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Abstract 
Distinctions between cell types underpin organisational principles for nervous system function. 
Functional variation also exists between neurons of the same type. This is exemplified by 
correspondence between grid cell spatial scales and synaptic integrative properties of stellate 
cells (SCs) in the medial entorhinal cortex. However, we know little about how functional 
variability is structured either within or between individuals. Using ex-vivo patch-clamp 
recordings from up to 55 SCs per mouse, we find that integrative properties vary between mice 
and, in contrast to modularity of grid cell spatial scales, have a continuous dorsoventral 
organisation. Our results constrain mechanisms for modular grid firing and provide evidence for 
inter-animal phenotypic variability among neurons of the same type. We suggest that neuron 
type properties are tuned to circuit level set points that vary within and between animals. 
 
  
Introduction 
The concept of cell types provides a general organising principle for understanding biological 
structures including the brain (Regev et al., 2017; Zeng and Sanes, 2017). The simplest 
conceptualisation of a neuronal cell type, as a population of phenotypically similar neurons with 
features that cluster around a single set point (Wang et al., 2011b), is extended by observations 
of variability in cell type features, suggesting that some neuronal cell types may be conceived as 
clustering along a line rather than a point in a feature space (Cembrowski and Menon, 2018; 
O’Donnell and Nolan, 2011)(Figure 1A). Correlations between the functional organisation of 
sensory, motor and cognitive circuits and electrophysiological properties of individual neuronal 
cell types suggest that this feature variability underlies key neural computations (Adamson et 
al., 2002; Angelo et al., 2012; Fletcher and Williams, 2018; Garden et al., 2008; Giocomo et al., 
2007; Kuba et al., 2005; O’Donnell and Nolan, 2011). However, within cell type variability has 
typically been deduced by combining data obtained from multiple animals. In contrast, the 
structure of variation within individual animals or between different animals has received little 
attention. For example, apparent clustering of properties along lines in feature space could 
reflect a continuum of set points, or could result from a small number of discrete set points that 
are obscured by inter-animal variation (Figure 1B). Moreover, while investigations of 
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invertebrate nervous systems show that set points may differ between animals (Goaillard et al., 
2009), it is not clear whether mammalian neurons exhibit similar phenotypic diversity (Figure 
1B). Distinguishing these possibilities requires many more electrophysiological observations per 
animal than are obtained in typical studies. 
 
Stellate cells in layer 2 (SCs) of the medial entorhinal cortex (MEC) provide a striking example 
of correspondence between functional organisation of neural circuits and variability of 
electrophysiological features within a single cell type. The MEC contains neurons that encode 
an animal’s location through grid-like firing fields (Fyhn et al., 2004). The spatial scale of grid 
fields follows a dorsoventral organisation (Hafting et al., 2005), which is mirrored by a 
dorsoventral organisation in key electrophysiological features of SCs (Boehlen et al., 2010; 
Dodson et al., 2011; Garden et al., 2008; Giocomo and Hasselmo, 2008a; Giocomo et al., 2007; 
Pastoll et al., 2012a). Grid cells are organised into discrete modules (Stensola et al., 2012),  
cells in a module have a similar grid scale and orientation (Barry et al., 2007; Gu et al., 2018; 
Stensola et al., 2012) and progressively more ventral modules are composed of cells with wider 
grid spacing (Stensola et al., 2012). Studies that demonstrate dorsoventral organisation of 
integrative properties of SCs have so far relied on pooling of relatively few measurements per 
animal. Hence, it is unclear whether organisation of these cellular properties is modular, as one 
might expect if they directly set the scale of grid firing fields in individual grid cells (Giocomo et 
al., 2007). The possibility that set points for electrophysiological properties of SCs differ 
between animals has also not previously been considered. 
  
Evaluation of variability between and within animals requires statistical approaches not typically 
used in single-cell electrophysiological investigations. Given appropriate assumptions, 
inter-animal differences can be assessed using mixed effect models that are well established in 
other fields (Baayen et al., 2008; Geiler-Samerotte et al., 2013). Because tests of whether data 
arise from modular as opposed to continuous distributions have received less general attention, 
to facilitate detection of modularity using relatively few observations we introduce a modification 
of the gap statistic algorithm (Tibshirani et al., 2001) that estimates the number of modes in a 
dataset while controlling for observations expected by chance (see Methods and Supplemental 
Figures 1 - 5). This algorithm performs well compared with other measures (Giocomo et al., 
2014; Stensola et al., 2012), which we find are prone to high false positive rates (Supplemental 
Figure 4A). We find that recordings from approximately 30 SCs per animal should be sufficient 
to detect modularity using the modified gap statistic algorithm and given the experimentally 
observed separation between grid modules (see Methods and Supplemental Figures 2-3). 
Although methods for high quality recording from SCs in ex-vivo brain slices are well 
established (Pastoll et al., 2012b), in previous studies typically fewer than 5 recordings per 
animal have been made, which is much less than our estimate of the minimum number of 
observations required to test for modularity. 
  
We set out to establish the nature of the set points that establish integrative properties of SCs 
by measuring intra- and inter-animal variation in key electrophysiological features using 
experiments that maximise the number of SCs recorded per animal. Our results suggest that set 

2 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2019. ; https://doi.org/10.1101/678565doi: bioRxiv preprint 

https://paperpile.com/c/Ypsm0o/pMMN
https://paperpile.com/c/Ypsm0o/pMMN
https://paperpile.com/c/Ypsm0o/Za0k
https://paperpile.com/c/Ypsm0o/R11q
https://paperpile.com/c/Ypsm0o/oRpg+Hs1q+6fG9+nOd6+SVVZ+12IQ
https://paperpile.com/c/Ypsm0o/oRpg+Hs1q+6fG9+nOd6+SVVZ+12IQ
https://paperpile.com/c/Ypsm0o/oRpg+Hs1q+6fG9+nOd6+SVVZ+12IQ
https://paperpile.com/c/Ypsm0o/mthQ
https://paperpile.com/c/Ypsm0o/mthQ+bLCi+z27J
https://paperpile.com/c/Ypsm0o/mthQ+bLCi+z27J
https://paperpile.com/c/Ypsm0o/mthQ
https://paperpile.com/c/Ypsm0o/nOd6
https://paperpile.com/c/Ypsm0o/nOd6
https://paperpile.com/c/Ypsm0o/LKrB+lvwP
https://paperpile.com/c/Ypsm0o/Mbgr
https://paperpile.com/c/Ypsm0o/Hotr+mthQ
https://paperpile.com/c/Ypsm0o/Hotr+mthQ
https://paperpile.com/c/Ypsm0o/3gBJ
https://doi.org/10.1101/678565
http://creativecommons.org/licenses/by/4.0/


points for individual features of a neuronal cell type are established at a population level, differ 
between animals and follow a continuous organisation.  
  
  
Results 
  
Sampling integrative properties from many neurons per animal 
Before addressing intra- and inter-animal variability we first describe the data set used for the 
analyses that follow. We established procedures to facilitate recording of integrative properties 
of many SCs from a single animal (see Methods). With these procedures, we measured and 
analysed electrophysiological features of 836 SCs (n/mouse: range 11-55; median = 35) from 
27 mice (median age = 37.4 days, age range = 18 - 57 days). The mice were housed either in a 
standard home cage (N = 18 mice, n = 583 neurons) or from postnatal day 16 in a 2.4 x 1.2 m 
cage, which provided a large environment that could be freely explored (N = 9, n = 253, median 
age = 38 days)(Supplemental Figure 6). For each neuron we measured six sub-threshold 
integrative properties (Figure 2A-B) and six supra-threshold integrative properties (Figure 2C). 
Until indicated otherwise we report analysis of datasets that combine the groups of mice housed 
in standard and large home cages and that span the full range of ages. 
  
