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Actions of molecular species, for example binding of transcription factors to chromatin, are intrinsically stochastic 
and may comprise several mutually exclusive pathways. Inverse Laplace transformation in principle resolves the 
rate constants and frequencies of superimposed reaction processes, however current approaches are challenged 
by single molecule fluorescence time series prone to photobleaching. Here, we present a genuine rate 
identification method (GRID) that infers the quantity, rates and frequencies of dissociation processes from single 
molecule fluorescence survival time distributions using a dense grid of possible decay rates. In particular, GRID is 
able to resolve broad clusters of rate constants not accessible to common models of one to three exponential 
decay rates. We validate GRID by simulations and apply it to the problem of in-vivo TF-DNA dissociation, which 
recently gained interest due to novel single molecule imaging technologies. We consider dissociation of the 
transcription factor CDX2 from chromatin. GRID resolves distinct, decay rates and identifies residence time classes 
overlooked by other methods. We confirm that such sparsely distributed decay rates are compatible with 
common models of TF sliding on DNA. 

Introduction 
The actions of biomolecules are governed by thermal 
fluctuations and thus are intrinsically stochastic. 
Accordingly, interactions such as association and 
dissociation events of molecular species often follow 
Poissonian statistics with a constant probability per 
time, the rate constant, to occur, and the 
experimentally accessible reaction lifetimes are 
exponentially distributed. Generally, not all members of 
a molecular species undergo the same type of 
interaction at any time, but each conducts one of 
multiple possible types of interaction. If a measurement 
to determine reaction lifetimes cannot distinguish 
between these different reaction types, the resulting 
lifetime distribution is a Laplace transform of a 
spectrum of reaction rates from superimposed Poisson 
processes, and thus multi-exponential (Figure 1a). 
Retrieving the underlying reaction rate spectrum 
consequently evokes an inverse Laplace transformation.  

The inverse Laplace transformation is an ill-posed 
problem for inherently noisy, discrete distributions and 
numerical solutions are often unstable 1, 2. Nevertheless, 
algorithms treating the Laplace transform using 
gradient methods and appropriate regularization have 
been successfully developed for noisy data in NMR 3, 4 

and protein folding 5. An elegant method based on 
phase functions avoids fitting procedures and enables 
direct reconstruction of the rate spectrum of 
superimposed 6  and sequential 7 biological decay 
processes.  

Lifetimes of biomolecular interactions are frequently 
measured by single-molecule fluorescence microscopy 
8-16. In such experiments, photobleaching of the 
fluorescent label adds a parallel decay path to each 
reaction type but is indistinguishable from a successful 
reaction 17. This complex kinetic scenario cannot be 
solved by the phase function method or current 
approaches of numerical inversion of the Laplace 
transform. Survival time distributions are for example 
corrected for by comparison to immobile molecules 
such as histone H2B 11, 18 or the photobleaching rate 
constant is directly considered using several time-lapse 
conditions 9, 19. 

An example for superimposed reactions are 
transcription factor (TF) – chromatin interactions. TFs 
may be involved in a manifold of different binding 
reactions, such as binding to specific or numerous 
different unspecific sequences on either free or 
nucleosomal DNA, binding to RNA or to other proteins. 
To circumvent Laplace inversion methods, current 
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analysis of TF – chromatin interactions apply models 
with a fixed number of exponential functions to 
describe distributions of fluorescence survival times by 
varying the decay rates and their amplitudes 8, 10, 11, 20. 
Such exponential fitting is robust but requires 
knowledge of the number of decay rates and thus is 
limited when resolving complex decay rate spectra.  

Here, we tackle the problem of inverting the Laplace 
transform in the context of fluorescence survival time 
distributions obtained by single molecule imaging 
subject to photobleaching. We apply a grid of invariable 
decay rates and fixed spacing with variable positive 
weights to describe distributions of fluorescence 
survival times. Reducing the number of nonlinear 
parameters and specializing a regularization enables us 

to robustly use gradient methods to infer rate spectra. 
We validate our genuine rate identification (GRID) 
method by simulations and show that GRID enables 
inferring complex rate spectra of superimposed 
interactions with both narrow and wide distributions of 
decay rates. We apply GRID to analyse fluorescence 
survival time distributions of dissociation events 
between the transcription factor CDX2 and chromatin 
recorded in live cells. GRID extends the information 
obtained by multi-exponential fitting approaches. In 
particular, in contrast to intuitive expectation with 
numerous different bound DNA sequences in mind, we 
do not observe a broad cluster of unspecific dissociation 
rates. A distinct unspecific decay rate is consistent with 
a quantitative solution to a common model of TFs 
sliding on and binding to unspecific DNA sequences.  

