number modules produced by DEXICA, by a different 

ICA-based method used by Engreitz et al.10, and by C. elegans gene expression 

topomap generated by Kim et al.12.  The number and the percentage of total predicted 

modules that have significant enrichment for various annotations are shown. Error bars 

indicate s.d. between repeat runs of DEXICA or Engreitz et al. method. (E) Each of the 

418 hemi-modules was tested for enrichment of genes with different structural 

properties – presence a long 3’-UTR, transcription as part of an operon, and presence 

of multiple annotated splice variants. 
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Figure 3.  Analysis of module activity in isp-1 respiration mutants reveals activity 

of the key mitochondrial unfolded protein response (UPRmt) transcription factor, 

ATFS-1.  (A) Enrichment of GO terms and KEGG pathways within genes differentially 

expressed in isp-1(qm150) respiration mutants.   Significant gene expression changes 

were determined using the limma R package and FDR-adjusted p-value of < 0.05.  (B) 

Knockdown of a protein quality-control protease spg-7 is the top non-respiration 

microarray experiment in the compendium that induces activity of the isp-1 module m47.  

Module activity is expressed as signed variance explained (SVE).  (C) Comparison of 

isp-1(qm150) mutants and animals that express a constitutively-active form of atfs-1, a 

key transcription factor required for the UPRmt.  The gene expression scatter plot shows 

all detected genes (22625; black) overlaid with genes that belong to m47 (367; pink).  r, 

Pearson correlation coefficients. (D) Normalized changes in expression of genes that 

belong to m47 (367 genes) in response to inhibition of respiration (isp-1 mutation, 

column 1), activation of UPRmt by disrupting mitochondrial protein quality control 

(column 2), constitutive activation of atfs-1 under normal conditions (column 3), and 

activation of UPRmt in the absence of atfs-1 (column 4).  (E) Genes up-regulated by 

ATFS-1 during UPRmt, as determined in Nargund et. al 2012, are strongly enriched in 

m47.  Enrichment was calculated using hypergeometric statistics. 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 25, 2019. ; https://doi.org/10.1101/678482doi: bioRxiv preprint 

https://doi.org/10.1101/678482
http://creativecommons.org/licenses/by/4.0/


 47

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 25, 2019. ; https://doi.org/10.1101/678482doi: bioRxiv preprint 

https://doi.org/10.1101/678482
http://creativecommons.org/licenses/by/4.0/


 48

Figure 4.  Performance of module-weighted annotation-based tests. (A) To assess 

sensitivity, Gaussian noise was added to gene expression data from 5 recent C. 

elegans Affymetrix experiments not included in the compendium used to train the 

modules.  [The standard deviation of the noise distribution (μ = 0) was varied from 0.5x 

to 5x the standard deviation of the gene fold change distribution.]  At each noise level, 

z-scores for each GO term (based on 100 random permutations of the gene IDs in the 

input data) were calculated using three different methods:  KS – Kolmogorov-Smirnov 

test;  t-test – two-sample t-test (one-sample test gave highly similar results, data not 

shown);  projection – projection of the gene fold changes into the space defined by the 

module-weighted annotation matrix, R.  When conducting KS and t-test, fold changes of 

genes assigned to each GO term were compared to fold changes of genes not assigned 

to that term.  Spearman correlation coefficients were calculated between Z-scores at 

each noise level and Z-scores without any noise added.  (B) To assess specificity, 100 

highly dissimilar pairs of experiments (Spearman correlation, ρ, of gene fold changes 

near 0) were selected from a set of 188,805 pairs generated using published microarray 

data.  For each contrast belonging to a pair, we determined Z-scores for GO 

annotations using the three methods and calculated the rank correlation (rho) of the 

absolute value of these Z-scores between pair members.  The center of the box 

represents the median value and whiskers extend to the most extreme data point that is 

not further than 1.5 times the IQR from the box.   (C) Gene fold changes in isp-1 and hif-

1 mutants were projection into promoter word space using module-weighted promoter 

words (see Methods).  The 10 points furthest from the origin are highlighted with colored 

circles in the figure (orange = positive SVE for hif-1, blue = negative SVE for hif-1), and 
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their words corresponding to these points are shown to the right of the figure.  Four of 

the six words highlighted in orange contain full or partial matches to the canonical hif-1 

binding site, (A/G)CGTG (underlined). 
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GO Term 
Group GO ID Rank GO Term Top Genes 