Because SCs are found intermingled with pyramidal cells in layer 2 (L2PCs), and as 
misclassification of L2PCs as SCs would likely confound investigation of intra-SC variation, we 
validated our criteria for distinguishing each cell type. To establish characteristic 
electrophysiological properties of L2PCs we recorded from neurons in layer 2 identified by 
Cre-dependent marker expression in a Wfs1 Cre mouse line (Sürmeli et al., 2015). Expression of 
Cre in this line, and a similar line (Kitamura et al., 2014), labels pyramidal cells in layer 2 
(L2PCs) that project to the CA1 region of the hippocampus, but does not label SCs (Kitamura et 
al., 2014; Sürmeli et al., 2015). We identified two populations of neurons in layer 2 of MEC that 
were labelled in Wfs1 Cre mice (Figure 3A-C). The more numerous population had properties 
consistent with L2PCs (Figure 3A, G) and could be separated from the unidentified population 
on the basis of a lower rheobase (Figure 3C). The unidentified population had firing properties 
typical of layer 2 interneurons (cf. (Gonzalez-Sulser et al., 2014)). A principal component 
analysis (PCA)(Figure 3D-F) clearly separated the L2PC population from the SC population, but 
did not identify subpopulations of SCs. The less numerous population has properties similar to 
those of inhibitory interneurons and also clearly distinct from SCs (Figure 3A, C). These data 
demonstrate that the SC population used for our analyses is distinct from excitatory pyramidal 
cells also found in layer 2 of the MEC. 
 
To further validate the large SC dataset we assessed the location-dependence of individual 
features, several of which have previously been found to depend on the dorso-ventral location 
of the recorded neuron (Boehlen et al., 2010; Booth et al., 2016; Garden et al., 2008; Giocomo 
et al., 2007; Pastoll et al., 2012a). We initially fit the dependence of each feature on 
dorsoventral position using a standard linear regression model. We found substantial (adjusted 
R2 > 0.1) dorsoventral gradients in input resistance, sag, membrane time constant, resonant 
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frequency, rheobase and the current-frequency (I-F) relationship (Figure 3G). In contrast to SCs, 
we did not find evidence for dorsoventral organisation of these features in L2PCs (Figure 3G). 
Thus, our large dataset replicates the previously observed dependence of integrative properties 
of SCs on their dorsoventral position, and shows that this location dependence further 
distinguishes SCs from L2PCs.  
 
Inter-animal differences in intrinsic properties of stellate cells  
To what extent does variability between the integrative properties of SCs at a given dorsoventral 
location (Figure 3G) arise from differences between animals? Comparing specific features from 
individual animals suggested that their distributions could be almost completely non-overlapping 
despite consistent and strong dorsoventral tuning (Figure 4A). If this apparent inter-animal 
variability results from random sampling of a distribution determined by a common underlying 
set point, then fitting the complete data set with a mixed model in which animal identity is 
included as a random effect should reconcile the apparent differences between animals (Figure 
4B). In this scenario, the conditional R2 estimated from the mixed model, in other words the 
estimate of variance explained by animal identity and location, should be similar to the marginal 
R2 value, which indicates the variance explained by location only. In contrast, if differences 
between animals contribute to experimental variability, the mixed model should predict different 
fitting parameters for each animal, and the estimated conditional R2 should be greater than the 
corresponding marginal R2 (Figure 4C). 
 
Fitting the experimental measures for each feature with mixed models suggests that differences 
between animals contribute substantially to the variability in properties of SCs. In contrast to 
simulated data in which inter-animal differences are absent (Figure 4B), differences in fits 
between animals remained after fitting with the mixed model (Figure 4D). This corresponds with 
expectations from fits to simulated data containing inter-animal variability (cf. Figures 4C). To 
visualise inter-animal variability for all measured features we plot for each animal the intercept of 
the model fit (I), the predicted value at a location 1 mm ventral from the intercept (I+S) and the 
slope (lines)(Figure 4E). Strikingly, even for features such as rheobase and input resistance (IR) 
that are highly tuned to a neurons’ dorsoventral position, the extent of variability between 
animals is similar to the degree to which the property changes between dorsal and mid-levels of 
the MEC. 
 
If set points that determine integrative properties of SCs do indeed differ between animals, then 
mixed models should provide a better account of the data than linear models generated by 
pooling data across all animals. Consistent with this, we found that mixed models for all 
electrophysiological features gave a substantially better fit to the data than linear models that 
considered all neurons as independent (adjusted p < 2 x 10 -17 for all models, 𝜒2 test, Table 1). 
Furthermore, even for properties with substantial (R2 value > 0.1) dorsoventral tuning, the 
conditional R2 value for the mixed effect model was substantially larger than the marginal R2 
value (Figure 4D and Table 1). Together, these analyses demonstrate inter-animal variability in 
key electrophysiological features of SCs suggesting that set points that establish the underlying 
integrative properties differ between animals. 
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Experience-dependence of intrinsic properties of stellate cells 
Because neuronal integrative properties may be modified by changes in neural activity (Zhang 
and Linden, 2003), we asked if experience influences the measured electrophysiological 
features of SCs. We reasoned that modifying the space through which animals can navigate 
may drive experience-dependent plasticity in the MEC. As standard mouse housing has 
dimensions less than the distance between firing fields of more ventrally located grid cells (Brun 
et al., 2008; Hafting et al., 2005), we tested whether electrophysiological features of SCs differ 
between mice housed in larger environments (28800 cm2) compared with standard home cages 
(530 cm2).  
 
We compared the mixed models described above to models in which housing was also included 
as a fixed effect. To minimise the effects of age on SCs (Boehlen et al., 2010; Burton et al., 
2008)(Supplemental Table 2), we focussed these and subsequent analyses on mice between 
P33 and P44 (N = 25, n = 779). We found that larger housing was associated with a smaller sag 
coefficient indicating an increased sag response, a lower resonant frequency and a larger spike 
half-width (adjusted p < 0.05; Figure 4E, Supplemental Table 3, Supplemental analyses). These 
differences were primarily from changes to the magnitude rather than the location-dependence 
of each feature.  Other electrophysiological features appeared unaffected by housing. 
 
To determine whether inter-animal differences remain after accounting for housing we 
compared mixed models that include dorsoventral location and housing as fixed effects with 
equivalent linear regression models in which individual animals are not accounted for. Mixed 
models incorporating animal identity continued to provide a better account of the data, both for 
features that were dependent on housing (adjusted p < 2.8 x 10 -21) and for features that were 
not (adjusted p < 1.4 x 10 -7)(Supplemental Table 4). 
 
Together, these data suggest that specific electrophysiological features of SCs may be modified 
by experience of large environments. After accounting for housing, significant inter-animal 
variation remains, suggesting that additional mechanisms acting at the level of animals rather 
than individual neurons also determine differences between SCs. 
 
Inter-animal differences remain after accounting for additional experimental parameters 
To address the possibility that other experimental or biological variables could contribute to 
inter-animal differences, we evaluated the effects of home cage size (Supplemental Tables 3-4), 
brain hemisphere (Supplemental Table 5), mediolateral position (Supplemental Table 6), the 
identity of the experimenter (Supplemental Table 7) and time since slice preparation 
(Supplemental Tables 8 and 9). Several of the variables influenced some measured 
electrophysiological features, for example properties primarily related to the action potential 
waveform depended on mediolateral position of the recorded neuron (Supplemental Table 6)(cf. 
(Canto and Witter, 2012)), but significant inter-animal differences remained after accounting for 
each variable. We carried out further analyses using models that included housing, mediolateral 
position, experimenter identity and the direction in which sequential recordings were obtained as 
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fixed effects (Supplemental Table 10), using models fit to minimal datasets in which housing, 
mediolateral position and the recording direction were identical (Supplemental Table 11), and to 
consider the possible impact of tissue variability (Supplemental Tables 12 and 13). These 
analyses again found evidence for significant inter-animal differences. We also note that 
conditional R2 values of electrophysiological features of L2PCs are much lower than for SCs (cf. 
Table 1 and Supplemental Table 1) suggesting that inter-animal variation may be specific to 
SCs, and further arguing that inter-animal differences result from biological rather than technical 
variability. Together, these analyses indicate that differences between animals remain after 
accounting for experimental and technical factors that might contribute to variation in measured 
features of SCs.  
 