 

 

Figure 1: Working principle of GRID. (a) Sketch of a TF exhibiting three distinct dissociation processes from chromatin (upper panel). The 
resulting survival time distribution is a superposition of the three processes (lower panel). (b) Sketch of a decay rate spectrum (black solid line) 
underlying a complex survival time distribution. In common multi-exponential analysis the decay rates and their amplitudes are varied (red 
dashed lines). In contrast, GRID only varies the amplitudes of a grid of decay rates (blue solid lines). Degrees of freedom are indicated by 
arrows. 

Results 
 

Analysing superimposed reactions by GRID 
We considered several parallel reactions each following 
Poissonian statistics  with distinct dissociation rates 
giving rise to exponentially distributed lifetimes in the 
time domain (Figure 1a). We further considered 
measurements of reaction lifetimes by single molecule 
fluorescence microscopy using fluorescent labels 
subject to photobleaching. The corresponding survival 
time distribution is a superposition of exponential 
functions weighted by the relative occurence of the 
respective process and enveloped by the decay of 
fluorescent labels (Figure 1a, Methods, Equation 2). 

Solving the inverse Laplace transformation to infer the 
number and amplitudes of reaction processes from this 
multi-exponential distribution is impeded by the 
presence of the photobleaching process. We reduced 
the number of non-linear parameters in a 
corresponding minimization problem by introducing a 
grid of densely spaced invariable decay rates (Figure 1b 
and Methods). We further designed a cost function 
restricting the amplitudes to positive values for physical 
reasons. The cost function also accounted for the 
integration time of the camera, which limits the time 
resolution of fast dissociation rates. We refer to this 
regularization as mean decay regularization (MDR) 
(Methods). If this regularization is omitted, fast decay 
rates are used to account for noise in the first data 
points of the time-lapse records without compromising 
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overall fit quality, since fast dissociation rates introduce 
negligible error at large times. The cost function can 
accommodate any number of time-lapse conditions in 
single molecule fluorescence measurements. We used 
the gradient method implemented in the Matlab 
fmincon function to solve the minimization problem 
corresponding to the inverse Laplace transform 
(Methods). 

We validated our approach, GRID, using simulated 
survival time distributions. We simulated distributions 
as would be obtained by single molecule fluorescence 
measurements  with up to 10 time-lapse conditions 
spanning a range between 0.05 s and 50 s and 10.000 
recorded reaction events per condition (if not stated 
otherwise ), a photobleaching rate constant k = 1 s-1 and 
considered noise intrinsic to Poisson processes 
(Methods and Supplementary Table). To test the 
performance of GRID, we compared different cost 
functions and varied several qualities of the rate spectra 
including the quantity of well-separated superimposed 
rates, rate values and amplitudes and the width of 
densely spaced rate clusters. 

First, we compared the performance of the MDR 
regularization in our cost function to generic 
regularizations such as the L2-norm 21 and the L4-norm 
of the fitted parameters and a more specific norm that 
weights fitting parameters with the hyperbolic cosine 
(Methods). We simulated survival time distributions 
(1000 events per time-lapse condition) with two 
superimposed reactions with rates of 0.1 s-1 and 5 s-1 
(Figure 2a). While all alternative regularizations showed 
artificial broadening of rate distributions, our MDR 
regularization successfully reproduced the ground truth 
rate spectrum (Figure 2a and b). We thus retained our 
cost function for the remainder of the study. 

Second, we simulated survival time distributions with 
an increasing number of superimposed reactions with 
rates between 0.01 s-1 and 10 s-1, separated by at least a 
factor of 4. Within this range and spacing, GRID reliably 
identified up to six distinct reaction rates (Figure 2c). 
False positive rate detections only appeared as minor 
background in the spectra.  

