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146 Abstract 

147 We aimed to determine the effect of sample size on performance of polygenic 

148 hazard score (PHS) models in predicting the age at onset of prostate cancer.  

149 Age and genotypes were obtained for 40,861 men from the PRACTICAL 

150 consortium. The dataset included 201,590 SNPs per subject, and was split into 

151 training (34,444 samples) and testing (6,417 samples) sets. Two PHS model-

152 building strategies were investigated. Established-SNP model considered 65 

153 SNPs that had been associated with prostate cancer in the literature. A stepwise 

154 SNP selection was used to develop Discovery-SNP models. The performance of 

155 each PHS model was calculated for random sizes of the training set (1 to 30 

156 thousand). The performance of a representative Established-SNP model was 

157 estimated for random sizes of the testing set (0.5 to 6 thousand). Mean HR98/50 

158 (hazard ratio of top 2% to the average in the test set) of the Established-SNP 

159 model increased from 1.73[95%CI: 1.69-1.77] to 2.41[2.40-2.43] when the 

160 number of training samples was increased from 1 to 30 thousand. The 

161 corresponding HR98/50 of the Discovery-SNP model increased from 1.05[0.93-

162 1.18] to 2.19[2.16-2.23]. HR98/50 of a representative Established-SNP model using 

163 testing set sample sizes of 0.6 and 6 thousand observations were 1.78[1.70-1.85] 

164 and 1.73[1.71-1.76], respectively. We estimate that a study population of 20 to 30 

165 thousand men is required to develop Discovery-SNP PHS models for prostate 

166 cancer. The required sample size could be reduced to 10 thousand samples, if a 

167 set of SNPs associated with the disease has already been established. 

168
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169 Author summary 

170 Polygenic hazard scores represent a recent advancement in polygenic prediction 

171 to model the age of onset of various diseases, such as Alzheimer’s disease or 

172 prostate cancer. These scores accumulate small effect sizes from several tens of 

173 genetic variants and can be used to establish an individual’s risk of experiencing 

174 an event relative to a control population across time. The largest barrier to the 

175 development of polygenic hazard scores is the large number of study subjects 

176 needed to develop the underlying models. We sought to understand the effect of 

177 varying the total number of samples on the performance of a polygenic hazard 

178 score in the context of prostate cancer. We found that the performance of the 

179 score did not appreciably change beyond 20 to 30 thousand observations when 

180 developing the model from scratch. However, when the discovery of the genetic 

181 variants can be borrowed from those already identified in the literature to be 

182 associated with the disease, the required number of samples is reduced to 10 

183 thousand with no appreciable detriment in performance. We hope that these 

184 results can guide the design of future studies of polygenic scores in other 

185 diseases and demonstrate the importance of genome-wide association studies.  
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186 Introduction

187 Polygenic prediction models have been studied extensively for several 

188 diseases such as prostate cancer[1], breast cancer[2], type 2 diabetes[3], 

189 dementia[4], and atherosclerosis[5]. Polygenic scores in the context of survival 

190 models are a more recent advancement in the field, but have been garnering 

191 interest in the prediction of age at onset of Alzheimer’s disease[6] and prostate 

192 cancer[7]. The steady increase in genetic testing[8,9], both in public and clinical 

193 domains, suggests that survival models could be applied to new diseases. The 

194 largest obstacle to the development of these models is the large number of study 

195 subjects, often in the tens of thousands[8], which are required for robust training 

196 and testing. 

197 Our aim was to quantify the effect of sample size on the performance of a 

198 polygenic survival model. This was explored through a specific disease condition 

199 that is expected to be representative, namely the prediction of age of onset in 

200 prostate cancer. We investigated two potential model development strategies. 

201 For the ‘Established-SNP’ model, we selected single-nucleotide polymorphisms 

202 (SNPs) that had previously been shown to be associated with prostate cancer, 

203 and simply estimated the coefficients for these SNPs in a Cox proportional 

204 hazards framework. For the ‘Discovery-SNP’ model, we implemented the SNP 

205 selection technique described by Seibert et al.[7] to identify SNPs in our 

206 genotyping data for inclusion in the Cox proportional hazards framework. The 

207 Established-SNP and Discovery-SNP represent two strategies that researchers 

208 could employ to build a polygenic survival model. In order to simulate samples of 
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209 different sizes, we randomly sampled our training and testing sets. The results of 

210 this work will help inform the design of future studies to develop polygenic 

211 survival models for other diseases. 

