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SUMMARY 

Commonly referred to as the maternal-to-zygotic transition, the shift of developmental control 

from maternal-to-zygotic genomes is a key event during animal and plant embryogenesis. 

Together with the degradation of parental gene products, the increased transcriptional activities 

of the zygotic genome remodels the early embryonic transcriptome during this transition. 

Although evidence from multiple flowering plants suggests that zygotes become transcriptionally 

active soon after fertilization, the timing and developmental requirements of zygotic genome 

activation in Arabidopsis thaliana (Arabidopsis) remained a matter of debate until recently. In 

this report, we optimized an expansion microscopy technique for robust immunostaining of 

Arabidopsis ovules and seeds. This enabled the detection of marks indicative of active 

transcription in zygotes before the first cell division. Moreover, we employed a live-imaging 

culture system together with transcriptional inhibitors to demonstrate that such active 

transcription is required in zygotes. Our results indicate that zygotic genome activation occurs 

soon after fertilization and is physiologically required prior to the initial zygotic division in 

Arabidopsis. 
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INTRODUCTION 

 

The transition of developmental control from parental-to-zygotic genomes is a pivotal event 

during animal and plant development. In animals, maternally inherited gene products regulate 

early embryogenesis while the zygotic genome remains transcriptionally quiescent until the 

maternal-to-zygotic transition (MZT). Two interdependent events constitute the MZT in animals: 

the degradation of inherited maternal gene products and zygotic genome activation (ZGA) when 

the zygotic genome breaks transcriptional quiescence to produce transcripts that instruct 

subsequent embryogenesis. While the MZT is universal in multiple species, the underlying 

mechanisms, scale and timing of ZGA are diverse (reviewed in (Baroux et al., 2008; Lee et al., 

2014; Tadros and Lipshitz, 2009; Walser and Lipshitz, 2011). Investigating how different species 

evolved various mechanisms to initiate ZGA is crucial to understanding embryogenesis. 

Compared to animals, the timing and requirements of ZGA in flowering plants is limited. 

Histological and molecular evidence in Hyacinthus orientalis (hyacinth, (Niedojadło et al., 2012; 

Pięciński et al., 2008), Nicotiana tabacum (tobacco, (Ning et al., 2006; Zhao et al., 2011), Oryza 

sativa (rice, (Abiko et al., 2013; Anderson et al., 2013; Anderson et al., 2017; Ohnishi et al., 

2014; Ohnishi et al., 2019), Triticum aestivum (wheat, (Domoki et al., 2013; Sprunck et al., 

2005) and Zea mays (maize, (Chen et al., 2017; Dresselhaus et al., 1999; Meyer and Scholten, 

2007; Okamoto et al., 2005; Sauter et al., 1998) altogether indicate that large-scale 

transcriptional activities increase in zygotes after fertilization and prior to the first division. These 

results suggest that, similar to animals, plant zygotic genomes may also transition from a 

transcriptionally quiescent to active state. However, plant and animal life cycles are 

fundamentally different, where plants alternate between haploid gametophytic and diploid 

sporophytic phases (Walbot and Evans, 2003). More specifically, a subset of sporophytic cells 

undergo meiosis to produce haploid spores, which divide mitotically to generate multicellular 

gametophytes. The fertilization of egg cells contained within female gametophytes marks the 

onset of the sporophytic generation. Although it is unclear how similar the gametophytic-to-

sporophytic transition in plants is to the MZT in animals, we have referred to the large-scale 

increase of transcriptional activities upon fertilization as ZGA below. 

Although ZGA has been partially characterized in the model flowering plant Arabidopsis 

thaliana (Arabidopsis), the timing, parental contributions and requirements of ZGA was 

debatable. One model proposed that Arabidopsis zygotes are transcriptionally quiescent (Pillot 

et al., 2010) and early embryos mostly rely on maternal gene products for growth and division 

(Del Toro-De León et al., 2014; Vielle-Calzada et al., 2000; Autran et al., 2011; García-Aguilar 
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and Gillmor, 2015; Armenta-Medina and Gillmor, 2019). However, several mutants exhibiting 

defects in the initial asymmetric division of the zygote segregate in a recessive manner 

consistent with transcriptional activities of either parental allele being sufficient for the first 

zygotic division (Yu et al., 2016; Guo et al., 2016; Xu et al., 2005; Arnaud Ronceret et al., 2008; 