Third, we investigated whether the spacing of rates 
influenced the performance of GRID. We simulated 
survival time distributions with a fast dissociation rate 
fixed at 5 s-1 and varied a slow dissociation rate 
between 10-2 s-1 and 4 s-1 (Figure 2d). GRID inferred rate 
values reliably up to a separation by a factor of ~2, 
consistent with the resolution limit of exponential 

analysis 22 and comparable to a two-exponential fit. 
Analogously, we varied the fast dissociation rate 
between 10-2 s-1 and 10 s-1 while keeping the slow 
dissociation rate constant at 5.410-3 s-1 (Supplementary 
Figure 1). Again, the values of both rates were 
accurately determined up to a separation by a factor of 
~2, and comparable to a fit by a double-exponential 
model. 

To estimate the influence of the number of simulated 
reaction events on the accuracy of the inferred rate 
spectra for the case of two simulated dissociation rates 
with variable spacing, we varied the number of 
simulated reaction events between 100 and 10.000 per 
time-lapse condition and quantified the deviation from 
the ground truth using 100 independent simulations 
(Figure 2d and Methods). In line with 23, the closer the 
reaction rates, the more reaction events need to be 
observed to resolve them.  

Fourth, we examined the response of GRID to the 
amplitudes of reaction rates. We simulated survival 
time distributions with two rates of 0.035 s-1 and 2.44 s-

1 and varied their amplitudes from 0% to 100% (Figure 
2e). Since rates identified by GRID oftentimes split 
between two grid positions including and next to the 
ground truth (Figures 2b-d), we binned grid positions 
for the analysis of amplitudes (Methods). GRID well 
recovered both rates and their amplitudes.  

Fifth, we tested to which extend GRID was able to 
resolve rate spectra of more complex shape. Thus, we 
simulated survival time distributions (100.000 events 
per time-lapse condition) using three dense square 
shaped decay rate clusters at centre positions of 0.016 
s-1, 0.3 s-1 and 3.9 s-1 and stepwise increased their width 
from 0% to 70% relative width (Figure 2f). GRID 
recovered the width of rate clusters in most scenarios. 
However, a tendency to split clusters into two close sub 
clusters became apparent. 

Since a power-law behaviour of TF – chromatin 
dissociation has been suggested 14, 24, we tested 
whether GRID would accurately resolve a power-law 
shaped ground truth. In principle, GRID is able to handle 
power-law distributions (Methods). We simulated a 
survival time distribution (100.000 events per time-
lapse condition) corresponding to a power-law including 
photobleaching and noise (Methods, Equation (10)) 
(Figure 2g). GRID split the broad distribution of decay 
rates into sub clusters (Figure 2h). However, the 
resulting decay rate spectrum is well distinguishable 
from a sparse distribution of decay rates (Figure 2b-e). 
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Figure 2: Validation of GRID. (a) Simulated survival time distributions with dissociation rates of 0.1s-1 and 5s-1 and photobleaching rate of 1s-1 
(red lines) and distributions obtained using the results by GRID displayed in b (black dashed lines). (b-f,g) Heat maps comparing the ground 
truth rate spectrum used to simulate survival time distributions and the rate spectrum obtained by GRID. Simulations include a photobleaching 
rate of 1s-1. Amplitudes are color coded. (b) Comparison of different regularizations (specified in Methods) used in the cost function of GRID. 
(c) Increasing number of distinct decay rates starting at k = 0.011s-1 and separated by a factor of 4. (d) Increasing separation between two 
distinct decay rates. kfast = 5 s-1 and kslow in [0.01,4] s-1. Inset: influence of the number of detected events and separation of decay rates on the 
accuracy of the inferred spectrum. (e) Variable amplitudes of two distinct decay rates (kslow = 0.035 s-1 and kfast = 2.44 s-1). (f) Increasing width 
of three decay rate clusters centred at kslow = 0.016 s-1, kint = 0.3 s-1 and kfast = 3.9 s-1. Relative width is up to 70%. (g) Simulated survival time 
distributions of a power-law (specified in Methods) and photobleaching rate of 1s-1 (red lines) and distributions obtained using the results by 
GRID displayed in h (black dashed lines). (h) Power-law distribution (specified in Methods). 
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GRID analysis of CDX2 dissociation from 
chromatin 
A current biological question of high interest is the 
interaction of transcription factors with chromatin. In 
particular, it is unclear how many kinetically distinct 
interactions a TF undergoes with chromatin. Thus, after 
having validated our rate analysis approach with 
simulations, we applied GRID to survival time 
distributions of CDX2 dissociation from chromatin, 
obtained by live-cell single-molecule tracking of the 
fusion protein Halo-CDX2 25 labelled with SiR-dye 
(Methods and Supplementary Movie 1). We recorded 
survival time distributions of four time-lapse conditions 
(Figure 3a). GRID inferred a rate spectrum with five 
clearly distinct rates ranging from 5 s-1 to 0.006 s-1 with 
strongly decreasing amplitude and a photobleaching 
rate of 0.1 s-1 (Figure 3b). We did not observe any broad 
rate clusters. Simulated distributions using the 
dissociation rate spectrum extracted from the data by 
GRID well overlapped with the measured survival time 