212

213 Results

214 Established- vs. Discovery-SNP model performance

215 Histogram comparisons of performance metrics of Established (EST) and 

216 Discovery (DIS) SNP models are illustrated in Figure 1. The performance metrics 

217 are shown for 50 random samplings of the training set using a sample size of 30 

218 thousand total observations. Qualitatively, there appears to be more variability in 

219 performance metrics associated with the Discovery process. 

220

221 Coefficients of Established-SNP model

222 The mean coefficients for the 65 SNPs used in the Established-SNP 

223 model are plotted in Figure 2. 

224

225 Effect of training set sample size on performance

226 Box plots of the performance metrics of the Established-SNP and 

227 Discovery-SNP models for random samples of the training set are shown in 

228 Figure 3 and Figure 4, respectively. The mean values of HR98/50, HR20/50, HR98/20, 

229 HR80/20, z-score, and beta using a random training sample of 1 thousand total 

230 observations in the Established-SNP model were 1.73 [95% CI: 1.69-1.76], 0.71 

231 [0.71-0.73], 2.42 [2.35-2.50], 1.96 [1.92-2.01], 9.92 [9.57-10.28], and 0.45 [0.43-
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232 0.47] respectively. The corresponding values using a random training sample of 

233 30 thousand total observations were 2.41 [95% CI: 2.40-2.43], 0.60 [0.60-0.60], 

234 4.04 [4.02-4.07], 2.86 [2.84-2.87], 15.1 [15.04-15.16], and 1.18 [1.17-1.18] 

235 respectively. 

236 The mean values of HR98/50, HR20/50, HR98/20, HR80/20, z-score, and beta 

237 using a random training sample of 1 thousand total observations in the 

238 Discovery-SNP model were 1.05 [0.93-1.18], 0.98 [0.89-1.07], 1.07 [0.91-1.24], 

239 1.08 [0.91-1.24], 1.06 [-1.20-3.31], and 0.17 [-0.23-0.65] respectively. The 

240 corresponding performance values using a training sample size of 30 thousand 

241 observations were 2.20 [2.16-2.23], 1.60 [1.59-1.62], 3.47 [3.39-3.56], 2.53 [2.49-

242 2.58], 13.19 [12.96-13.41], and 0.87 [0.85-0.89] respectively. 

243

244 Effect of testing set sample size on performance

245 Box plots of the performance metrics of the representative Established-

246 SNP model for random samples of the testing set are shown in Figure 5. The 

247 mean values of HR98/50, HR20/50, HR98/20, HR80/20, z-score, and beta using a 

248 random testing sample of 0.5 thousand total observations in the representative 

249 Established-SNP model were 1.78 [1.71-1.85], 0.73 [0.71-0.74], 2.50 [2.33-2.66], 

250 1.99 [1.89-2.09], 3.82 [3.57-4.08], and 0.76 [0.70-0.82] respectively. The 

251 corresponding values using a testing sample of 6 thousand observations were: 

252 1.73 [1.72-1.76], 0.73 [0.72-0.73], 2.39 [2.34-2.44], 1.93 [1.90-1.96], 13.07 

253 [12.80-13.32], and 0.74 [0.72-0.76] respectively. 

254
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255 Discussion 

256 We identified several trends in the effect of training and testing sample 

257 size on the performance of PHS models in predicting the age of onset of prostate 

258 cancer using SNP genetic variants. When using SNPs that had already been 

259 associated with prostate cancer risk, our analysis suggests that very little 

260 improvement in performance can be achieved once the training sets becomes 

261 larger than 10 to 15 thousand observations. When attempting to discover SNPs, 

262 a similar plateau in performance was observed from training sets larger than 20 

263 to 25 thousand observations. Apart from z-scores, the performance metrics of the 

264 chosen Cox proportional hazards model did not vary with testing sample size. 

265 However, we did observe that the distribution of performance metrics narrows 

266 until a testing sample size of 3 to 4 thousand observations, after which the 

267 distribution remains relatively stable. 

268 Our results may be used to inform researchers on the approximate number of 

269 subjects needed to develop PHS models to predict the age of onset of diseases 

270 using SNP counts. A dataset of 20 thousand observations may be the minimum 

271 needed to accurately estimate the PHS coefficients of SNPs that have been 

272 previously discovered in the setting of a logistic model. Such a dataset would 

273 allow for the accurate estimation of SNP coefficients as well as the testing of 

274 model performance in an independent holdout set. Based on our results, this 

275 number would have to be increased to roughly 30 thousand observations if the 

276 researchers intend on discovering the SNPs from scratch using the approach 

277 described here. 
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278 The PHS model developed by Desikan et al.[6]  to predict age-associated 

279 risk of Alzheimer’s disease used a training set with roughly 55,000 individuals. A 

280 similarly structured model developed by Seibert et al.[7] to guide screening for 

281 aggressive prostate cancer was developed with roughly 31,000 men. Studies 

282 such as these require large investments in time, money, and resources in order 

283 to acquire the genetic data needed for the analysis. The results of our analysis 

284 help elucidate that the minimum sample size needed to translate this technology 

285 to other diseases and processes may be lower than what has been used so far in 

286 previous studies. This seems to be particularly true if the researchers use SNPs 

287 that have already been discovered and validated as associated with the process 

288 of interest. 