A. Ronceret et al., 2008; Ronceret et al., 2005; Lin et al., 2007; Liu and Meinke, 1998). 

Moreover, transcriptome analyses indicated equal parental genomic contributions to the 

embryonic transcriptome as early as the 1-cell/2-cell stage (Nodine and Bartel, 2012). Based on 

these results, it was proposed that the zygotic genome is activated within the first few hours 

after fertilization with equal contributions of maternal and paternal alleles to the transcriptome 

(Nodine and Bartel, 2012). Although the maternal transcriptome dominance reported in a 

conflicting report (Autran et al., 2011) can be readily explained by the amount of maternal RNA 

contamination in the samples (Schon and Nodine, 2017), the precise timing and requirements of 

zygotic genome activation was unresolved until recently (Zhao et al., 2019). Here, we provide 

independent evidence that transcriptional activities are markedly increased upon fertilization in 

Arabidopsis and that zygotic transcription is essential for the initial embryonic cell divisions. 
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RESULTS 

 

Expansion Microscopy Improves Whole-Mount Fluorescence Immunostaining 

Phosphorylated serine 2 of the carboxy-terminal domain of RNAPII (RNAPII Ser2P) indicates 

elongating polymerase (Hajheidari et al., 2013). Therefore, we used conventional whole-mount 

fluorescence immunostaining (Pillot et al., 2010; García-Aguilar and Autran, 2018) on fertilized 

ovules (seeds) to detect RNAPII transcriptional activities in zygotes and embryos. We also 

stained against tubulin with antibodies and chromatin with 4′,6-diamidino-2-phenylindole (DAPI) 

to unambiguously identify egg and zygote nuclei. We obtained several samples with consistent 

and strong signals, but found that the conventional protocol produced inconsistent results 

(Figure 1A). Namely, 92/234 (39%) samples exhibited uneven or no signal likely due to the 

limited antibody accessibility (Figure 1B). Embryos in particular had weak signals because they 

are embedded within seeds. Moreover, 77/234 (33%) samples had collapsed embryo sacs and 

were impossible to analyze (Figure 1B). We therefore could not robustly detect RNAPII Ser2P 

with the conventional immunostaining protocol. 

To improve the whole-mount fluorescent immunostaining method for Arabidopsis 

ovules/seeds, we adapted an expansion microscopy protocol (ExM, (Chen et al., 2015; Tillberg 

et al., 2016). The ExM technique physically expands specimen uniformly in three dimensions to 

increase reagent accessibility and microscopic resolution while retaining the relative position of 

signals. Samples were fixed in 4% paraformaldehyde and 0.1 mg/mL Acryloyl-X, SE (6-

((acryloyl)amino)hexanoic acid, succinimidyl ester) (AcX), incubated with cell wall-digesting 

enzymes and embedded in an expandable polyacrylamide gel matrix (Figure 1C). Samples 

were then expanded with osmotic pressure to improve antibody penetration and increase 

specimen size before immunostaining. We examined protein retention in expanded samples in 

seeds expressing a previously described embryo-specific reporter line (pWOX2::H2B-GFP, 

pWOX2::tdTomato-RCI2b; (Gooh et al., 2015)). As expected, the H2B-GFP signal was confined 

to embryonic nuclei indicating that our protocol successfully retained proteins in their proper 

subcellular localizations (Figure 1D). The membrane-localized tdTomato-RCI2b signal was not 

observed demonstrating that the permeabilization removed membrane compartments and 

improved antibody penetration (Figure 1D). We also stained against RNAPII Ser2P and found 

that the epitopes were retained and detectable with antibodies (Figure 1D). To examine 

expansion ratios in three dimensions, we stained cell walls with SCRI Renaissance 2200 and 

nuclei with DAPI, and examined samples before and after expansion. Although expansions 

were not uniform in all three dimensions, ranging from 1.3 to 2.0 times in length depending on 
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the experiment, the RNAPII Ser2P signal was strong and consistent among samples. With the 

ExM technique we found that only 2/185 (0.1%) samples had collapsed embryo sacs and 

31/185 (16.7%) had uneven staining, while 152/185 (82.2%) samples had strong and consistent 

signal (Figure 1B). By physically expanding the specimens with the modified ExM technique 

before staining, we were therefore able to make interior tissues more accessible to reagents. 