distributions (Figure 3a), in contrast to survival time 
functions calculated using dissociation rates obtained 
by fitting a triple-exponential model (Figure 3a). Thus, 
compared to common multi-exponential analysis, 
dissociation rates inferred by GRID better describe the 
measurement. 

To test the extracted rate spectrum for consistency, we 
omitted the fastest time-lapse condition of 0.05s in the 
analysis, which exclusively contains temporal 
information between 0.05 and 1 s (Supplementary 
Figure 2a). As expected, the extracted rate spectrum is 
devoid of the dissociation rate at 5 s-1, while the 
remaining spectrum does not change significantly 
(photobleaching rate was 0.4s-1) (Supplementary Figure 
2 b). When omitting the longest time-lapse condition of 
9s, which contains similar temporal information to the 
time-lapse condition of 5s, the extracted rate spectrum 
does not change significantly, as expected 
(photobleaching rate was 0.1s-1) (Supplementary Figure 
2c and 2d). 

 

 

Figure 3: Dissociation rate spectrum of TF – chromatin interactions. (a) Fluorescence survival time distributions of SiR-Halo-CDX2 obtained by 
live-cell single molecule imaging (grey symbols), fit of tri-exponential model (blue lines) and distributions obtained using the results by GRID 
displayed in b (red lines). Time-lapse conditions are indicated above the distributions. Inset: Kymograph of two molecules detected within a 
0.05s time-lapse movie. The graph contains data from 10653 molecules in 79 cells. Error bar denotes s.d. (b) The dissociation rate spectrum 
obtained by GRID using all data (red dashed lines and circles) and heat map of GRID results obtained by 499 times resampling 80% of data 
(blue color code)  (c) State diagram of a TF (red box) diffusing on and dissociating from DNA. Each binding position is associated with an 
individual binding energy. The parameters are specified in Methods. (d) Width of decay rate cluster of unspecific TF – chromatin interactions 
obtained by solving the state diagram in c for 500 DNA segments as function of segment length (for details see Methods).  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/679258doi: bioRxiv preprint 

https://doi.org/10.1101/679258
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

It is commonly assumed that dissociation occurs from a 
few specific sequences and a plethora of unspecific 
sequences including one or several mismatches at 
various positions. Intuitively, for dissociation from 
unspecific sequences, such a picture results in 
dissociation rates spreading over a broad range of 
values, potentially giving rise to a power-law 
distribution of decay rates 14, 24. To substantiate and 
challenge this intuitive picture of unspecific 
dissociation, we estimated the cluster width arising 
from unspecific TF – DNA dissociation using a well-
accepted model of TF sliding on unspecific DNA with 
dissociation from any site within the sliding segment 26-

28(Figure 3c and Methods). We found that the 
dissociation rate from a single segment would reduce to 
a single value due to fast 1D diffusion. When 
considering several segments, the corresponding 
dissociation rates combined to a narrow cluster, due to 
stochasticity in the base pair content of different 
segments. The width of the resulting decay rate cluster 
was anti-correlated with the length of the segments 
(Figure 3d). However, even unreasonably small sliding 
segments resulted in cluster widths well below the 
resolution of GRID. Overall, our calculations suggest 
that unspecific TF – DNA interactions eventually result 
in a single resolvable dissociation rate, consistent with 
our measurement.  

Discussion 
 

GRID reveals rate spectra underlying complex 
survival time distributions 
We introduced GRID, an approach to extract reaction 
rates from experimentally measured fluorescence 
survival time distributions of complex superimposed 
reactions. GRID robustly identifies the number and 
amplitudes and gives information on cluster width of 
reaction rates, even if lifetime measurements are 
aggravated by photobleaching of fluorescent labels. 
Such distorting additional decay rates hamper the use 
of previously reported approaches to tackle the inverse 
Laplace transformation of survival time distributions 
(Barone et al., 2001, Berman et al., 2013, Voelz and 
Pande, 2012, Zhou and Zhuang, 2006).  

