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Abstract 

Background: In the last decade, integrative studies of microbiome and metabolome have 

experienced exponential growth in understanding their impact on human health and 

diseases. However, analyzing the resulting multi-omics data remains a significant 

challenge in current studies due to the lack of a comprehensive computational tool to 

facilitate data integration and interpretation. In this study, we have developed a 

microbiome and metabolome correlation analysis pipeline (MMCA) to meet the urgent 

needs for tools that effectively integrate microbiome and metabolome data to derive 

biological insights. 

Results: To make the MMCA pipeline available to a wider research community, we have 

implemented a web server (http://mmca.met-bioinformatics.cn). MMCA integrates a 

variety of statistical analysis methods in order to obtain reliable results from multiple 

analyses, including univariate analysis and multivariate modeling. MMCA also provides 

KEGG-based functional network analysis in order to investigate their biological interplay 

between metabolites and microbes. To make it more convenient, an html-based report is 

available for overview and can be downloaded for later use. 

Conclusions: MMCA allows users to upload annotated microbiome and metabolome 

data, provides a user-friendly interface to analyze and visualize the complex interplay 

between microbiome and metabolome, and helps users to develop mechanistic hypothesis 

for nutritional and personalized therapies of diseases.  

Keywords: MMCA, microbiome and metabolome correlation, data integration, network 

analysis, metabolic function 
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Background 

The study of microbiome in human health has experienced exponential growth over the 

last decade with the advent of new sequencing technologies for interrogating complex 

microbial communities[1]. Meanwhile, metabolomics has been an important tool for 

understanding microbial community functions and their links to health and diseases 

through the quantitation of dozens to hundreds of small molecules[2]. The gut microbiota 

is considered a metabolic ‘organ’ to protect the host against pathogenic microbes, 

modulate immunity, and regulate metabolic processes, including short chain fatty acid 

production and bile acid biotransformation[3]. Conversely, these metabolites can modulate 

gut microbial compositions and functions both directly and indirectly[4]. Thus, the 

microbiota-metabolites interactions are important to maintain the host health and well-

being. Integrative data analysis of gut microbiome and metabolome can offer deep 

insights on the impact of lifestyle and dietary factors on chronic and acute diseases (e.g., 

autoimmune diseases, inflammatory bowel disease[5], cancers[6], type 2 diabetes and 

obesity[7], cardiovascular disorders, and non-alcoholic fatty liver disease[8]), and provide 

potential diagnostic and therapeutic targets[9]. 

 

In the last decade, metabolomics studies in microbiota-related research have increased in 

a wide range of research areas, such as gastroenterology, biochemistry, endocrinology, 

microbiology, genetics, to nutrition, food science and pharmacology (Figure S1). 

However, both the metagenomics/16s rRNA-based high-throughput sequencing 

technologies and mass spectrometry/nuclear magnetic resonance-based metabolomics 

platforms can produce large and high-dimensional data, posing a major challenge for 

subsequent data integration[10, 11]. Current integration analysis methods mainly focus on 

statistical correlations between microbiome and metabolome, such as the spearman 

correlations and partial least squares discriminant analysis (Table S1). Pedersen et al. 

recently summarized a step-by-step computational protocol from their previous study that 

applied WGCNA, a dimension reduction method, to measure the correlations among the 

host phenotype, gut metagenome and fasting serum metabolome. However, separate 

analyses of -omics data through one or two statistical methods only provide fragmented 

information and do not capture the holistic view of disease mechanisms. Moreover, 
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although much bioinformatics work has been done to process and analyze the individual 

omics data, to date, it still lacks a comprehensive strategy or a computational tool to 

analyze the correlations between microbiome and metabolome[12]. To rapidly advance 

microbiome and metabolome data integration and understand their roles in diverse 

diseases, advanced computational methods for multi -omics data integration and 

interpretation need to be developed[2]. 

 

In this study, we have developed a comprehensive computational tool, a standardized 

workflow for microbiome and metabolome correlation analysis (MMCA). MMCA 

integrates a variety of univariate and multivariate methods for correlation analysis and 

data integration. In addition, functional network analysis implemented with KEGG 

metabolic pathway database can provide deep insights of their biological correlations, 

i.e., the possible participation of identified microbes in a specific metabolic reaction or 

metabolic pathway. MMCA accepts the microbiome data from 16S rRNA gene or 

shotgun metagenomic sequencing technologies, and metabolomics data from mass 

spectrometry or NMR spectroscopy platforms. Other than current bioinformatics tools, 

MMCA is an automated data analysis and reporting pipeline that can be applied by users 

with little training in bioinformatics. MMCA is a web-based server with user-friendly 

interface, and public available to academic users through http://mmca.met-

bioinformatics.cn. 