The distribution of intrinsic properties is consistent with a continuous rather than a 
modular organisation 
The dorsoventral organisation of SC integrative properties is well established, but whether this 
results from within animal variation consistent with a small number of discrete set points that 
underlie a modular organisation (cf. Figure 1B) is unclear. To evaluate modularity we used 
datasets with n ≥ 34 (N = 15, median age = 37 days, age range = 18 - 43 days). We focus 
initially on rheobase, which is the property with strongest correlation to dorsoventral location, 
and resonant frequency, which is related to the oscillatory dynamics underlying dorsoventral 
tuning in some models of grid firing. For n ≥ 34 we expect that if properties are modular then this 
would be detected by the modified gap statistic in at least 50% of animals (Supplemental 
Figures 2C, 3). In contrast, we find that for datasets from the majority of animals the modified 
gap statistic identifies only a single mode in the distribution of rheobase values (Figure 5A and 
Figure 6)(N = 13/15) and of resonant frequencies (Figure 5B and Figure 6) (N = 14/15), 
indicating that these properties have a continuous rather than a modular distribution. Consistent 
with this, smoothed distributions did not show clearly separated peaks for either property (Figure 
5). The mean and 95% confidence interval for the probability of evaluating a dataset as 
clustered (p detect), was 0.133 and 0.02–0.4 for rheobase and 0.067 and 0.002–0.32 for resonant 
frequency. These values of p detect were not significantly different from the proportions expected 
from the complete absence of clustering (p = 0.28 and 0.66, binomial test). Thus, the rheobase 
and resonant frequency of SCs, while depending strongly on a neuron’s dorsoventral position, 
do not have a detectable modular organisation. 
  
When we investigated the other measured integrative properties we also failed to find evidence 
for modularity. Across all properties, for any given property at most 3 out of 15 mice were 
evaluated as having a clustered organisation using the modified gap statistic (Figure 6). This 
does not differ significantly from the proportion expected by chance when no modularity is 
present (p > 0.05, binomial test). Consistent with this, the average proportion of datasets 
evaluated as modular across all measured features was 0.072 ± 0.02 (± SEM), which is similar 
to the expected false positive rate. In contrast, for the 7 grid datasets with n ≥ 20 considered in 
Supplemental Figure 5, the mean for p detect is 0.86, with 95 % confidence intervals of 0.42 to 
0.996. We note here that previously published discontinuity algorithms did indicate significant 
modularity in the majority of the intrinsic properties measured in our dataset (N = 13/15 and N = 
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12/15 respectively), but this was attributable to false positives resulting from the relatively even 
sampling of recording locations (see Supplemental Figure 4A). Therefore, we conclude that it is 
unlikely that within individual animals any of the intrinsic properties we examined have 
organisation resembling the modular organisation of grid cells in behaving animals. 
  
Multiple sources of variance contribute to diversity in stellate cell intrinsic properties 
Finally, because many of the measured electrophysiological features of SCs emerge from 
shared ionic mechanisms (Dodson et al., 2011; Garden et al., 2008; Pastoll et al., 2012a), we 
asked whether dorsoventral tuning reflects a single core mechanism and if inter-animal 
differences are specific to this mechanism or manifest more generally. 
 
Estimation of conditional independence for measurements at the level of individual neurons 
(Figure 7A) or individual animals (Figure 7B) was consistent with the expectation that particular 
classes of membrane ion channels influence multiple electrophysiologically measured features. 
The first 5 dimensions of a principal components analysis (PCA) of all measured 
electrophysiological features accounted for almost 80% of the variance (Figure 7C). 
Examination of the rotations used to generate the principal components suggested relationships 
between individual features that are consistent with our evaluation of the conditional 
independence structure of the measured features (cf. Figure 7D and 7A). When we fit the 
principal components using mixed models with location as a fixed effect and animal identity as a 
random effect, we found that the first two components depended significantly on dorsoventral 
location (Figure 7E and Supplemental Table 14)(marginal R2 = 0.50 and 0.09 and adjusted p = 
1.09 x 10 -15 and 1.05 x 10 -4 respectively). Thus, the dependence of multiple electrophysiological 
features on dorsoventral position may be reducible to two core mechanisms that together 
account for much of the variability between SCs in their intrinsic electrophysiology. 
 
Is inter-animal variation present in PCA dimensions that account for dorsoventral variation? The 
intercept, but not the slope of the dependence of the first two principal components on 
dorsoventral position depended on housing (adjusted p = 0.039 and 0.027)(Figure 7E, F and 
Supplemental Table 15). After accounting for housing, the first two principal components were 
still better fit by models that include animal identity as a random effect (adjusted p = 3.3 x 10 -9 
and 4.1 x 10 -86), indicating remaining inter-animal differences in these components 
(Supplemental Table 16). A further 9 of the next 10 higher order principal components did not 
depend on housing (adjusted p > 0.1)(Supplemental Table 15), while 8 differed significantly 
between animals (adjusted p < 0.05)(Supplemental Table 16). 
 
Together, these analyses indicate that dorsoventral organisation of multiple electrophysiological 
features of SCs reflect two main sources of variance, both of which are dependent on 
experience. Significant inter-animal variation in the major sources of variance remains after 
accounting for experience and experimental parameters. 
  
 
Discussion 
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Phenotypic variation is found across many areas of biology (Geiler-Samerotte et al., 2013), but 
has received little attention in investigations of mammalian nervous systems. We find 
unexpected inter-animal variability in SC properties suggesting that integrative properties of 
neurons are determined by set points that differ between animals and are controlled at a circuit 
level (Figure 8). Continuous, location-dependent organisation of set points for SC integrative 
properties provides new constraints on models for grid cell firing. More generally, the existence 
of inter-animal differences in set points has implications for experimental design and raises new 
questions about how integrative properties of neurons are specified.  
 
A conceptual framework for within cell type variability 
Theoretical models suggest how different cell types can be generated by varying target 
concentrations of intracellular Ca 2+ or rates of ion channel expression (O’Leary et al., 2014). 
Within cell type variability predicted by these models arises from different initial conditions and 
may explain variability in our data between neurons from the same animal at the same 
dorsoventral location (Figure 8A). In contrast, the dependence of integrative properties on 
position and their variation between animals implies additional mechanisms that operate at 
circuit level (Figure 8B). In principle, this variation could be accounted for by inter-animal 
differences in dorsoventrally tuned or spatially uniform factors that influence ion channel 
expression or target points for intracellular Ca 2+ (Figure 8C).  
 
The mechanisms for within cell type variability suggested by our results may differ from 
inter-animal variation described in invertebrate nervous systems. Whereas in invertebrates 
inter-animal variability is between properties of individual identified neurons (Goaillard et al., 
2009), in mammalian nervous systems neurons are not individually identifiable and the variation 
we describe here is at the level of populations. From a developmental perspective in which cell 
identity is considered as a trough in a state-landscape through which each cell moves (Wang et 
al., 2011b), variation in the population of neurons of the same type could be conceived as cell 
autonomous deviations from set points corresponding to the trough (Figure 8A). Our finding that 
variability among neurons of the same type manifests between as well as within animals, could 
be explained by differences between animals in the position of the trough or set point in the 
developmental landscape (Figure 8B).  
 
Implications of continuous dorsoventral organisation of stellate cell integrative 
properties for grid cell firing 
Dorsoventral gradients in electrophysiological features of SCs have stimulated cellular models 
for the organisation of grid firing (Burgess, 2008; Giocomo and Hasselmo, 2008b; Grossberg 
and Pilly, 2012; O’Donnell and Nolan, 2011; Widloski and Fiete, 2014). Increases in spatial 
scale following deletion of HCN1 channels (Giocomo et al., 2011), which in part determine the 
dorsoventral organisation of SC integrative properties (Garden et al., 2008; Giocomo and 
Hasselmo, 2009), support a relationship between electrophysiological properties of SCs and 
grid cell spatial scales. Our data argue against models that explain this relationship through 
single cell computations (Burgess, 2008; Giocomo et al., 2007), as in this case modularity of 
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integrative properties of SCs is required to generate modularity of grid firing. A continuous 
dorsoventral organisation of electrophysiological properties of SCs could support modular grid 
firing generated by self-organising maps (Grossberg and Pilly, 2012), or by synaptic learning 
mechanisms (Kropff and Treves, 2008; Urdapilleta et al., 2017). It is less clear how a continuous 
gradient would affect predictions of grid firing from continuous attractor network models 
(Shipston-Sharman et al., 2016; Widloski and Fiete, 2014), which can account for modularity by 
limiting synaptic interactions between modules. 
 
The continuous variation of electrophysiological features of SCs suggested by our analysis is 
consistent with continuous gradients in gene expression along layer 2 of the MEC (Ramsden et 
al., 2015). It is also consistent with single cell RNA sequencing analysis of other brain areas, 
which indicates that while expression profiles for some cell types cluster around a point in 
feature space, others lie along a continuum (Cembrowski and Menon, 2018). It will be 
interesting in future to determine whether gene expression continua establish corresponding 
continua of electrophysiological features (cf. (Liss et al., 2001)). 
 