GRID has the advantage that the number of decay rates 
in the biological system does not have to be guessed. 
This is a major drawback of current analysis schemes 
using a small number of decay rates. Our simulations 
suggest that GRID, despite being the more complex 
approach, does not come with a loss in accuracy in a 

situation where the number of decay rates is known. A 
second advantage of GRID is that it can reveal broad 
clusters of reaction rates, information intrinsically 
inaccessible to analysis schemes using a small number 
of decay rates. While we validated and applied GRID to 
data sets including photobleaching and several time-
lapse conditions, it should in principle be applicable to 
individual survival time distributions already corrected 
for photobleaching. 

GRID is currently restricted to superimposed reactions 
following Poissonian statistics with positive amplitudes. 
Thus, GRID is not applicable to arbitrary survival time 
distributions (Methods). Due to computation costs, the 
number of rates in the grid is currently limited to 200. 
Consequently, the resolution to identify decay rates is 
limited, and oftentimes GRID splits a single decay rate 
onto two adjacent grid positions. Compared to (Zhou 
and Zhuang 2006), GRID converts the inverse Laplace 
transformation into an optimization problem, with the 
accompanying disadvantage of a large number of 
degrees of freedom. This requires introducing a robust 
regularization. Additionally, a large number of 
measurements are advisable. While GRID allows 
differing distinct decay rates from broad clusters of 
decay rates or a power-law distribution, it is limited in 
identifying the shape of such clusters or distributions 
with high accuracy.  

 

Rates of CDX2 – chromatin dissociation 
GRID resolves five distinct dissociation rates 
corresponding to chromatin residence times between 
0.2 s and 170 s from the fluorescence survival time 
distributions measured for the dissociation of CDX2 
from chromatin. Their amplitudes differ significantly, 
between ca. 80 % and < 5 %, pointing to a low 
occurrence of the slowest dissociation processes. Yet, 
long interactions appear necessary for a full description 
of the measured survival time distributions, as multi-
exponential fitting using three dissociation rates as 
reported previously for different TFs 20, 29 failed to fully 
recover the measured survival time distributions. The 
fastest rate of TF – chromatin interactions was 
previously identified as binding of the TF to unspecific 
DNA sequences 14, 30, 31. Analogously, CDX2 might exhibit 
transient unspecific and stable specific binding to 
chromatin. A detailed assignment of rates to specific 
reaction mechanisms of CDX2 is a task for future 
studies.  
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In the presence of unspecific LacI – chromatin 
interactions, a power law was found to well describe 
the survival time distribution, potentially representing a 
multitude of co-occurring different dissociation rates 14, 

24. For CDX2, we thus expected a broad cluster of 
densely spaced dissociation rates in the fast rate 
regime. However, despite the capability of GRID to 
resolve such clusters, we observed a single well-defined 
rate. This observation is strengthened by our model of 
TF – DNA interactions combining sliding and 
dissociation, where we found that differences in 
dissociation rates between several sliding segments are 
well below the resolution limit of GRID. 

In principle, dissociation rate spectra can be converted 
to binding energy landscapes. Such an approach has 
been demonstrated for membrane proteins 32. In the 
case of TF – chromatin interactions, this approach is 
challenging. Our measurement and modelling suggest 
that unspecific dissociation rates from unconnected 
DNA segments are not resolvable. For binding to a 
specific target site adjacent to unspecific sequences, 
observable dissociation rates only reflect effective 
rates, not the real dissociation rate from the specific 
target site 33. Furthermore, amplitudes of measured 
dissociation rates need to be converted to occupation 
frequencies. In addition, recent measurements suggest 
that some TFs may form local condensates 34. Thus, 
density of states, or energy states if the reaction 
coordinate is known, can only be calculated with 
additional knowledge of the underlying microscopic 
mechanisms. Finally, a comprehensive picture should 
also consider the relative distributions of diffusive and 
bound states, which can for example be obtained from 
comprehensive modelling kinetics 35, 36 or interlaced 
time lapse measurements 37. 

 

Materials and Methods 
 

Model for the survival time function of an 
ensemble of chromatin-bound fluorescently 
labelled TFs 
We assume that dissociation of a TF from any bound 
state, in particular from a bound DNA sequence, follows 
Poissonian statistics with a dissociation rate constant µi 
characteristic for this particular state. We further 
assume that the TF may bind to a multitude of different 
DNA sequences, both unspecific and specific. The 

probability of a particular dissociation event to occur be 
Si.  