This method produced more consistent staining and enabled the robust detection of subcellular 

marks within zygotes.  

Figure 1. Expansion Microscopy on Arabidopsis Seeds.  
(A) Representative images of evenly and unevenly stained samples, or collapsed samples. Tubulin (red) 
and RNAPII Ser2P (yellow) were detected with immunofluorescence, and nuclei were stained with DAPI 
(cyan). 
(B) Quantification of the number of seeds with either even or uneven staining, or that were collapsed 
when using conventional whole-mount (W-H) or expansion microscopy (ExM) protocols. The total number 
of seeds examined with each method is indicated.  
(C) Schematic of expansion microscopy (ExM) workflow. Ovules/seeds were fixed, incubated with cell 
wall digestion enzymes, embedded in a polyacrylamide gel matrix and osmotically expanded before 
fluorescent immunostaining (See Materials and Methods for details). 
(D) Protein retention after expansion in embryos. Immunofluorescent signal from RNAPII Ser2P (red) or 
HISTONE 2B-tagged GFP expressed with the embryo-specific WOX2 promoter (pWOX2::H2B-GFP; 
yellow) are shown, as well as DAPI-stained nuclei (cyan). 
Scale bars represent 20 µm. zy, zygote; emb, embryo. 
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Figure 2. Visualization of Transcription in Eggs and Zygotes.  
(A) Representative ExM images of tubulin (red), RNAPII Ser2P (yellow) and DAPI-stained nuclei (cyan) in 
ovules containing eggs (top) or seeds containing zygotes with focal plane on zygotes (middle) or  
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(Figure 2 continue) endosperm (bottom). The number of ovules or seeds with similar staining patterns 
out of the total number examined are indicated. 
(B) Representative ExM images of tubulin (red), H3K36me3 (yellow) and nuclei (cyan) in ovules/seeds 
containing eggs (top) or zygotes with focal planes on zygotes (middle) or endosperm (bottom). The 
number of ovules or seeds with similar staining patterns out of the total number of examined are 
indicated. 
Scale bars represent 20 µm. ec, egg cell; zy, zygote; en, endosperm; ov, ovule/seed tissue. 
 

Visualization of Transcriptional Activities in Eggs and Zygotes 

We then employed the ExM approach described above to visualize RNAPII Ser2P in eggs and 

zygotes. We also stained against tubulin with antibodies and chromatin with DAPI to identify egg 

and zygote nuclei. In unfertilized ovules, the RNAPII Ser2P signal was weak in most (22/26, 

85%) egg nuclei but strong in surrounding sporophytic ovule nuclei (Figure 2A). After 

fertilization, the RNAPII Ser2P signal was strong in most (27/29, 93%) zygote nuclei, as well as 

in surrounding endosperm and seed nuclei (Figure 2A).  

Histone H3 lysine 36 trimethylation (H3K36me3) is deposited during RNAPII transcription 

elongation (Wagner and Carpenter, 2012). Therefore, we examined H3K36me3 levels in ovules 

and seeds using ExM to further inspect transcriptional activities in eggs and zygotes, 

respectively. Similar to RNAPII Ser2P, H3K36me3 signal was weak in most (23/27, 85%) egg 

nuclei but strong in the surrounding sporophytic ovule nuclei (Figure 2B). In contrast, 

H3K36me3 signal was strong in most (21/22, 95%) zygote nuclei, as well as in endosperm and 

surrounding sporophytic ovule nuclei (Figure 2B). The detection of H3K36me3 and RNAPII 

Ser2P in eggs and zygotes indicated that RNAPII transcription was relatively low in eggs and 

became highly active in zygotes after fertilization. 

 

Active Transcription Is Physiologically Required for Zygote Cell Division 

Classic transcriptional inhibition experiments in mouse (Braude et al., 1979), Drosophila 

melanogaster (Edgar and Datar, 1996), Caenorhabditis elegans (Edgar et al., 1994), Xenopus 

laevis (Newport and Kirschner, 1982) and Danio rerio (Zamir et al., 1997) early embryos 

elegantly demonstrated that inherited gene products were sufficient for early embryogenesis. 