Functional consequences of within cell type inter-animal variability 
What are the functional roles of inter-animal variability? In the crab stomatogastric ganglion, 
inter-animal variation correlates with circuit performance (Goaillard et al., 2009). Accordingly, 
variation in intrinsic properties of SCs might correlate with differences in grid firing (Domnisoru 
et al., 2013; Gu et al., 2018; Rowland et al., 2018; Schmidt-Hieber and Häusser, 2013) or 
behaviours that rely on SCs (Kitamura et al., 2014; Qin et al., 2018; Tennant et al., 2018). It is 
interesting in this respect that there appear to be inter-animal differences in the spatial scale of 
grid modules (cf. Figure 5 of (Stensola et al., 2012)). Modification of grid field scaling following 
deletion of HCN1 channels is also consistent with this possibility (Giocomo et al., 2011; Mallory 
et al., 2018).  Alternatively, inter-animal differences may reflect multiple ways to achieve a 
common higher order phenotype. According to this view, coding of spatial location by SCs 
would not differ between animals despite lower level variation in their intrinsic 
electrophysiological features. This is related to the idea of degeneracy at the level of single cell 
electrophysiological properties (Marder and Goaillard, 2006; Mittal and Narayanan, 2018; 
O’Leary et al., 2014; Swensen and Bean, 2005), except that here the electrophysiological 
features differ between animals but higher order circuit computations may nevertheless be 
similar. 
 
In conclusion, our results identify substantial within cell type variation in neuronal integrative 
properties that manifests between as well as within animals. This has implications for 
experimental design and model building as the distribution of replicates from the same animal 
will differ from those obtained from different animals (Marder and Taylor, 2011). An important 
future goal will be to distinguish causes of inter-animal variation. It is possible that additional 
external factors such as social interactions may affect brain circuitry (Wang et al., 2011a, 2014), 
although these effects appear focussed on frontal cortical structures rather than circuits for 
spatial computations (Wang et al., 2014). Alternatively, stochastic mechanisms operating at the 
population level may drive emergence of inter-animal differences during development of SCs 
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(Donato et al., 2017; Ray and Brecht, 2016). Addressing these questions may turn out to be 
critical to understanding the relationship between cellular biophysics and circuit level 
computations in cognitive circuits (Schmidt-Hieber and Nolan, 2017). 
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Figure 1. Classification and variability of neuronal cell types 
(A) Neuronal cell types are identifiable by features clustering around a distinct point (blue, green 
and yellow) or a line (red) in feature space. The clustering implies that neuron types are defined 
by either a single set point (blue, green and yellow) or by multiple set points spread along a line 
(red). 
(B) Phenotypic variability of a single neuron type could result from distinct set points that 
subdivide the neuron type and appear continuous when data from multiple animals are 
combined (modular), from differences in components of a set point that do not extend along a 
continuum but that in different animals cluster at different locations in feature space 
(orthogonal), or from differences between animals in the range covered by a continuum of set 
points (offset).  These distinct forms of variability can only be made apparent by measuring 
features from many neurons from multiple animals (colours).  
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Figure 2. Dorsoventral organization of intrinsic properties of stellate cells from a single 
animal 
(A-C) Waveforms (grey traces) and example responses (black traces) from a single mouse for 
step (A), ZAP (B) and ramp (C) stimuli (left). Properties derived from each protocol are shown 
plotted against recording location (each data point is a black cross)(right). KSDs with arbitrary 
bandwidth are displayed to the right of each data plot to facilitate visualisation of the property’s 
distribution when location information is disregarded (light grey pdfs). (A) Injection of a series of 
current steps enables measurement of the resting membrane potential (Vrest) (i), the input 
resistance (IR) (ii), the sag coefficient (sag) (iii) and the membrane time constant (Τm) (iv). 
(B) Injection of ZAP current waveform enables calculation of an impedance amplitude profile, 
which was used to estimate the resonance resonant frequency (Res. F) (i) and magnitude (Res. 
mag) (ii). 
(C) Injection of a slow current ramp enabled measurement of the rheobase (i), the slope of the 
current-frequency relationship (I-F slope) (ii), and using only the first 5 spikes in each response 
(enlarged zoom, lower left) the AHP minimum value (AHPmin) (iii), the spike maximum (Spk. 
max) (iv) , the spike width at half height (Spk. HW) (v) and the spike threshold (Spk. thr.) (vi). 
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Figure 3. Distinct and dorsoventrally organised properties of layer 2 stellate cells 
(A) Representative action potential afterhyperpolarization waveforms from a SC (left), a 
pyramidal cell (middle) and an unidentified cell (right). The pyramidal and unidentified cells were 
both positively labelled in Wfs1 Cre mice.  
(B) Plot of the first versus the second principal component from PCA of the properties of 
labelled neurons in Wfs1 Cre mice reveals two populations of neurons.  
(C) Histogram showing the distribution of rheobase values of cells positively labelled in Wfs1 Cre 
mice. The two groups identified in B can be distinguished by their rheobase. 
(D) Plot of the first two principal components from PCA of the properties of the L2PC (n = 44, 
green) and SC populations (n = 840, black). Putative pyramidal cells (x) and SCs (+) are colored 
according to their dorsoventral location (inset shows the scale). 
(E) Proportion of total variance explained by the first five principal components for the analysis 
in (D). 
(F) Histograms of locations of recorded SCs (upper) and L2PCs (lower). 
(G) All values of measured features from all mice are plotted as a function of the dorsoventral 
location of the recorded cells. Lines indicate fits of a linear model to the complete datasets for 
SCs (black) and L2PCs (green). Putative pyramidal cells (x, green) and SCs (+, black). Adjusted 
R2 values use the same colour scheme. 
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Figure 4. Inter-animal variability and dependence on environment of intrinsic properties 
of stellate cells 
(A) Examples of rheobase as a function of dorsoventral position for two mice. 
(B-C) Each line is the fit of simulated data from a different subject for datasets in which there is 
no inter-subject variability (B) or in which intersubject variability is present (C). Fitting data from 
each subject independently with linear regression models suggests intersubject variation in both 
datasets (left). In contrast, after fitting mixed effect models (right) intersubject variation is no 
longer suggested for dataset in which it is absent (B) but remains for the dataset in which it is 
present (C).  
(D) Each line is the fit of rheobase as a function of dorsoventral location for a single mouse. The 
fits were carried out independently for each mouse (left) or using a mixed effect model with 
mouse identity as a random effect (right). 
(E) The intercept (I), sum of the intercept and slope (I + S), and slopes realigned to a common 
intercept (right) for each mouse obtained by fitting mixed effect models for each property as a 
function of dorsoventral position. 
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Figure 5. Input resistance and resonant frequency do not have a detectable modular 
organisation 
(A-B) Input resistance (A) and resonant frequency (B) are plotted as a function of dorsoventral 
position separately for each every animal. Marker colour and types indicate the age and housing 
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conditions of the animal (‘+’s standard housing,  ‘x’s large housing). KSDs (arbitrary bandwidth, 
same for all animals) are also shown. The number of clusters in the data (kest) is indicated for 
each animal. 
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Figure 6. Significant modularity is not detectable for any measured property 
(A-B) Histograms showing the kest counts across all mice for each different measured 
sub-threshold (A) and supra-threshold (B) intrinsic properties. The maximum k evaluated was 8. 
The proportion of each measured property with kest > 1 was compared using binomial tests (with 
N = 15) to the proportion expected if the underlying distribution of that property is always 
clustered with all separation between modes ≥ 5 std (pink text), or if the underlying distribution 
of the property is uniform (purple text).  For all measured properties the values of kest were 
indistinguishable (p > 0.05) from the data generated from a uniform distribution and differed 
from the data generated from a multi-modal distribution (p < 1 x 10 -6). 
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Figure 7. Feature relationships and inter-animal variability after reducing dimensionality 
of the data 
(A-B) Partial correlations between the electrophysiological features investigated at the level of 
individual neurons (A) and at the level of animals (B). Partial correlations outside the 95% basic 
bootstrap confidence intervals are colour coded. Non-significant correlations are coloured white. 
(C) Proportion of variance explained by each principal component. To remove variance caused 
by animal age and the experimenter identity, the principal component analysis used a reduced 
dataset obtained by one experimenter and restricted to animals between 32 and 45 days old (N 
= 25, n = 572). 
(D) Loading plot for the first two principal components. 
(E) The first five principal components plotted as a function of position. 
(F) Intercept (I), intercept plus the slope (I + S) and slopes aligned to the same intercept, for fits 
for each animal of the first five principal components to a mixed model with location as a fixed 
effect and animal as a random effect. 
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Figure 8. Models for intra- and inter-animal variation 
(A) The configuration of a cell type can be conceived of as a trough (arrow head) in a 
developmental landscape (solid line). In this scheme, the trough can be considered as a set 
point.  Differences between cells (filled circles) reflect variation away from the set point. 
(B) Neurons from different animals or located at different dorsoventral positions can be 
conceptualised as arising from different troughs in the developmental landscape.  
(C) Variation may reflect inter-animal differences in factors that establish gradients (upper left) 
and in factors that are uniformly distributed combing to generate set points that depend on 
animal identity and location. Each line corresponds to schematised properties of a single 
animal. 
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Table 1. Dependence of electrophysiological features of SCs on dorsoventral position 
Key statistical parameters from analyses of the relationship between each measured 
electrophysiological feature and dorsoventral location. Slope is the population slope from fitting 
a mixed effect model for each feature with location as a fixed effect, with p(slope) obtained by 
comparing this model to a model without location as a fixed effect (𝜒2 test). The marginal and 
conditional R2 values, and the minimum and maximum slopes across all mice, are obtained from 
the fits of mixed effect models that contain location as a fixed effect. The estimate p(vs linear) is 
obtained by comparing the mixed effect model containing location as a fixed effect with a 
corresponding linear model without random effects (𝜒2 test). The values of p(slope) and p(vs 
linear) were adjusted for multiple comparisons using the method of Benjamini and Hochberg 
(Benjamini and Hochberg, 1995). Units for the slope measurements are units for the property 
mm-1. The data are from 27 mice.  
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Methods 
  