 

Implementation 

MMCA is developed in Java web system, with html, Javascript technology implemented 

for interactive interface and JFinal and Mysql databases for data management in the 

backend. All the statistical analyses and visualization were written in R language. The 

entire system is deployed on a cloud server with 16 GB of RAM and four virtual CPUs 

with 2.6 GHz each. Users can register an academic account to manage their own research 

projects. Once data analysis is completed, all the data and analysis results will be saved 

for 72 hours and removed automatically afterwards. MMCA has been tested with major 

modern browsers such as Google Chrome, Safari, Mozilla Firefox and Microsoft Internet.  
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Result 

Workflow 

A standard data analysis workflow in MMCA contains six major steps: (1) data upload 

and processing, (2) global similarity analysis of microbiome and metabolome data 

matrix, (3) pairwise metabolite-microbe correlation analysis, (4) multivariate regression-

based integration analysis, (5) functional network analysis, and (6) an auto-generated 

html report for overview. Figure 1 summarizes the overall design and the flowchart of 

MMCA. Each step offers a variety of options and procedures to help users to explore 

complex correlations between microbiome and metabolome. In this section, each step 

will be described in detail. 

 

Data upload and processing 

Data upload. The first step is to upload three different types of data: (1) microbiome 

datasets: for 16s rRNA gene sequencing data, an OTU abundance table with taxonomic 

annotations (.txt format) and a corresponding reference sequence file (.fna format) are 

required; Similarly, a unigene table with taxonomic annotation and a table with KEGG 

KO function annotations are required for metagenomic shotgun sequencing study. (2) 

metabolome dataset: a metabolite abundance table (.csv format) with compound name, 

HMDB database ID, and chemical class information, and (3) a metadata table containing 

sample IDs and group information. Sample IDs from two datasets may not be exactly the 

same, but should be paired correctly within the metadata table. Once uploaded 

successfully, MMCA system examines the consistency of sample IDs from two datasets 

and notifies users whether there exist unmatched samples. After that, the metadata table 

is presented and can be modified by users interactively. For example, instead of 

uploading a new table, when users want to change grouping information or remove 

certain samples, they can modify group IDs or uncheck certain samples directly on the 

table for downstream analysis. 

 

Missing value processing. This step includes data filtering and missing value imputation. 

First, unqualified variables can be removed according to the criteria of sample prevalence 

and variance across samples. For microbiome data, the minimal count number, the 
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percentage of samples with non-missing values, and the relative standard deviation (RSD) 

are used for screening. As suggested by MicrbiomeAnalysis[13], features with very low 

count (e.g., <2) in a few samples (e.g., <20%), or very stable across all the samples (e.g., 

RSD < 30%), are considered difficult to interpret their biological significance in the 

community and can be removed directly. Similarly, our previous work summarized that 

those metabolic features with missing values in more than 80% of samples or RSD values 

smaller than 30% can be filtered at the beginning. The sample prevalence is calculated 

based on all the samples or samples within each group[14]. 

 

Second, both microbiome and metabolome have the characteristics of sparsity seen as the 

absence of many taxa or metabolites across samples due to biological and/or technical 

reasons[15]. Such missing values may pose general numerical challenges for traditional 

statistical analysis, thus MMCA provides a variety of methods for missing value 

imputation, aiming to remove zeros in the data matrix and facilitate subsequent statistical 

analysis. There are two different approaches to handle missing values: one is to simply 

replace missing values with a certain value (called pseudo count in microbiome), 

including half of the minimum or the median value; another is to apply regression models 

to impute missing values, such as random forest, k-nearest neighbors, Probabilistic PCA, 

Bayesian PCA, singular value decomposition, and the quantile regression imputation of 

left-censored data (QRILC)[14]. Users may choose an appropriate method for missing 

value imputation. 

 

Data normalization. After missing value processing, users can perform normalization 

method in order to make more meaningful comparisons. MMCA provides the total sum 

scaling that calculates the relative percentage of features, or the log transformation when 

data does not follow normal distribution. To note, scaling or transformation methods are 

also provided for specific statistical analysis, such as principal component analysis (PCA) 

and PLS-DA analysis. 

 

Global similarity between two datasets  
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The first step is to apply Coinertia analysis (CIA) and Procrustes analysis (PA) to 

evaluate the global similarity between metabolome and microbiome dataset (Figure 1)[16]. 