Therefore, to test whether active transcription is required for Arabidopsis zygote development, 

we cultured seeds in the presence of RNAPII inhibitors and examined zygotic cell division 

patterns with live-imaging microscopy (Gooh et al., 2015). If inherited gene products were 

sufficient for early embryogenesis, then we expected no developmental delay or arrest when 

transcriptional inhibitors were included in the culture media. Seeds were cultured in the 

presence or absence of RNAPII inhibitors for one hour before acquiring the first image, and 

zygotes were labelled with nuclear-localized GFP and plasma membrane-localized tdTomato 
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both of which were under the control of the embryo-specific WOX2 promoter (pWOX2::H2B-

GFP, pWOX2::tdTomato-RCI2b; (Gooh et al., 2015). Similar to what was originally reported for 

this ovule culture system, we found that approximately 80% of embryos survived in our system 

under all conditions (Figure 3G). That is, regardless of culture conditions about 20% of embryos 

lost fluorescent signal likely due to technical limitations of the system. We classified these 

embryos as dead and the remaining ones as survived, and only the surviving embryos were 

informative to test our hypothesis. As a positive control, we first compared cell division patterns 

of embryos cultured with or without the flavopiridol (FLP) kinase inhibitor, which causes cell-

cycle arrest (Dai and Grant, 2003). As expected, all 28 surviving embryos cultured with 100 µM 

FLP had arrested cell division whereas in N5T control media all surviving embryos divided 

normally (Figures 3A and 3B, Movie S1 and S2).  

Similar to N5T control media, all surviving embryos within seeds cultured with 0.5% dimethyl 

sulfoxide (DMSO) divided normally with approximately six hours intervals between each cell 

division (n = 60, Figure 3C and Movie S3; P-value = 0.69, chi-square test). Triptolide (TPL) 

induces protease-dependent degradation of RNAPII components (Titov et al., 2011; Vispé et al., 

2009), and we cultured seeds with TPL to test whether active transcription was required for 

zygotic divisions. Fifty-seven embryos survived when cultured with 500 µM TPL in 0.5% DMSO, 

and of these 48 (84.2%) were arrested at the zygote stage, 6 (10.5%) had delayed cell divisions 

(>12 hours between cell divisions) and only 2 (3.5%) developed normally (Figure 3D and Movie 

S4). The proportion of embryos that were arrested or delayed was significantly greater than 

observed for DMSO control condition (P-value = 2.2 × 10-16, chi-square test). Moreover, TPL 

had a dose-dependent effect on embryo development whereupon when seeds were cultured 

with 250 µM TPL, 9 out of the 53 (16.9%) surviving zygotes were arrested, 34 (64.2%) had 

delayed divisions and 10 (18.9%) developed normally (P-value = 3.3 × 10-13 compared to DMSO 

control, chi-square test).  

To further test whether de novo transcription was required for zygote divisions, we also 

cultured seeds with α-amanitin (AMA), which binds to RNAPII and prevents nucleotide 

incorporation and transcript translocation (Kaplan et al., 2008; Brueckner and Cramer, 2008). In 

the presence of 100 µg/mL AMA, 53 zygotes survived the culture and of these only 18 (34.0%) 

divided normally, while 6 (11.3%) were arrested (Figure 3E and Movie S5) and 29 (54.7%) were 

delayed (Figure 3F and Movie S6) in their development (P-value = 3.6 × 10-8 compared to 

DMSO control, chi-square test). The arrested and delayed zygote divisions in the presence of 

TPL and AMA transcription inhibitors indicated that de novo transcription was essential for the 

onset of zygote division. 
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Figure 3. Transcription Is Required for Initial Embryonic Cell Divisions.  