Mouse strains. All experimental procedures were performed under a United Kingdom Home 
Office license and with approval of the University of Edinburgh’s animal welfare committee. 
Recordings of many SCs per animal used C57/Bl6J mice (Charles River) . Recordings targeting 
calbindin cells used a Wfs1 Cre line (Wfs1-Tg3-CreERT2) obtained from Jackson Labs (Strain 
name: B6;C3-Tg(Wfs1-cre/ERT2)3Aibs/J; stock number:009103). Mice were group housed on a 
12 h light/dark cycle (light on 07.30–19.30 h). Mice were usually housed in standard breeding 
cages, with a subset of mice instead housed from pre-weaning ages in a larger 2.4 x 1.2 m cage 
that was enriched with bright plastic objects (Supplemental Figure 6). All experiments in the 
standard cage used male mice. For experiments in the large cage, 2 mice were female, 6 mice 
were male and one was not identified. Because we did not find significant effects of sex on 
individual electrophysiologically properties all mice were included in the analyses reported in the 
text. When including only male mice the effects of housing on the first principal component 
remained significant, while the effects of housing on individual electrophysiologically properties 
no longer reach statistical significance after correcting for multiple comparisons. Additional 
analyses that consider only male mice are provided in the code associated with the manuscript.  
 
Viral injections . To label Cre expressing neurons in Wfs1 Cre heterozygous mice we 
stereotaxically injected AAV-FLEX-GFP, generated with a chimeric 1/2 serotype, which 
expresses GFP from a CBA promoter (Murray et al., 2011)(titer: 1.5 × 1012 cp/ml) as described 
in Surmeli et al., 2015. 
 
Slice preparation.  Methods for preparation of parasagittal brain slices containing medial 
entorhinal cortex were based on procedures described previously (Pastoll et al., 2012b). Briefly, 
mice were sacrificed by cervical dislocation and their brains carefully removed and placed in 
cold (2-4 oC) modified ACSF, with composition (in mM): NaCl 86, NaH2PO4 1.2, KCl 2.5, 
NaHCO3 25, Glucose 25, Sucrose 75, CaCl 2 0.5, MgCl 2 7. Brains were then hemisected and 
sectioned, also in modified ACSF at 4-8 oC, using a vibratome (Leica VT1200S). After cutting 
brains were placed at 36 oC for 30 minutes in standard ACSF, with composition (in mM): NaCl 
124, NaH2PO4 1.2, KCl 2.5, NaHCO3 25, Glucose 20, CaCl 2 2, MgCl 2 1. They were then 
allowed to cool passively to room temperature. All slices were prepared by the same 
experimenter (HP) following the same procedure on each day. 
 
Recording methods. Whole-cell patch-clamp recordings were made between 1 to 10 hours 
after slice preparation using procedures described previously (Pastoll et al., 2012a, 2012b, 
2013; Sürmeli et al., 2015). Patch electrodes were filled with the following intracellular solution 
(in mM): K Gluconate 130; KCl 10, HEPES 10, MgCl 2 2, EGTA 0.1, Na 2ATP 2, Na 2GTP 0.3 
NaPhosphocreatine 10. The open tip resistance was 4-5 MΩ, all seal resistances were > 2 GΩ 
and series resistance were < 30 MΩ. Recordings were made in current clamp mode using 
Multiclamp 700B amplifiers (Molecular Devices, Sunnyvale, CA, USA) connected to PCs via 
Instrutech ITC-18 interfaces (HEKA Elektronik, Lambrecht, Germany) and using Axograph X 
acquisition software (http://axographx.com/). Pipette capacitance and series resistances were 
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compensated using the capacitance neutralisation and bridge-balance amplifier controls. An 
experimentally measured liquid junction potential of 12.9 mV was not corrected for. Stellate cells 
were identified by their large sag response and the characteristic waveform of their action 
potential afterhyperpolarization (see (Alonso and Klink, 1993; Gonzalez-Sulser et al., 2014; 
Nolan et al., 2007; Pastoll et al., 2012a)). 
 
To maximize the number of cells recorded per animal we adopted two strategies. First, to 
minimize the time required to obtain data from each recorded cell, we measured 
electrophysiological features using a series of three short protocols following initiation of stable 
whole-cell recordings. We used responses to sub-threshold current steps to estimate passive 
membrane properties (Figure 2A), a frequency modulated sinusoidal current waveform (ZAP 
waveform) to estimate impedance amplitude profiles (Figure 2B) and a linear current ramp to 
estimate the action potential threshold and firing properties (Figure 2C). From analysis of data 
obtained with these protocols we obtained 12 quantitative measures that describe sub- and 
supra-threshold integrative properties of each recorded cell (Figure 2A-C). Second, for the 
majority of mice two experimenters recorded in parallel from neurons in two sagittal brain 
sections from the same hemisphere. The median dorsal-ventral extent of the recorded SCs was 
1644 µm (range 0 - 2464 µm). Each experimenter aimed to evenly sample recording locations 
across the dorsoventral extent of the MEC, and for most animals each experimenter recorded 
sequentially from opposite extremes of the dorsoventral axis. Each experimenter varied the 
starting location for recording between animals. For several features the direction of recording 
affected their measured dependence on dorsoventral location, but the overall dependence of 
these features on dorsoventral location was robust to this effect (Supplemental Table 9).  
 
Measurement of electrophysiological features. Electrophysiological recordings were 
analysed in Matlab (Mathworks) using a custom written semi-automated pipeline. We defined 
each feature as follows (see also (Nolan et al., 2007; Pastoll et al., 2012a)): resting membrane 
potential was the mean of the membrane potential during 1 s prior to injection of current steps 
used to assess subthreshold properties; input resistance was the steady-state voltage response 
to the negative current steps divided by their amplitude; membrane time constant was the time 
constant of an exponential function fit to the initial phase of membrane potential responses to 
the negative current steps; the sag coefficient was the steady-state divided by the peak 
membrane potential response to the negative current steps; resonance frequency was the 
frequency at which the peak membrane potential impedance was found to occur; resonance 
magnitude was the ratio between the peak impedance and the impedance at a frequency of 1 
Hz; action potential threshold was calculated from responses to positive current ramps as the 
membrane potential at which the first derivative of the membrane potential crossed 20 mv ms-1 
averaged across the first five spikes, or fewer if less spikes were triggered; rheobase was the 
ramp current at the point when the threshold was crossed on the first spike; spike maximum was 
the mean peak amplitude of the action potentials triggered by the positive current ramp; spike 
width was the duration of the action potentials measured at the voltage corresponding to the 
midpoint between the spike threshold and spike maximum; the AHP minimum was the negative 
peak membrane potential of the afterhyperpolarization following the first action potential when a 
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second action potential also occurred; the F-I slope was the linear slope of the relationship 
between the spike rate and injected ramp current over a 500 ms window. 
  