For independent dissociation processes, the resulting 
survival time function of an ensemble of TFs is a 
superposition of individual dissociation processes 

 0
1

( ) exp( )
I

i i
i

N t N S t


    (1) 

for the remaining bound population N at time t if N0 TFs 
were bound at time t=0. N0∙Si is the number of TFs in 
the ensemble that exhibit the dissociation rate constant 
µi. The total number of dissociation processes is 
denoted by I. 

So far, we assumed that the survival time function of 
bound TFs is only determined by dissociation. However, 
in single molecule fluorescence experiments, the TF is 
identified by a fluorescent label prone to 
photobleaching. Thus, the experimentally observed 
termination of a bound state may be due to 
photobleaching of the fluorescent label or dissociation 
of the TF. We assume that photobleaching again follows 
Poissonian statistics.  

The fluorescence survival time function observed in 
experiments then reads  

 0
1

( ) exp( ) exp( )
I

i i
i

N t N kt S t


     (2) 

where k is the photobleaching rate constant. According 
to this equation, only the sum k+μi can be inferred from 
the fluorescence survival time distribution. To separate 
photobleaching from dissociation, we perform time-
lapse measurements 9.  

 

Simulation of TF dissociation kinetics 
We simulated survival time distributions of TFs with 
effective dissociation rate constants eff,i off,i/ tlk a k 
accounting for dissociation with dissociation rate 
constant off,ik  and with the photobleaching number a  

and the time-lapse period tl . Different off,ik  occurred 

with probability iS . We first generated a random 

number with uniform distribution to draw the ,eff ik  

from the probability distribution S . Next, we generated 
a new random number and transformed it to an 
exponential distribution with the constant ,eff ik  to 

obtain the time at which the TF dissociated. This time 
entered a distribution with a bin-size corresponding to 
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the time-lapse period. We repeated this procedure N 
times to obtain a survival time distribution of N TFs. To 
obtain a complete dataset, we repeated this procedure 
for various time-lapse periods tl . Simulations were 
conducted in MATLAB. 
 

A Method for the inverse Laplace transform 
To determine the dissociation rate spectrum of the TF, 
we could in principle fit the fluorescence survival time 
function including bleaching, Equation 2, to the 
measured distributions obtained from several time-
lapse conditions. To ensure robust inference of 
dissociation rates, we reduce the number of free 
parameters by applying a grid of I invariable dissociation 
rates with fixed spacing and numerically determine the 
probabilities Si of each dissociation rate. Summing up, 
the number of unknown parameters is I+1, namely [k, 
S]. Since I is usually larger than the number of 
observables in time-lapse measurements, the fitting 
problem is underdetermined. Thus, to obtain a unique 
solution, we apply regularizations based on basic 
physical considerations and time resolution constraints 
of the measurement process.  

As first regularization, we introduce the constraint S ≥ 0 
of non-negative probabilities and k ≥ 0 of a non-
negative photobleaching rate constant. This ensures our 
model is monotonically decreasing, as expected from 
superimposed Poisson processes. As second 
regularization, we account for the integration time τint 
of the camera used to record fluorescent light. This 
integration time limits the time resolution of fast 
dissociation rates (µi > τint

-1). As a mathematical measure 
for this limitation, we introduce the time dependent 
expectation value of the dissociation rate <µ> of the 
bound TF population  

 
exp( )

( )
exp( )

i i ii

i ii

S t
t

S t

 











  (3) 

where the value 𝑆 𝑒 / ∑ 𝑆 𝑒  may be interpreted 
as the time dependent probability to find a TF that 
exhibits the dissociation rate µi at time t. We then 
introduce the expression 

 int int( ) (2 )      (4) 

to describe the change of the mean dissociation rate in 
the dead time of our measurement. By minimizing this 
quantity, we reduce the number of degrees of freedom 
during our dead time and thereby avoid overfitting. We 

refer to this regularization as the mean decay 
regularization (MDR). 

We next define the difference between the 
fluorescence survival time function and the measured 
distribution of the m-th point in the n-th time-lapse 
record, ∆fnm, as 

 
Measurement Fit

Measurement Fit
2 2

nm nm
nm

n n

f f
f

f f
     (5) 

where we normalized the values of the fitted and 
measured distributions to the population at the second 
time point of a time-lapse record to eliminate the 
unknown amount of the initial population. 