(A - F) Time-lapse observations of embryos expressing pWOX2::H2B-GFP, pWOX2::tdTomato-RCI2b 
cultured in N5T (A), N5T with 100 µM FLP (B), N5T with 0.5% DMSO (C), N5T with 0.5% DMSO and 500 
µM TPL (D), or N5T with 0.5% DMSO and 100 µg/mL AMA (E,F). The time after incubation is indicated as 
hours:minutes. 
(G) Bar chart illustrating the percentage of embryos that survived or died under various conditions. The 
total number of embryos examined for each condition are shown. 
(H) Bar chart showing the percentage of embryos that divided normally or abnormally when cultured 
under various conditions. The total number of surviving embryos for each condition are indicated. 
Asterisks indicate significantly different population determined by chi-square tests, P-values < 3.6 × 10-8.  
Scale bars represent 50 µm. 
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DISCUSSION 

 

Optimization of the ExM fluorescent immunostaining technique for seeds enabled the robust 

detection of RNAPII Ser2P and H3K36me3 in zygotes. Because RNAPII Ser2P and H3K36me3 

are hallmarks of active transcription, this indicated that zygotes are transcriptionally active soon 

after fertilization and before the first division. Moreover, zygotes had arrested and delayed cell 

divisions when cultured in the presence of transcriptional inhibitors (i.e. TPL and AMA), which is 

consistent with ZGA being required for the first division. Our observations complement a recent 

transcriptome study demonstrating that ZGA occurs in zygotes and is required for elongation 

and division (Zhao et al., 2019). 

While the conventional whole-mount immunostaining protocol can result in even-stained 

samples, we found that the method produced variable and inconsistent results. To improve the 

robustness of histological detection in Arabidopsis ovules/seeds, we adapted ExM to plant 

tissues in this study. Constraints imposed by undigested cytoskeleton and cell wall components 

limited the ability to fully expand samples. We omitted the proteinase K treatment described in 

the original ExM protocol because we found that even a mild proteinase K treatment (i.e. 5 

U/mL for 30 minutes) resulted in signal loss without improving expansion ratios or consistency. 

Nevertheless, we were able to produce expanded samples with the ExM method, which made 

interior tissues accessible to antibodies and resulted in more consistent immunostaining. 

Sample expansion also helped reduce autofluorescence, which is common in plant tissues. Our 

ExM protocol therefore provides a more robust and efficient option for conducting whole-mount 

fluorescent immunostaining of ovules/seeds including those containing zygotes. 

The detection of weak levels of RNAPII Ser2P and H3K36me3 in mature eggs indicated that 

there is low transcriptional activity before fertilization. After fertilization, signal corresponding to 

RNAPII Ser2P and H3K36me3 was strong demonstrating that transcriptional activities 

dramatically increased in the zygote before the first division. It was previously reported that 

endosperm nuclei but not in zygote nuclei were transcriptionally active (Pillot et al., 2010). 

However, our observations indicate that both endosperm and zygote nuclei are transcriptionally 

active. The previous inability to detect RNAPII Ser2P signal in zygotes may be due to the 

antibodies used (H5, ab24758; Abcam, discontinued) or the variability of the conventional 

whole-mount protocol which is especially problematic for the deeply embedded zygotes. 

As revealed by live-cell imaging, transcriptional inhibition resulted in delayed or arrested 

development and provided evidence that ZGA is required for initial zygotic growth and division. 

That is, treatment with the TPL inhibitor consistently arrested zygotes while AMA treatment at 
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least doubled the time required for cell division. The different responses of zygotes to TPL and 

AMA were likely due to the incubation timing because TPL and AMA are known to be fast-

response and slow-response inhibitors, respectively (Bensaude, 2011). The 250 µM TPL 

treatment, which is at least 100-fold greater than the recommended concentration for tissue 

culture (Bensaude, 2011), showed delayed instead of arrested zygote division. The requirement 

of high concentrations of transcriptional inhibitors to have a physiological effect may be due to 

the high transcriptional activities of zygotes. Consistent with our results using transcriptional 

inhibitors, previous RNAi-mediated knock-down of RNAPII resulted in delayed embryogenesis 

(Pillot et al., 2010). Although we cannot completely exclude that the transcriptional inhibition of 

ovule tissues supporting the developing embryo (e.g. integuments and endosperm) are the 

primary cause of the embryo arrest we observed, it is clear that inherited parental transcripts are 

not sufficient and de novo transcripts are required for early embryogenesis regardless of their 

origin. Moreover, in vitro fertilized or isolated zygotes developed normally through early 

embryogenesis in the absence of surrounding maternal tissue in rice (Sato et al., 2010; Uchiumi 

et al., 2007), maize (Kranz and Lorz, 1993) and tobacco (Zhao et al., 2011; He et al., 2007), and 

Arabidopsis embryos can develop at least to the globular stage without endosperm (Gooh et al., 

2015; Ngo et al., 2007). These reports are consistent with the delayed and arrested zygotic 

division observed upon culturing with transcriptional inhibitors being primarily caused by the 

inability to transcribe genes in zygotes. 