Analysis of location-dependence, experience-dependence and inter-animal differences 
Analyses of location-dependence and inter-animal differences used R 3.4.3 (R Core Team, 
Vienna, Austria) and R Studio 1.1.383 (R Studio Inc., Boston, MA).  
 
To fit linear mixed effect models we used the lme4 package (Bates et al., 2014). Features of 
interest were included as fixed effects and animal identity was included as a random effect. All 
reported analyses are for models with the minimal a priori random effect structure, in other 
words the random effect was specified with uncorrelated slope and intercept. We also evaluated 
models in which only the intercept, or correlated intercept and slope were specified as the 
random effect. Model assessment was performed using Akaike Information Criterion (AIC) 
scores. In general, models with either random slope and intercept, or correlated random slope 
and intercept, had lower AIC scores than random intercept only models, indicating a better fit to 
the data. We used the former set of models for all analyses of all properties for consistency and 
because a maximal effect structure may be preferable on theoretical grounds (Barr et al., 2013). 
We evaluated assumptions including linearity, normality, homoscedasticity and influential data 
points. For some features we found modest deviations from these assumptions that could be 
remedied by handling non-linearity in the data using copula transformation. Model fits were 
similar following transformation of the data. However, we focus here on analyses of the 
untransformed data because physical interpretation of values for data points is clearer. 
 
To evaluate location-dependence of a given feature, p-values were calculated using a 𝜒2 test 
comparing models to null models with no location information but identical random effect 
specification. To calculate marginal and conditional R2 of mixed effect models we used the 
MuMin package (Bartoń, 2014).  To evaluate additional fixed effects we used Type II Wald 𝜒2 
test tests provided by the car package (Fox and Weisberg, 2018). To compare mixed effect 
with equivalent linear models we used a 𝜒2 test to compare the calculated deviance for each 
model. For clarity we have reported key statistics in the main text and provide full test 
statistics in the Supplemental Tables. In addition the code will be provided as an R 
markdown document in which the analyses can be fully reproduced. 
 
To evaluate partial correlations between features we used the function cor2pcor from the R 
package corpcor (Schafer et al., 2017). Principal components analysis used core R 
functions. 
 
Implementation of tests for modularity. To establish statistical tests to distinguish ‘modular’ 
from ‘continuous’ distributions given relatively few observations, we classified datasets as 
continuous or modular by modifying the gap statistic algorithm (Tibshirani et al., 2001). The gap 
statistic estimates the number of clusters (kest) that best account for the data in any given 
dataset (Supplementary Figure 1A-C). However, this estimate may be prone to false positives, 
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particularly where the numbers of observations are low. We therefore introduced a thresholding 
mechanism for tuning the sensitivity of the algorithm so that the false positive rate, which is the 
rate of misclassifying datasets drawn from continuous (uniform) distributions as ‘modular’, is 
low, constant across different numbers of cluster modes and insensitive to dataset size 
(Supplementary Figure 1D-G). With this approach we are able to estimate whether a dataset is 
best described as lacking modularity (kest = 1), or having a given number of modes (kest > 1). We 
describe below tests carried out to validate the approach. 
  
To illustrate the sensitivity and specificity of the modified gap statistic algorithm we applied it to 
simulated datasets drawn either from a uniform distribution (k = 1, n = 40) or a bimodal 
distribution with separation between the modes of 5 standard deviations (k = 2, n = 40, sigma = 
5)(Supplemental Figure 2A). We set the thresholding mechanism so that kest for each distinct k 
(where kest ≥ 2) has a false positive rate of 0.01. In line with this, testing for 2 ≤ kest ≤ 8 (the 
maximum k expected to occur in grid spacing in the MEC), across multiple (N = 1000) simulated 
datasets drawn from the uniform distribution, produced a low false positive rate (P(kest) ≥ 2 = 
~0.07), whereas when the data were drawn from the bimodal distribution the ability to detect 
modular organisation (p detect) was good (P(kest) ≥ 2 = ~ 0.8)(Supplemental Figure 2B). The 
performance of the statistic improved with larger separation between clusters and with greater 
numbers of data points per dataset (Supplemental Figure 2C) and is relatively insensitive to the 
numbers of clusters (Supplemental Figure 2D). The algorithm maintains high rates of p detect 
when modes have varying densities and when sigma between modes varies in a manner similar 
to grid spacing data (Supplemental Figure 3). 
  
Recently described algorithms (Giocomo et al., 2014; Stensola et al., 2012) address the 
problem of identifying modularity when data are sampled from multiple locations and data 
values vary as a function of location, as is the case for the mean spacing of grid fields for cells 
at different dorsoventral locations (Hafting et al., 2005). They generate log normalised 
discontinuity (which we refer to here as lnDS) or discreteness scores, which are the log of the 
ratio of discontinuity or discreteness scores for the data points of interest and for the sampling 
locations, with positive values interpreted as evidence for clustering (Giocomo et al., 2014; 
Stensola et al., 2012). However, in simulations of datasets generated from a uniform distribution 
with evenly spaced recording locations, we find that the lnDS is always greater than zero 
(Supplemental Figure 4A). This is because evenly spaced locations result in a discontinuity 
score that approaches zero and therefore the log ratio of the discontinuity of the data to this 
score will be positive. Thus, for evenly spaced data the lnDS is guaranteed to produce false 
positive results. When locations are instead sampled from a uniform distribution, approximately 
a half of simulated datasets have a log discontinuity ratio greater than 0 (Supplemental Figure 
4A), which in previous studies would be interpreted as evidence for modularity (Giocomo et al., 
2014). Similar discrepancies arise for the discreteness measure (Stensola et al., 2012). To 
address these issues we introduced a log discontinuity ratio threshold, so that the discontinuity 
method could be matched to produce a similar false positive rate to the adapted gap statistic 
algorithm used in the example above. After including this modification, we found that for a given 
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false positive rate the adapted gap statistic is more sensitive at detecting modularity in the 
simulated datasets (Supplementary Figure 4B). 
  
To establish whether the modified gap statistic detects clustering in experimental data we 
applied it to previously published grid cell data (Stensola et al., 2012). We find that the modified 
gap statistic identified clustered grid spacing for 6 of 7 animals previously identified as having 
grid modules and with n ≥ 20. For these animals the number of modules was similar (but not 
always identical) to the number of previously identified modules (Supplementary Figure 5). In 
contrast, the modified gap statistic does not identify clustering in 5 of 6 sets of recording 
locations, confirming that the grid clustering is likely not a result of uneven sampling of locations 
(we could not test the 7 th as location data were not available). The thresholded discontinuity 
score also detects clustering in the same 5 of the 6 tested sets of grid data. From the 6 grid 
datasets detected as clustered with the modified gap statistic we estimated the separation 
between clusters by fitting the data with a mixture of Gaussians, with the number of modes set 
by the value k obtained with the modified gap statistic. This analysis suggested that the largest 
spacing between contiguous modules in each mouse is always > 5.6 standard deviations (mean 
=  20.5 ± 5.0 standard deviations). Thus, the modified gap statistic detects modularity found in 
the grid system and indicates that previous descriptions of grid modularity are in general robust 
to the possibility of false positives associated with the discreteness and discontinuity methods. 
 