Ribosome 
 

GO:0005840 1 ribosome 

rpl-43, rps-15, rps-14, 
rpl-22, rpl-32 
 

GO:0003735 2 

structural 
constituent of 
ribosome 

GO:0030529 3 
ribonucleoprotein 
complex 

GO:0006412 4 translation 

GO:0043228 10 
non-membrane-
bounded organelle 

GO:0043232 11 

intracellular non-
membrane- 
bounded organelle 

GO:0032991 20 
macromolecular 
complex 

Heme binding 
 

GO:0020037 5 heme binding 

R05D8.9, E02C12.6, 
T16G1.6, cyp-35A1, 
C33C12.8 

GO:0046906 6 tetrapyrrole binding 

GO:0005506 7 iron ion binding 

GO:0004497 8 
monooxygenase 
activity 

GO:0009055 9 
electron carrier 
activity 

GO:0016705 15 

oxidoreductase 
activity, acting on 
paired donors, with 
incorporation or 
reduction of 
molecular oxygen 

Nucleosome 
 
 

GO:0006334 12 
nucleosome 
assembly 

his-4, his-8, his-9, his-
45, his-62 
 
 

GO:0034728 13 
nucleosome 
organization 

GO:0031497 14 chromatin assembly 

GO:0000786 16 nucleosome 

GO:0032993 17 
protein-DNA 
complex 

GO:0006333 18 
chromatin assembly 
or disassembly 

GO:0065004 21 
protein-DNA 
complex assembly 

GO:0071824 22 

protein-DNA 
complex subunit 
organization 
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GO:0006323 23 DNA packaging 

Lipid 
glycosylation GO:0030259 19 lipid glycosylation 

C33C12.8, cyp-35A5, 
cyp-35A1, dhs-23, 
clec-210 

Cuticle GO:0042302 24 
structural 
constituent of cuticle 

col-2, col-84, col-158, 
col-44, R07E5.4 

Oxidoreductase 
activity GO:0016491 25 

oxidoreductase 
activity 

B0272.4, Y75B8A.4, 
acox-1, F58A6.1, dhs-
18 

… … … … … 

Presynaptic 
membrane GO:0042734 1647 

presynaptic 
membrane 

K02E11.7, C45G9.6, 
clec-233, ttr-10, cup-4 

Signal 
transduction 

GO:0046579 1648 

positive regulation 
of Ras protein signal 
transduction 

R04B5.6, cyp-33D3, 
C34D10.1, stdh-2, 
F19F10.1 GO:0051057 1649 

positive regulation 
of small GTPase 
mediated signal 
transduction 

Calcium-
dependent 
kinase 

GO:0009931 1650 

calcium-dependent 
protein 
serine/threonine 
kinase activity 

tag-83, T21H8.5, cca-
1, ZC101.1, ztf-16 GO:0010857 1651 

calcium-dependent 
protein kinase 
activity 

 

Table 1.  GO categories with strongest and weakest gene weights.  The table 

shows the top 25 and the bottom 5 GO categories, ranked in decreasing order of the 

weight of their most strongly associated gene prior to normalization.  Similar GO 

categories are grouped together, and the genes with the highest weights for each group 

are also shown.  rpl- (ribosomal protein, large subunit) and rps- (ribosomal protein, 

small subunit) genes encode ribosomal proteins, and his- (histone) genes encode 

nucleosome components. 
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Factor Canonical site Top words 
Projection 
set 

Z 
scor
e 

Z score 
rank 

 daf-16  
T(G/A)TTTAC, 
CTTATCA* 

TTCTTATCA 
Down-
regulated -3.95 1 

GGAAG 
Down-
regulated -3.69 2 

TTTTCTG 
Down-
regulated 3.47 3 

 hif-1  ACGTG 

ACGTGAAC Up-regulated 4.39 1 
CGTGAAC Up-regulated 4.38 2 
ACGTG Up-regulated 3.71 3 

 nhr-23  AGGTCA 

AGGTCA 
Down-
regulated -5.29 1 

TGACCTA 
Down-
regulated -4.72 2 

CCTCCCCC 
Down-
regulated -4.39 3 

 hlh-30  TCACGTGA(C/T) 

CTTACTATT Up-regulated -4.3 1 
CGTAATCC Up-regulated 4.14 2 

CTTTTTTCT 
Down-
regulated 4.07 3 

CACGTG Up-regulated -3.09 20 

 lin-14  GAAC 

CCTACCTACCTA 
Down-
regulated 4.35 1 

GCGCGTCAAATA Up-regulated -3.95 2 
GCCGCGCACCC
C 

Down-
regulated -3.78 3 

GGTTCTGG 
Down-
regulated -2.53 109 

 daf-12  AGTTCA 

CCCCAC 
Down-
regulated -4.41 1 

GCTC Up-regulated 4.28 2 

CCCCGCC 
Down-
regulated -4 3 

AACTTTT Up-regulated 3.51 11 
 

Table 2.  Top scoring promoter words for transcription factor perturbation 

experiments.  The table shows the top three most significant words (those with the 

most extreme z-scores), calculated using module-weighted promoter words, for each 
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transcription factor loss-of-function microarray experiment.  If a full or partial match (4 or 

more bases) to the canonical binding site of the factor does not occur within the top 3 

ranking words, the most significant such match is also shown.  Bold letters indicate 

matching positions to canonical binding sites. 
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