289 The results of this study must be considered in the context of its 

290 limitations. The list of Established-SNPs was previously selected from a larger 

291 dataset that included the sample patients used in the test set in the present 

292 study. As such, there is leakage of information from the test set to the 

293 development of the Established-SNP model. Therefore, the performance metrics 

294 of the Established-SNP model should not be directly compared to those of the 

295 Discovery-SNP model, as the values of the former may be inflated. 

296 In addition, we have chosen to focus on only two of countless possible 

297 model development schemes. The role of sample size in other development 

298 strategies—such as regularized Cox proportional models, parametric survival 

299 functions, or random survival forests—is yet to be explored. Finally, the analysis 

300 is limited to prostate cancer and to the SNPs on the iCOGS array. Future work 
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301 will include SNPs imputed from 1000 Genomes[13]. Such an analysis was not 

302 performed for this first study to limit computation time for bootstrap analyses and 

303 to avoid uncertainty due to imputation. 

304 In conclusion, we have studied the effect of sample size on the 

305 performance of PHS models to study the association between SNPs and the age 

306 at onset of prostate cancer. We have determined that models require roughly 20 

307 to 30 thousand samples before their performance would not be improved greatly 

308 by expansion of the training set. Using SNPs that have already been established 

309 in the literature may help reduce the number of training samples required to 

310 reach this performance plateau by almost 10 thousand samples. 

311

312 Materials and Methods

313 Training and testing set

314 As previously described[7], we obtained genotype and age data from 21 

315 studies included in the Prostate Cancer Association Group to Investigate Cancer 

316 Associated Alterations in the Genome (PRACTICAL) consortium. We analyzed 

317 data from 40,861 men consisting of 20,551 individuals with prostate cancer and 

318 20,310 individuals without. For analysis, the age for each man was recorded as 

319 either their age at prostate cancer diagnosis (cases) or at interview (controls). 

320 Genotype data for 201,590 SNPs were also available for analysis. The genotype 

321 data had been assayed using a custom iCOGS chip (Illumina, San Diego, CA) 

322 the details for which are elaborated elsewhere[10]. The sample was split into 

323 training (34,444 men) and testing (6,417 men) sets. The testing set was selected 
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324 using men who were enrolled in the Prostate testing for cancer and Treatment 

325 (ProtecT[11]) trial. ProtecT (ClinicalTrials.gov: NCT02044172) is a large, 

326 multicenter trial within the United Kingdom which aims to investigate the 

327 effectiveness of treatments for localized prostate cancer. The ProtecT study 

328 group was chosen for testing as it represented a well-characterized group of 

329 individuals that had been used for measuring testing performance for our earlier 

330 work. The Data Availability Statement describing how readers can gain access to 

331 the PRACTICAL dataset is provided in the Supplementary Information. 

332

333 Established-SNP model 

334 A list of 65 SNPs[12] was chosen to represent those on the iCOGS array 

335 that had been published as associated with prostate cancer. The coefficients of 

336 the SNPs within the Established-SNP model were then estimated using the 

337 “coxphfit” function in MATLAB (Mathworks, Natwick, MA). Prior to parameter 

338 estimation, missing SNP data were replaced by mean imputation. It should be 

339 noted that the 65 SNPs used were discovered, in large part, using the data 

340 presently defined as the test set. The effect allele for all 65 SNPs was defined as 

341 “A” to simplify analysis.

342

343 Discovery-SNP model 

344 SNPs with call rates less than 95% were removed from the selection 

345 process. For every SNP, a trend test was used to check for associations between 

346 SNP count and the binary classification of individuals with or without prostate 
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347 cancer. The SNP selection pool was then reduced to those whose trend test p-

348 value was less 1x10-6. In order of increasing p-value, each SNP was tested in a 

349 multiple logistic regression model for association with the binary classification of 

350 men as with or without prostate cancer, after adjusting for age, six principal 

351 components based upon genetic ancestry, and previously selected SNPs. If the 

352 p-value of the coefficient of the tested SNP was less than 1x10-6, it was selected 

353 for the final Cox proportional hazard model estimation. The coefficients of the 

354 selected SNP pool within the Discovery-SNP model were estimated as previously 

355 described[7].