 
Data and code availability 
Data will be made available through the University of Edinburgh Datashare resource 
(https://datashare.is.ed.ac.uk/). Code for analyses is available at 
https://github.com/MattNolanLab/Inter_Intra_Variation . 
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Supplemental Figures 
 
 

 
 
Supplemental Figure 1. A quantitative adaptation of the Gap Statistic clustering algorithm 
(A-C) Logic of the Gap Statistic. (A) Simulated clustered dataset with three modes (k = 3)(open 
grey circles) (upper) and corresponding simulated reference dataset drawn from a uniform 
distribution with lower and upper limits set by the minimum and maximum values from the 
corresponding clustered dataset (open grey diamonds). Data were allocated to clusters by 
running a K-means algorithm 20 times on each set of data and selecting the partition with the 
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lowest average intracluster dispersion. Red, green, blue and yellow dashed ovals show a 
realisation of data subsets allocated to each cluster when kEval  = 1, 2, 3 and 4 modes.  (B) The 
average value of the log intracluster dispersion for the clustered (open circles) and reference 
(open diamonds) datasets for each value of k tested in (A). (C) Gap values resulting from the 
difference between the clustered and reference values for each k in (B). Many  (≥ 500 in this 
paper) reference distributions are generated and their mean intracluster dispersion values are 
subtracted from those arising from the clustered distribution to maximise the reliability of Gap 
values. 
(D) A procedure for selecting the optimal k depending on the associated gap values. 
Quantitative procedure for selecting optimal k (kest). ∆Gap values (open circles) are obtained by 
subtracting from the Gap value of a given k the Gap value for the previous k (∆Gap k = Gap k - 
Gap k-1). For each ∆Gap k, if its ∆Gap value greater than a threshold (filled triangles) associated 
with that ∆Gap k, that ∆Gap k will be kest, if no ∆Gap exceeds its threshold, kest = 1. In the figure, 
for ∆Gap k = 2, 3, 4 (brown, pink and cyan), the ∆Gap value exceeds its threshold only when 
∆Gap k = 3. Therefore kest = 3. (E-G) Determination of ∆Gap k thresholds. (E) Histograms of ∆Gap 
values calculated from 20000 simulated datasets drawn from uniform distributions for each 
∆Gap k (brown, pink and cyan respectively for ∆Gap k = 2, 3, 4) for a single dataset size (n = 40). 
∆Gap thresholds (filled triangles) are the values beyond which 1% of the ∆Gap values fall and 
vary with ∆Gap k. (F) Histograms of ∆Gap values for a range of dataset sizes (n = 20, 40, 100) 
and their associated thresholds. (G) Plot of the ∆Gap thresholds as a function of dataset size 
and ∆Gap k. For separate ∆Gap k, ∆Gap threshold values are well fit by a hyperbolic function of 
dataset size. These fits provide a practical method of finding the appropriate ∆Gap threshold for 
an arbitrary dataset size. 
   

30 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2019. ; https://doi.org/10.1101/678565doi: bioRxiv preprint 

https://doi.org/10.1101/678565
http://creativecommons.org/licenses/by/4.0/


 

 
 
 
Supplemental Figure 2. Discrimination of continuous from modular organisations using 
the adapted Gap Statistic algorithm 
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(A) Simulated datasets (each n = 40) drawn from continuous (uniform, k = 1 mode) (upper) and 
modular (multimodal mixture of Gaussians with k = 2 modes)(lower) distributions, and plotted 
against simulated dorsoventral locations. Also shown are probability density functions (pdf) used 
to generate each dataset (light blue) and the densities estimated post-hoc from the generated 
data as kernel smoothed densities (light grey pdfs). 
(B) Histograms showing the distribution of kest from 1000 simulated datasets drawn from each 
pdf in (A). kest is determined for each dataset by a modified gap statistic algorithm (see 
Supplemental Figure 1 above). When kest = 1, the dataset is considered continuous 
(unclustered), when kest ≥ 2 the dataset is considered modular (clustered). The algorithm 
operates only on the feature values and does not use location information. 
(C) Illustration of a set of clustered (k = 2) pdfs with the distance (in standard deviations) 
between clusters ranging from 2 to 6 (upper). Systematic evaluation of the ability of the modified 
gap statistic algorithm to detect clustered organisation (kest ≥ 2) in simulated datasets of different 
size (n = 20 to 100) drawn from the clustered (filled blue) and continuous (open blue) pdfs 
(lower). The proportion of datasets drawn from the continuous distribution that have kest ≥ 2 is 
the false positive (FP) rate (pFP = ~0.07). The light grey filled circle shows the smallest dataset 
size (n = 40) with SD = 5 where the proportion of datasets detected as clustered (p detect) is ~ 0.8. 
(D). Plot showing how p detect at n = 40, SD = 5 changes when datasets are drawn from pdfs with 
different numbers of clusters (n modes from 2 to 8). Further evaluation of analysis of additional 
clusters is in the following figure. 
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 Supplemental Figure 3. Additional evaluation of the adapted Gap Statistic algorithm 
(A – C) Plots showing the results showing how p detect (the ability of the modified gap statistic 
algorithm to detect clustered organisation) depends on dataset size and separation between 
cluster modes in simulated datasets drawn from clustered pdfs with different numbers of modes. 
The grey markers indicate n = 40, SD = 5 (as shown in Figure 1E). In each plot,  p detect is shown 
as a function of simulated dataset size and separation between modes when k = 3 (A), k = 5 (B) 
and k = 8 (C), which was the maximum number of clusters evaluated. 
(D – F) Histograms showing the counts of kest from the 1000 simulated n = 40, SD = 5 datasets 
(grey filled circles) illustrated in (A) – (C) respectively. 
(G) p detect as a function of dataset size and mode separation with k = 5 but when cluster modes 
are unevenly sampled. Sample sizes from clusters vary randomly with each dataset. A single 
mode can contribute from all to none of the points in any simulated dataset. 
(H) p detect as a function of dataset size and mode separation with k = 5 but when the distance 
between mode centres increases by a factor of sqrt(2) between sequential cluster pairs. Data is 
shown for different initial separations (the distance between the first two cluster centres) ranging 
from 1 to 4 (with corresponding separations between the final cluster pair ranging from 4 to 16).  
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Supplemental Figure 4. Comparing delta gap with discontinuity measures for 
discreteness 
(A) Counts of log discontinuity ratio scores generated from a simulated uniform data distribution. 
The data distribution was ordered and then sampled either at positions drawn at random from a 
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uniform distribution (dark blue), or at positions with a fixed increment (light blue). For the data 
sampled at random positions approximately half of the scores are > 0 and for even sampling all 
scores are > 0. Therefore, a threshold score > 0 does not distinguish discrete from continuous 
distributions.  
(B) Comparison of p detect as a function of dataset size for the adapted Gap Statistic Algorithm, 
the discontinuity (upper) and the discreteness algorithm (lower). Each algorithm is adjusted to 
yield a 7% false positive rate. Each column shows simulations of data with different numbers of 
modes (k). 
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Supplemental Figure 5. Evaluation of modularity of grid firing using a modified gap 
statistic algorithm 
Examples of grid spacing for individual neurons (crosses) from different mice. Kernel smoothed 
densities (KSDs) were generated with either a wide (solid grey) or narrow (dashed lines) kernel. 
The number of modes estimated using the modified gap statistic algorithm ranges is ≥ 2 for all 
but one animal (animal 4) with n ≥ 20 (animals 3 and 7 have < 20 recorded cells). We did not 
have location information for animal 2.  
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Supplemental Figure 6. Large environment for housing 
(A-B) The large cage environment viewed from above (A) and from inside (B). 
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Supplemental Tables 
 

 
 
Supplemental Table 1. Dependence of calbindin cell properties on dorsoventral position 
Analyses are as described for Table 1. Data are from GFP positive putative pyramidal neurons 
(n = 42, N = 3). 
 
 

 
 
Supplemental Table 2. Dependence of SC properties on age 
The distinguishing electrophysiological features of SCs and their dorsoventral organisation were 
apparent at all ages, with some features depending significantly on age (left columns), 
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consistent with the idea that SCs continue to mature beyond P18 (Boehlen et al., 2010; Burton 
et al., 2008). When we considered only animals between P33 and P44 we did not find any 
significant effect of age (right columns). Significance estimates for the effects of dorsoventral 
position (dvloc), age (age) and interactions between dorsoventral position and age (dvloc:age) 
were estimated using type II ANOVA and Wald 𝜒2 test from fits to mixed models containing age 
and location as fixed effects and animal identity as random effects. Significance estimates were 
adjusted for multiple comparisons using the Benjamini and Hochberg method. 
 