Because it is difficult to differentiate de novo transcribed from maternally inherited 

transcripts, the activation of the zygotic genome can be inferred from the transcriptional 

activities of paternal alleles. Several studies reported that early Arabidopsis embryos rely on 

maternal factors with little or no paternal activity (Golden et al., 2002; Del Toro-De León et al., 

2014; Vielle-Calzada et al., 2000; Grossniklaus et al., 1998; Luo et al., 2000; Guitton and 

Berger, 2005; Pagnussat et al., 2005) and suggest a quiescent state in zygotes (Pillot et al., 

2010). In contrast, other studies reported paternal allele expression in early embryos (Aw et al., 

2010; Xiang et al., 2011; Köhler et al., 2005; Weijers et al., 2001; Baroux et al., 2001; Ueda et 

al., 2011). Additionally, mutants defective in the asymmetric division of the zygote were reported 

to be recessive, suggesting that both parental alleles are transcriptionally active after fertilization 

(Lukowitz et al., 2004; Yu et al., 2016; Guo et al., 2016; Xu et al., 2005; Ronceret et al., 2005; A. 

Ronceret et al., 2008; Arnaud Ronceret et al., 2008; Lin et al., 2007; Liu and Meinke, 1998; 

Tzafrir et al., 2004). Moreover, a recent genome-wide study reported significant upregulation of 

4,436 genes in zygotes compared to eggs (Zhao et al., 2019). Altogether these results indicate 

that genes involved in early embryogenesis are transcriptionally active in zygotes, and thus do 
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not support gradual ZGA or reliance on maternal gene products during early Arabidopsis 

embryogenesis as previously proposed (García-Aguilar and Gillmor, 2015; Armenta-Medina and 

Gillmor, 2019). 

In addition to Arabidopsis, genetic, microscopic and genomic studies in multiple flowering 

plants, including maize (Chen et al., 2017; Dresselhaus et al., 1999; Meyer and Scholten, 2007; 

Okamoto et al., 2005; Sauter et al., 1998; Scholten et al., 2002), wheat ((Domoki et al., 2013; 

Sprunck et al., 2005)), tobacco (Ning et al., 2006; Zhao et al., 2011; Xin et al., 2011) and rice 

((Abiko et al., 2013; Anderson et al., 2013; Anderson et al., 2017; Ohnishi et al., 2014; Ohnishi 

et al., 2019)), indicate that ZGA occurs soon after fertilization in zygotes. In plants, zygotes mark 

the transition from the haploid gametophytic to diploid sporophytic phase of the life cycle. 

Because there is no clear evidence of prolonged transcriptional quiescence after fertilization and 

parentally inherited gene products are not sufficient for early embryogenesis, the transcriptome 

remodeling observed in plant zygotes during the gametophytic-to-sporophytic transition is 

fundamentally different than the maternal-to-zygotic transition in early animal embryos as 

previously proposed (Ueda et al., 2017). In further contrast to animals (Tadros and Lipshitz, 

2009; Lee et al., 2014), the apparent similarities in the timing of transcriptome remodeling 

across plant species is intriguing and may indicate similar underlying mechanisms shared 

among different plant species. For example, maternally and paternally inherited gene products 

converge to rapidly activate WUS HOMEOBOX8 (WOX8) gene expression in Arabidopsis 

zygotes (Lukowitz et al., 2004; Bayer et al., 2009; Ueda et al., 2011; Ueda et al., 2017), and 

similar mechanisms integrating biparentally inherited information may exist throughout 

Arabidopsis and other plant genomes. With published egg and zygote transcriptomes in multiple 

plants, as well as the increasing number of genome-wide approaches applicable to low amounts 

of input material, the field is poised to identify the key regulatory genes involved in transcriptome 

remodeling and initiation of embryogenesis.  
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MATERIALS AND METHODS 

 

Plant Materials and Growth Conditions 

Arabidopsis thaliana accession Columbia (Col-0) and pWOX2::H2B-GFP, pWOX2::tdTomato-

RCI2b transgenic Col-0 plants were grown in a climate-controlled growth chamber with 20˚C-

22˚C temperature and 16h light/8h dark cycles.  