356

357 Polygenic Hazard Score (PHS)

358 The polygenic hazard score (PHS) for each of the Established-SNP and 

359 Discovery-SNP models was calculated as the linear product of the coefficients of 

360 the SNPs used in the model and the corresponding patient genotype counts[6,7]. 

361

362 PHS performance metrics

363 Several performance metrics for PHS models were investigated, and are 

364 described in Table 1. In each case, the PHS for each test subject was calculated 

365 as the dot product of SNP coefficients, either Established or Discovery, and SNP 

366 counts. A Cox proportional hazards model was then fit using PHS as the sole 

367 predictor of age in the test set. The z-score and beta of this Cox proportional 

368 hazards model relate to how well PHS was associated with age within the test 

369 set. The hazard ratios were calculated as the exponential of the differences in 
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370 predicted log-relative hazards of different groups within the test set. The groups 

371 were defined using centile cut-points for those controls within the training set 

372 whose age was less than 70 years. This list of performance metrics expands on 

373 those (z-score and HR98/50) that were used in our earlier work[7].  

374

375 Table 1. Performance metrics used in the evaluation of polygenic hazard scores. 

Performance metric Description

HR98/50 Hazard ratio of the top 2% to the average (30 – 

70%) in the test set

HR20/50 Hazard ratio of the bottom 20% to the average (30 – 

70%) in the test set

HR98/20 Hazard ratio of the top 2% to the bottom 20% in the 

test set

HR80/20 Hazard ratio of the top 20% to the bottom 20% in the 

test set.

z-score z-score of Cox proportional hazards model using 

PHS as a sole predictor of age in the test set 

beta coefficient of PHS in a Cox proportional hazards 

model using PHS as a sole predictor of age in the 

test set. 

376

377 Random sampling of training set
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378 Random sampling of the training set was performed with replacement 

379 while ensuring equal proportions of men with and without prostate cancer. The 

380 training set was randomly sampled to include 1, 5, 10, 15, 20, 25, and 30 

381 thousand total observations. Performance of the Established and Discovery-SNP 

382 models using random samples of the training data was measured in the entire 

383 test set. 

384

385 Random sampling of the testing set

386 Random sampling of the testing set was performed with replacement while 

387 ensuring equal proportion of men with and without prostate cancer. The testing 

388 set was randomly sampled to include 0.5, 1, 2, 3, 4, 5 and 6 thousand total 

389 observations. Performance in the randomly sampled testing sets was performed 

390 using a representative Established-SNP model. The representative model was 

391 chosen as that whose parameters were estimated using a training sample size of 

392 30 thousand total observations, and whose performance metrics were the 

393 shortest Euclidean distance to the average performance across all Established-

394 SNP models using a training sample size of 30 thousand. 

395

396
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448

449 Figure 1. Comparison of performance metrics between Established (EST) and Discovery (DIS) 

450 SNP models using 50 random samples of the training set using a sample size of 30 thousand. 

451 There is more variability with the Discovery process. Established SNPs, though, were discovered 

452 using the data in the training set; this circularity is not accounted for in the present study, which 

453 focuses on sample size effects.

454
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457 Figure 2. Coefficients of 65 SNPs used in the Established SNP model. Data points represent 

458 mean values across 50 iterations of a random sample of the training set using a sample size of 

459 30 thousand total observations. Error bars represent 95% confidence intervals. 

460
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461

462 Figure 3. Performance metrics of Established SNP model. Box plots of performance metrics are 

463 shown for random samples of the training set using sample sizes of 1, 5, 10, 15, 20, 25, and 30 

464 thousand total observations. Within each box plot, the horizontal line represents the median and 

465 the box extends from the 25th to 75th percentile. 

466
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467

468 Figure 4. Performance metrics of the Discovery SNP model. Box plots of performance metrics 

469 are shown for random samples of the training set using sample sizes of 1, 5, 10, 15, 20, 25, and 

470 30 thousand total observations. Within each box plot, the horizontal line represents the median 

471 and the box extends from the 25th to 75th percentile.

472
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473

474 Figure 5. Performance as a function of testing sample size. Box plots of performance metrics of 

475 the representative Established SNP model in random samples of the testing set from 0.5 to 6 

476 thousand total observations. 

477
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478 Supporting Information Legends

479 Supporting Information 1. Data Availability Statement details how readers can 

480 obtain the data from the PRACTICAL (Prostate Cancer Association Group to 

481 Investigate Cancer Associated Alterations in the Genome) consortium. The 

482 document also contains the additional authorship, affiliation, and funding sources 

483 for the PRACTICAL consortium. 
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