 
 

 
 
Supplemental Table 3. Dependence of SC properties on housing 
Significance estimates for the effects of dorsoventral position (dvloc), housing (housing) and 
interactions between dorsoventral position and housing (dvloc:housing) estimated using type II 
ANOVA and Wald 𝜒2 test from fits to mixed models containing age and location as fixed effects 
and animal identity as random effects. Initial significance estimates (raw p) were adjusted for 
multiple comparisons (adjusted p) using the Benjamini and Hochberg method. 
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Supplemental Table 4. Inter-animal differences in electrophysiological features remain 
after accounting for housing 
Results from comparison of mixed effect model incorporating dorsoventral location and housing, 
with an equivalent linear model. The significance estimate (p) is calculated using a chi squared 
test and adjusted for multiple comparisons (p_adj) using the Benjamini and Hochberg method. 
 
 
 
 

 
 
Supplemental Table 5. Dependence of SC properties on hemisphere 
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We did not find significant effects of brain hemisphere on any features except for the 
relationship between dorsoventral location and sag. Significance estimates for the effects of 
dorsoventral position (dvloc), brain hemisphere (hemi) and interactions between dorsoventral 
position and hemisphere (dvloc:hemi) were estimated using type II ANOVA and Wald 𝜒2 test 
from fits to mixed models containing age and location as fixed effects and animal identity as 
random effects. Initial significance estimates (raw p) were adjusted for multiple comparisons 
(adjusted p) using the Benjamini and Hochberg method. 
 
 

 
 
Supplemental Table 6. Dependence of SC properties on mediolateral position 
Mediolateral as well as dorsoventral position has been reported to determine the sub-threshold 
electrophysiological features of SCs (Canto and Witter, 2012).  We found significant effects of 
mediolateral position on all measured electrophysiological features. However, the sizes of the 
effects of mediolateral position on subthreshold features (vm, ir, sag, tau, resf, resmag, rheo) 
were much smaller than for dorsoventral position. In contrast, supra-threshold features (spkthr, 
spkmax, ahp) were more greatly affected by mediolateral position, with more medial neurons 
having a higher spike threshold, and lower amplitudes of the spike peak and 
after-hyperpolarization. Fixed effects are the intercept and slope coefficients for mixed models 
containing dorsoventral and mediolateral location as fixed effects and animal identity as random 
effects Significance estimates for the effects of dorsoventral position (dvloc), mediolateral 
position (ml) and interactions between dorsoventral position and mediolateral position (dvloc:ml) 
are estimated using type II ANOVA and Wald 𝜒2 test from the fits of the mixed models. Initial 
significance estimates (raw p) were adjusted for multiple comparisons (adjusted p) using the 
Benjamini and Hochberg method. 
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Supplemental Table 7. Dependence of SC properties on experimenter 
We found that for many electrophysiological features the identity of the experimenter affected 
the intercept, but not the slope, of their relationship with dorsoventral position. All features 
except for spike threshold nevertheless followed a dorsoventral organisation after accounting for 
the experimenter. Significance estimates for the effects of dorsoventral position (dvloc), 
experimenter (exp) and interactions between dorsoventral position and experimenter (dvloc:exp) 
were estimated using type II ANOVA and Wald 𝜒2 test from fits to mixed models containing age 
and location as fixed effects and animal identity as random effects. Initial significance estimates 
(raw p) were adjusted for multiple comparisons (adjusted p) using the Benjamini and Hochberg 
method. 
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Supplemental Table 8. Dependence of SC properties on time since slice preparation 
We anticipated that the interval between slice preparation and recording may influence 
measured electrophysiological features. Consistent with our expectation, analyses of the data 
were consistent with changes to some electrophysiological features of SCs with time since slice 
preparation, but dorsoventral gradients could not be explained by these changes (see also 
Supplemental Table 8 below). Significance estimates for the effects of dorsoventral position 
(dvloc), time since slice preparation (rect) and interactions between dorsoventral position and 
experimenter (dvloc:rect) estimated using type II ANOVA and Wald 𝜒2 test from fits to mixed 
models containing age and location as fixed effects and animal identity as random effects. Initial 
significance estimates (raw p) were adjusted for multiple comparisons (adjusted p) using the 
Benjamini and Hochberg method. 
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Supplemental Table 9. Dependence of SC properties on direction in which sequential 
recordings are made 
In anticipation of effects of the time since slice preparation on electrophysiological features of 
SCS, we varied between experimenters and experimental days the direction along the 
dorsoventral axis from which consecutive recordings were made (see Methods). Consistent with 
effects of time on electrophysiological features (see Supplemental Table 7 above), we found 
that the direction in which sequential recordings were made influence the slope, but not the 
intercept of several electrophysiological features. Significance estimates for the effects of 
dorsoventral position (dvloc), direction in which sequential recordings were made (dir) and 
interactions between dorsoventral position and recording direction (dvloc:dir) estimated using 
type II ANOVA and Wald 𝜒2 test from fits to mixed models containing age and location as fixed 
effects and animal identity as random effects. Initial significance estimates (raw p) were 
adjusted for multiple comparisons (adjusted p) using the Benjamini and Hochberg method. 
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Supplemental Table 10. Interanimal differences in extended models 
Results from comparison of mixed effect model incorporating dorsoventral location, housing, 
mediolateral position, experimenter identity and direction in which recordings were obtained with 
an equivalent linear model. Data are from animals between 32 and 45 days old. The 
significance estimate (p) is calculated using a chi squared test and adjusted for multiple 
comparisons (p_adj) using the Benjamini and Hochberg method. 
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Supplemental Table 11. Interanimal differences in models fit to minimal datasets 
Results from comparison of mixed effect models with dorsoventral location as a fixed effect and 
animal identity as a random effect using a minimal datasets obtained by either HP (upper) or 
DG (lower). Data are from animals between 32 and 45 days old. Because of the smaller size of 
these datasets the statistical power to detect inter-animal variation is reduced. Nevertheless, in 
these analyses the conditional R2 of the mixed model fit was again substantially higher than the 
marginal R2, and most (9/12) features were better fit by a mixed model compared to a 
corresponding linear model in both datasets.  
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Supplemental Table 12. Electrophysiological features and the number of recorded 
neurons 
We considered whether variation in tissue quality as a contributor to inter-animal variability. To 
minimise this possibility we standardised our procedures for tissue preparation (see Methods), 
such that slices were of consistent high quality as assessed by low numbers of unhealthy cells 
and by visualisation of soma and dendrites of neurons in the slice. We further reasoned that if 
the condition of the slices differed between animals, then in better quality slices it would be 
easier to record from more neurons, in which case any features that depend on tissue quality 
would correlate with the number of recorded neurons. We found that the majority (10/12) of 
electrophysiological features were not significantly (p > 0.2) associated with the number of 
recorded neurons.  
 
Significance estimates for the effects of dorsoventral position (dvloc), number of recorded 
neurons (counts) and interactions between dorsoventral position and number of recorded 
neurons (dvloc:counts) estimated using type II ANOVA and Wald 𝜒2 test from fits to mixed 
models containing age and location as fixed effects and animal identity as random effects. Initial 
significance estimates (raw p) were adjusted for multiple comparisons (adjusted p) using the 
Benjamini and Hochberg method. 
 
 
 

 
 
Supplemental Table 13. Interanimal differences for experiments with > 35 recorded 
neurons 
To further assess the robustness of our results to possible variations in slice quality, we 
repeated analyses of inter-animal differences but focussing only on data from animals for which 
> 35 recordings were made (N = 11, n = 459). Comparison of marginal and conditional R2 
values continued to indicate substantial inter-animal variance, and fits obtained with mixed 
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models remained significantly different to fits that did not account for animal identity (p < 4.4 x 
10 -5). Analyses are as for Supplemental Table 1, but are restricted to experiments in which > 35 
neurons were recorded from. 
 
 
 

 
 
 
Supplemental Table 14. Dependence of principal components on dorsoventral position 
and animal identity 
Analyses are as described for Table 1, but are applied to principal components of the 
electrophysiological features of SCs.  
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Supplemental Table 15. Dependence of principal components of SC properties on 
housing 
Analyses are as described for Supplemental Table 3, but are applied to principal components of 
the electrophysiological features of SCs. 
 
 

 
 
Supplemental Table 16. Dependence of principal components on animal identity in 
models that account for housing 
Analyses are as for Supplemental Table 10, but are applied to principal components of the 
electrophysiological features of SCs. 
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