CIA can be considered as a PCA model of the joint covariances of two datasets. The RV 

coefficient is between 0 and 1, and the closer it is to 1 the greater similarity between two 

datasets (Figure 2A). PA measures the congruence of two-dimensional data distributions 

from superimposition and scaling of PCA models of two datasets. Spearman correlation 

analysis was used to measure their similarities (Figure 2B).  

 

Pairwise metabolite-microbe correlation analysis 

Correlation analysis methods. MMCA provides five different types of correlation 

analysis, including Pearson, Spearman, SparCC, CCLasso, and Maximal Information 

Coefficient (MIC) analysis. Although each method has it pros and cons in different 

situations, users can choose an appropriate one as suggested by our previous work on 

method comparisons. Since Spearman correlation analysis outperforms other methods 

due to their overall performances[17], it has been set as a default one in MMCA. Microbes 

can be analyzed according to their different taxonomic annotations (i.e., phylum, genus, 

and species) and metabolites at different chemical classifications (e.g., amino acids, 

sugars, free fatty acids etc.). In addition, MMCA allows users to define the specific 

criteria of significant microbe-metabolite pairs of interest for subsequent analysis, e.g., 

correlation coefficients > 0.3 or <-0.03 and p value <0.05.  

 

Visualization. Three different ways of visualization are provided in order to explore 

complex correlations between microbes and metabolites. The first one is to apply circos 

plot that can help users to quickly identify those microbes belonging to a specific phylum 

(e.g., Firmicutes) that have close correlations with a specific group of metabolites (e.g., 

amino acids) (Figure 2C). The second one is to apply a heat map to illustrate the relative 

positive/negative correlations between each microbe and metabolite. Meanwhile, 

hierarchical clustering is used to analyze the similarities among metabolites or microbes, 

in which closely correlated metabolites/microbes are usually clustered together (Figure 

2D). The third one is to provide a microbe-metabolite interaction network using 
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cytoscape technique, which can help users to explore complex relationship between 

microbes and metabolites (Figure 2E). 

 

Multivariate regression–based data integration 

Unsupervised multivariate analysis. MMCA provides canonical correlation analysis 

(CCA)[18, 19] and O2PLS[20] in order to evaluate the inherent correlations between two 

datasets without considering phenotype information, and to evaluate their relative 

contributions of variables to their similarities/differences. CCA aims to find two new 

bases (canonical variate) in which the correlation between original parameters of two 

datasets is maximized. O2PLS is capable of modeling both prediction and systematic 

variation, and the joint score plot indicates their relationship between two data matrix. 

Metabolites/microbes with the large canonical coefficients from CCA model or loading 

values from O2PLS model are considered essential ones for their similarities. 

 

Supervised multivariate analysis. In comparison, supervised multivariate analysis 

methods integrate two data matrix initially and identify differential variables (microbes & 

metabolites) that significantly contribute to the discrimination of different groups. Here, 

MMCA offers PCA score-based differential analysis, PLS-DA, Orthogonal partial least 

squares discriminant analysis (OPLS-DA), and random forest (RF). PCA is originally an 

unsupervised data mining method; here we examine the differences of the first principal 

component score values from PCA model, and their correlations with the phenotype 

information. PLS-DA and OPLS-DA have been commonly applied in the field of 

metabolomics for data dimension reduction and feature selection. OPLS-DA seeks to 

maximize the explained variance between groups in a single dimension or the first latent 

variable (LV), and separate the within group variance (orthogonal to group difference) 

into orthogonal LVs (Figure 3A). The variable loadings and/or coefficient weights from a 

validated PLS-DA and OPLS-DA model are used to rank variables with respect to their 

performance for discriminating between groups (Figure 3B). Boruta algorithm-based RF 

classifier can identify important features by shuffling samples and adding extra 

randomness to the system (Figure 3C). 
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Network analysis 

WGCNA-based network analysis. Weighted gene co-expression network analysis 

(WGCNA) was recently raised to integrate high-throughput ‘-omics’ datasets for 

identifying the potential mechanistic links[11]. In MMCA, WGCNA algorithm is used to 

collapse co-abundant metabolites into different clusters, and metabolites within a cluster 

are highly correlated. One attractive feature is that both identified and unknown 

metabolite features can be considered. KEGG microbiome functional modules are 

annotated using Tax4fun2[21] for 16s RNA sequencing data or Diamond pipeline[22] for 

shotgun sequencing data, respectively. Finally, the correlations between metabolite 

clusters and microbial functional modules with phenotype information are examined 

using Spearman correlation analysis and further visualized using heat map and network 

(Figure 4A-B).  