 

Cell Wall Digestion Enzymes 

We tested several cell wall digestion enzymes from multiple manufacturers and found the 

performance varied between manufacturers as well as between batches. We tested driselase 

(Sigma), cellulase (Sigma), cellulase R10 (Duchefa, Yakult), cellulase RS (Duchefa, Yakult), 

pectolyase (Duchefa, discontinued), pectinase (Sigma), macerozyme R10 (Duchefa) and 

hemicellulase (Sigma) for conventional whole-mount protocol. We chose cellulase RS 

(Duchefa), hemicellulase (Sigma) and pectinase (Sigma) or macerozyme R10 (Duchefa) for 

expansion microscopy based on their performance and availability. 

 

Conventional Whole-Mount Fluorescent Immunostaining 

Conventional whole-mount fluorescent immunostaining was performed according to a published 

protocol (García-Aguilar and Autran, 2018). Seeds of self-fertilized Col-0 siliques at stages 14-

15 (Smyth et al., 1990) were isolated under a dissection scope. Isolated seeds were collected in 

4% PFA, 0.1% Triton X-100 and 1× PBS solution. Seeds were then briefly vacuum infiltrated 

and incubated at room temperature for one hour. Fixed seeds were washed three times with 

0.1% Triton X-100 and 1× PBS before incubation with enzyme mix (1% driselase, 0.5% 

cellulase, and 1% pectolyase in water). Alternatively, seeds were washed once more with 

protoplast salt solution (20 mM MES, pH 5.0, 0.4 M mannitol, 20 mM KCl and 10 mM CaCl2) 

before incubation with protoplast enzyme solution (3% cellulase, 1% hemicellulase, 1% 

macerozyme, 20 mM MES, pH5.0, 0.4 M mannitol, 20 mM KCl and 10 mM CaCl2, 0.1% BSA 

and 1% β-mercaptoethanol) before use. Enzyme solution was prepared as previously described 

(Yoo et al., 2007). Seeds were incubated in either enzyme solution at 37°C for 2 hours with 

gentle agitation. Digested seeds were washed twice with 0.2% Triton X-100, 1× PBS and 

embedded in 3% polyacrylamide matrix on adhesive slides as described (García-Aguilar and 

Autran, 2018). Slides were incubated with 1% Triton X-100, 1× PBS at 4°C for two hours with 

gentle agitation. Permeabilized samples were incubated with 1× PBS, 2% BSA, 0.1% Triton X-
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100 at room temperature for one hour for blocking. Samples were then incubated with 1× PBS, 

2% BSA, 0.1% Triton X-100 and 1:500 dilution of primary antibodies against RNAPII Ser2P 

(ab5095, Abcam) and tubulin (ab89984, Abcam) at 4°C overnight with gentle agitation. On the 

next day samples were washed with 0.2% Triton X-100, 1× PBS at 4°C for one hour at least five 

times. For secondary antibody incubation, samples were incubated in 1:500 dilution of anti-

rabbit-Alexa488 (ab150077, Abcam) and anti-chicken-Alexa555 (ab150170, Abcam) in 1× PBS, 

2% BSA, 0.1% Triton X-100 at 4°C overnight with gentle agitation. Samples were then washed 

with 10 µg/mL 4′,6-diamidino-2-phenylindole (DAPI), 0.2% Triton X-100, 1× PBS at 4°C in the 

dark for one hour twice and washed three times without DAPI. Samples were mounted in 

Vectashield Mounting Medium (H-1200, Vector) and imaged by ZEISS LSM700/780 with 25× oil 

objective. Color channels were scanned sequentially to avoid false signal. 

 

Expansion Microscopy  

We modified published ExM protocols for plant tissue (Chen et al., 2015; Tillberg et al., 2016). 