We further introduce the cost function L of the fitting 
problem which consists of the difference between 
measurement and theoretical function, ∆fnm, and the 
regularization of the mean dissociation rate 

22
int int

,

( ) (2 )nm
n m

L f H             (6) 

Since both ∆fnm and the regularization contribute to the 
same cost function, we introduce the empirical 
parameter H to limit the influence of the regularization. 

The complete optimization problem finally is 

 min( )   where   S 0,k 0L     (7) 

We solve this optimization problem with the gradient 
based method fmincon solver with the sequential 
quadratic programming algorithm of the Matlab 
optimization toolbox, to find the spectrum of 
dissociation rates of TF-chromatin dissociation. We 
refer to our cost function as MDR.  

Alternatively, we tested the cost functions of the L2-

norm (Type II) 2 2

,

  nm i
n m i

f S , the L4-norm (Type III) 

2 4

,

  nm i
n m i

f S  and a more specific norm that weights 

fitting parameters with the hyperbolic cosine 
2

,

cosh(0.1 )   nm i i
n m i

f S k  (Type IV). 

 
Application of GRID to power-law functions  
In GRID, we restricted ourselves to positive off-rates, 
positive amplitudes and a positive bleaching rate. 
Therefore, GRID can be applied to a certain type of 
model-functions. The model functions as well as the 
absolute value of their derivatives has to decay strictly 
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monotonously. In particular we show here that GRID 
can be applied to power-law models. 

We construct a survival function by calculating the 
power-law 

 0( ) 1
k t

f t





   
 

  (8) 

where k
0

 is a constant that shifts the pole to 0t  . The 

number   needs to be larger than one so that the 
average binding time of the TF converges. This model 
converges to a single exponential function in the limit 
  . We analytically calculated the spectrum S(k) of 
(8) as 

 



 



 




 

     
 

    



0

0

0

1 1
00

1 ( ) exp( ) d

( ) exp( ) exp( ) dk

k t
S k kt k

k k k kt k

  (9) 

To check if the time-lapse approach combined with 
GRID can recover this power-law we calculated a 
survival time distribution according to 

 int 0( ) exp( ) 1b
tl

k
bleach

k t
f t t




 


     
 

  (10) 

To introduce noise we stochastically resampled this 
survival function.  

Model for observable dissociation rates 
In our model of TF-DNA dissociation, we assume that 
the TF binds to a free segment of DNA with a length 
corresponding to N base pairs. Within the DNA 
segment, the TF can assume N different binding 
positions (Figure 3, Inset). The TF slides between 
binding positions within this segment by 1D diffusion, 
restricted by roadblocks at the edges of the segment 38, 

39. The TF can leave the segment by dissociating from 
any position within the DNA segment. We further 
consider the variance σ of DNA binding energies in units 
of kbT. This energetic variance leads to dissociation 
rates that are normal distributed around the mean 
dissociation rate   with a standard deviation  . The 
variance of unspecific binding energies was previously 
estimated to be σ <= 1 kbT  40. To each TF position within 
the DNA segment, we ascribe a random dissociation 
rate from this distribution.  

The rate of sliding of the TF from state (or position) i to j 
be αij. The ratio of αij and αji is determined by the 

energy difference between the two positions, which in 
turn is determined by the dissociation rates of the TF 
from DNA at positions i and j. To find values for αij and 
αji, we assume that the transition rate to a lower 
binding energy level is given by the diffusion rate, while 
the transition to a higher binding energy level is limited 
by the energetic gap between the two levels. With this 
assumption we calculate the transition rates according 
to the law of detailed balance 

 

i i 1 i i 1
i,i 1

i i 1

i i 1 i i 1
i 1,i

i i 1

i, j

/

/

0    for    i j 1

 




 




    
      

    
      
   

  (11) 

where β is a mean sliding rate. As described in 33 the 
Kolmogorov formalism can be used to model the 
dynamics of the TF on DNA. We find the time-
dependent probability pi of the TF to be in state i  

   (12) 

The observable dissociation rates are determined by the 
eigenvalues of the eigenvalue-problem and their 
amplitudes in the solution for the time dependent 
probability. We calculate these amplitudes by 

introducing the initial condition 
 

(0)
n

p e , which is 

the unitary vector in n-th direction. This initial condition 
states the initial position of the TF after association to 
the DNA segment.  