 

Metabolic function analysis. The final step aims to interpret the biological correlations 

between microbes and metabolites through KEGG orthology (KO) and pathway 

database[23]. First, KO function analysis/prediction in microbiome data provides KO 

number and their relative expressions (Figure 4C). Meanwhile, MMCA provides 

metabolic pathway enrichment analysis on differential metabolites (Figure 4D). 

According to the chemical reactions of metabolites, related enzymes, genes, and their 

functional KO orthologs in KEGG pathway, MMCA enables to provide microbe-

metabolite interaction network indicating the potential involvement of microbes in a 

specific metabolic pathway (Figure 4E).  

 

Automated html report 

Once users upload the data and optimize parameters of data analysis, MMCA provides a 

simplified user experience through a one-click button to submit a job. It may take a few 

minutes for MMCA to perform data analysis and generate interpretable results. The exact 

processing time depends on the sample size, number of variables, and number of pair-

wise group comparisons. Once the analysis is completed, MMCA will summarize key 

results and produce an html report for users. In addition, a zip-compressed package 
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containing all the supporting data files (tables and figures) can be downloaded for future 

use. 

 

Application example 

To illustrate the utility of MMCA, we conducted a study to identify characteristic gut 

microbiome and metabolome of adolescent patients with acne vulgaris, and their 

correlations. Fecal samples were collected from 15 patients (YAS) and 15 age and 

gender-matched healthy controls (YCS). Gut microbiome was analyzed by 

sequencing 16S ribosomal RNA gene (V3-V4 region) and targeted quantitative analysis 

of 118 fecal metabolites was performed using gas chromatography time-of-flight mass 

spectrometry. PA and CIA analysis indicated the slight similarity between two data 

matrix with RV value 0.27 and correlation coefficient 0.34, respectively (Figure 2A-B). 

Then, spearman correlation analysis was performed to explore specific microbe-

metabolite correlations. The circos plot showed four different classes of metabolites (i.e., 

fatty acids, indoles, organic acids and amino acids) correlated with microbes belonging to 

Firmicutes, Actinobacteria, Protebacteria, and Verrucomicrol phylum (Figure 2C). The 

heatmap with specific microbe-metabolite connections indicated that three major 

metabolites (i.e., aminoadipic acid, 3-indoeacetonitril, p-Hydroxyphenylactic acid) had 

significant correlations with differential microbes at Genus level (Figure 2D). The 

network further visualized their significant correlations between microbes and 

metabolites and their classifications (Figure 2E).  

 

The next step was to build multivariate OPLS-DA and RF model in order to evaluate 

their relative contributions to the discrimination between YAS and YCS group. A total of 

265 variables consisting 147 microbes at Genus level and 118 individual metabolites 

were integrated together as a data matrix. OPLS-DA model identified 24 microbes and 5 

metabolites with VIP >1 and significant correlations P<0.05 (Figure 3A-B). The five 

metabolites were linoleic acid, 4-hydroxybenzoic acid, aminoadipic acid, cis-Aconitic 

acid, and myristic acid. However, only 10 significant microbes were accepted in the RF 

model, among which, Bacillus and Lactococcus belonging to Bacilli class were the most 

important ones (Figure 3C). Thus, it seemed that gut microbia changed more significantly 
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than metabolome in adolescent patients with acne vulgaris. Finally, we performed 

functional network analysis to further interpret the biological significance of their 

correlations. WGCNA identified that there were two major metabolite modules (i.e., fatty 

acids and organic acids) significantly correlated with microbiotal predicted functions 

(Figure 4A-B). A total of 40 functions were significant between YAS and YCS group 

(Figure 4C). Meanwhile, three significant metabolic pathways were identified from 

metabolic pathway enrichment analysis (p value < 0.05), among which, fatty acid 

biosynthesis was the most significant pathway (Figure 4D). Finally, MMCA applied 

KEGG database searching and provided an interaction network for each differential 

metabolite (e.g., Dodecanoic acid) to indicate all the relevant microbes that may be 

involved in the same metabolic reaction (Figure 4E). To summarize, gut microbiome 

changed significantly in adolescent patients with acne vulgaris, particularly for microbes 

belonging to Bacilli class. In comparison, gut metabolome did not show significant 

changes, but altered fatty acid metabolism might be associated with the development of 

acne vulgaris in adolescent patients. 