Pistils or siliques were carefully sliced open longitudinally under a dissection scope and 

transferred to 1× PBS, 0.1% Triton X-100, 4% PFA and 0.1 mg/mL Acryloyl-X, SE (6-

((acryloyl)amino)hexanoic acid, succinimidyl ester; Thermo Fisher). After brief vacuum 

infiltration, samples were incubated at 4°C overnight. Samples were then washed with water 

twice and washed once more with protoplast salt solution (20 mM MES, pH5.0, 0.4 M mannitol, 

20 mM KCl and 10 mM CaCl2) before incubated with protoplast enzyme solution (3% cellulase, 

1% hemicellulase, 1% macerozyme, 20 mM MES, pH 5.0, 0.4 M mannitol, 20 mM KCl and 10 

mM CaCl2, 0.1% BSA and 1% β-mercaptoethanol before use. (Yoo et al., 2007). Samples were 

incubated at 37°C for 2-3 hours (depending on developmental stage) with gentle agitation. Cell 

wall-digested samples were washed twice with 0.2% Triton X-100, 1× PBS and then 

permeabilized with 1% Triton X-100, 1× PBS at 4°C for two hours. Pistils or siliques were then 

carefully dissected on depression slides under a dissection scope. Strings of ovules/seeds 

attached to septums (i.e. ovule strings) were detached from pistils or siliques and transferred to 

0.2% Triton X-100, 1× PBS. Isolated ovule strings were drained briefly and incubated in 

monomer solution (1× PBS, 2 M NaCl, 8.625% (w/w) sodium acrylate, 2.5% (w/w) acrylamide, 

0.15% (w/w) N,N′-methylenebisacrylamide) at 4°C overnight. Samples were then polymerized 

with 0.2% ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) on glass 

slides with an adequate spacer (200-300 µm) at room temperature for one hour. Proteinase K 

treatment was omitted because it resulted in massive loss of epitopes. Gel slices containing 
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ovule strings were cut out with razor blades and every two slices were transferred to 1 mL water 

in 2 mL microtubes for expansion for one hour. The expansion was repeated at least twice. 

Expanded samples were then immunostained and imaged as described above. 

 

Live-Cell Imaging 

The ovule culture was performed as previously reported with slight modifications (Gooh et al., 

2015). Seeds from self-pollinated flowers at stage 14-15 (Smyth et al., 1990) were carefully 

collected under a dissection scope and transferred to N5T medium (5% trehalose dihydrate, 1× 

Nitsch basal salt mixture, 1× Gamborg's vitamin solution, 0.05% MES-KOH, pH 5.8). A brief 

vacuum infiltration was applied to seeds followed by a 30-minute incubation in N5T medium or 

medium supplemented with α-amanitin, flavopiridol, triptolide, or dimethyl sulfoxide at room 

temperature with gentle agitation to submerge seeds completely. The seeds were then 

transferred to micro-Insert 4 Well in µ-Dish (ibidi) with corresponding medium for live-cell 

imaging with either Yokogawa CSU X1 spinning disc and Axio Observer (ZEISS) or Visiscope 

Spinning Disc Confocal (Visitron Systems GmbH). The first images were taken about one hour 

after incubation and the time-lapsed images were taken every 30 to 60 minutes for at least 20 

hours. 

 

Image Processing 

All confocal microscope images were adjusted by ZEN software before exporting and scale bars 

were added by Fiji. Spinning disc microscope images were processed by Fiji. For each 

timepoint the Z-stacks were merged by maximum intensity projection, and then the contrast was 

adjusted for each channel. Color channels were then merged and images were cropped before 

adding scale bars and time stamps.  
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Movie S1. Live-cell imaging of embryos cultured in N5T medium. 

Movie S2. Live-cell imaging of embryos cultured with 100 µM FLP in N5T medium. 

Movie S3. Live-cell imaging of embryos cultured with 0.5% DMSO in N5T medium. 

Movie S4. Live-cell imaging of embryos cultured with 500 µM TPL, 0.5% DMSO in N5T 

medium. 

Movie S5. Live-cell imaging of embryos cultured with 100 µg/mL AMA, 0.5% DMSO in N5T 

medium with arrested zygotes. 

Movie S6. Live-cell imaging of embryos cultured with 100 µg/mL AMA, 0.5% DMSO in N5T 

medium with delayed division. 
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