 

Discussion  

We have implemented MMCA pipeline as a user-friendly web server that can provide 

microbiome and metabolome data integration to understand the important roles of 

microbial metabolism in diverse disease contexts. This is a bioinformatics workflow that 

integrates a wide range of univariate and multivariate methods, including PA/CIA-based 

data matrix similarity analysis, univariate-based correlation analysis, multivariate 

regression-based analysis, and knowledge-based network analysis. The advantage of 

applying these methods simultaneously is to understand the inherent characteristics of the 

high-dimensional omics data in different ways, and obtain reliable results from multiple 

analyses. MMCA also implements KEGG database in order to link orthologous gene 

groups to reactions and annotated compounds. So that researchers will have better 

understanding of microbial metabolism, i.e., the participation and relative contributions 

of gut microbiota to certain metabolic reactions or pathway. To make it more convenient, 

MMCA automatically produces a comprehensive report that summarizes and interprets 

the key results.  
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Users can apply MMCA to their own microbiome and metabolome data. In terms of 

analytical platforms, MMCA accepts the microbiome data from 16S rRNA gene 

sequencing or shotgun metagenomic sequencing technologies, and metabolomics data 

from mass spectrometry or NMR analytical platforms. For sample types, many human 

studies on gut microbiota collect fecal samples, due to its non-invasive characteristics. 

The fecal metabolome provides a functional readout of the gut microbiome, and the 

integration analysis can provide better understanding of correlations between gut 

microbiome and metabolome. We recommend applying the same fecal samples of human 

subjects or fecal/colon contents of animals for analysis. However, samples types can be 

from any site, i.e., saliva, buccal mucosa, and colon tissue samples. Simultaneously, 

metabolomics studies can analyze feces, plasma/serum, urine, saliva, exhaled breaths, 

cerebrospinal fluid, and tissues of target organs. Thus, sample types may differ, but they 

need to require originating from a same subject for both microbiome and metabolome 

analysis.  

 

Finally, the limitations and future directions of this study disserve to be mentioned. 

MMCA accepts annotated microbioa and metabolites as input data matrix. However, the 

raw data preprocessing steps are not included in this pipeline, e.g., quality control and 

microbial annotation for microbiome data, and peak detection and metabolite annotation 

for metabolomics data. Currently, many sophisticated software tools or pipelines have 

been developed for original data preprocessing, such as Qimme2[24, 25] for 16s RNA 

sequencing, and XCMS for MS-based metabolic profiling[26]. MMCA focuses on 

providing a standardized pipeline and a comprehensive workflow for the integrative 

analysis of metabolome and microbiome data, not only exploring the statistically 

significant correlations but also investigating the biological significance of their 

interaction network. Moreover, KEGG database based functional network analysis can 

help to explain their biological correlations and develop mechanistic hypothesis 

potentially applicable to the development of nutritional and personalized therapies. In the 

future, more advanced integration methods will be introduced in MMCA and more 
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independent knowledge databases (e.g., enzyme database and drug metabolism database) 

will be integrated within MMCA for deeper data interpretation.  

 

Conclusions 

In summary, MMCA is an effective and efficient computational tool for experimental 

biologists to comprehensively analyze and interpret the important interactions between 

microbiome and metabolome in the big data era. 
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Legends 

Figure 1. The flowchart of MMCA. 

Figure 2. Illustration of similarity analysis and spearman correlation analysis results. (A) 

CIA. (B) PA. The length of lines connecting two points indicates the agreement of 

samples between two datasets. (C-E) Circos plot, heat map, and network analysis of 

spearman correlations between microbes and metabolites.  

Figure 3. (A-B) Score and variable importance plot of OPLS-DA model. (C) Feature 

selection of RF analysis. 

Figure 4. Functional network analysis. (A-B) WGCNA-based heatmap and network plot 

between significant metabolite modules and microbial KO functions. (C) Bar plot of 

microbial KO functions. (D) Scatter plot of metabolic pathway enrichment analysis 

results. (E) Metabolite-microbe interaction network. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/678813doi: bioRxiv preprint 

https://doi.org/10.1101/678813
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 1 

 

 

Data upload & processing 

Functional network analysis  

Statistical correlation & data integration analysis 

Ø  Step 2: Global similarity analysis (PA & CIA) 

Ø  Step 3: Pairwise metabolite-microbe correlation (Spearman, 

Pearson, SparCC, CClasso, MIC) 

Ø  Step 4: Multivariate regression analysis ( PCA, O2PLS, PLS-

DA, OPLS-DA, RF, CCA) 

Ø  Step 5-1: WGCNA network analysis 

Ø  Step 5-2: Metabolic function network analysis	

Step 6: Report 

•  Microbiota 
•  Metabolites 
•  Sample info 

•  Missing values 
•  Normalization 

Ø  Step 1-1: data upload Ø  Step 1-2: Processing 
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Figure 2 
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Figure 3  
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Figure 4 
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