We assume a mean sliding rate of β= 10+4, calculated 
based on in vivo sliding measurements 28, 33. Since β is 
much larger than the fastest dissociation rate typically 
measured in experiments (< 10 s-1), the amplitudes of all 
except one eigenvalue become negligible for a single 
sliding segment. 

To describe overall TF binding in the nucleus, we 
consider 500 independent unspecific DNA segments. As 
above, each segment contributes a single dissociation 
rate corresponding to the particular dissociation rate 
distribution of this segment of DNA. Due to stochastic 
fluctuations of dissociation rates drawn for each 
segment, the mean dissociation rates of different 
segments form a narrow cluster of dissociation rates.  
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Quantitative comparison between rate spectra 
To quantify the resemblance between inferred 
spectrum and ground truth in Figure 2d and 
Supplementary Figure 1, we calculated the scalar 
product of these two spectra. This value is high if the 
rates are at the same position and low if the rates are 
shifted with respect to each other. The scalar product is 
zero if the rates are shifted by one increment in the 
GRID. Having observed that a single rate is oftentimes 
split up into two neighbouring rates in the GRID to 
model off-GRID values we raised this to a tolerance of 3 
fields. We calculated the scalar product for 100 
stochastic simulations with identical parameters to give 
the fraction of inferred results with matching spectrum, 
where a matching spectrum must have a scalar product 
larger than 0.5. To visualize the effective amplitudes in 
Figure 2e, we locally integrated over three adjacent 
lines in the spectrum. 

 
Cell culture and preparation  
Cells were cultured and prepared as described in 25.  
Cells with stable integration of Halo-CDX2 under 
doxycycline-induced expression control (kind gift from 
the lab of David Suter, EFPL, Lausanne, Switzerland) 
were seeded one day before the measurement on a 
Delta-T glass bottom dish (Bioptechs, Pennsylvania, 
USA). Expression of Halo-CDX2 was induced by adding 
10ng/ml doxycyclin to the medium four hours before 
imaging. Cells were stained with SiR-dye (kindly 
provided by Kai Johnson, EFPL, Lausanne, Switzerland) 
shortly before imaging according to the Halo-tag 
protocol (Promega).   

Live cell single molecule imaging and tracking 
Single molecule fluorescence imaging was performed as 
described previously 41. In brief, light of a 638 nm laser 
(IBEAM-SMART-640-S, 150 mW, Toptica, Gräfelfing, 
Germany) was used to set up a highly inclined 
illumination pattern on a conventional fluorescence 
microscope (TiE, Nikon, Tokyo, Japan) using a high-NA 
objective (100x, NA 1.45,Nikon, Tokyo, Japan). Emission 
light had to pass a multiband emission filter (F72-866, 
AHF, Tübingen, Germany) and was subsequently 
detected by an EMCCD camera (iXon Ultra DU 897U, 
Andor, Belfast, UK). For time-lapse imaging, dark-times 
were controlled by an AOTF (AOTFnC-400.650-TN, AA 
Optoelectronics, Orsay, France). 

Cells were prepared for imaging as detailed above and 
kept in DMEM medium at 37° during imaging for up to 
two hours of measurement time per dish. Single 

molecule spot detection and tracking  was performed as 
described in 41. In brief, we detected potential single 
molecules based on their fluorescence intensity 
compared to background fluorescence. Localization was 
performed using a 2D Gaussian fit. Halo-TF molecules 
were identified as bound molecules if they did not leave 
a radius of 288 nm for 5 consecutive frames. 
Fluorescence survival time distributions were extracted 
from these tracking data. 

 

Acknowledgements 
We thank Achim Popp for culturing and preparing cells. 
SiR dye was kindly provided by Kai Johnsson (Max 
Planck Institute for Medical Research, Heidelberg). The 
work was funded by the European Research Council 
(ERC) under the European Union’s Horizon 2020 
Research and Innovation Program (No. 637987 
ChromArch to J.C.M.G.), the German Research 
Foundation (CRC 1279 Project B05 and GE 2631/1–1 to 
J.C.M.G.) and the German Academic Scholarship 
Foundation (to M.R.). The authors thank the Ulm 
University Center for Translational Imaging MoMAN for 
its support.  

Contributions 
M.R., J.H. and J.C.M.G. designed the study. J.H. 
developed GRID and performed simulations. M.R. 
performed and analyzed experiments. T.K. contributed 
to image analysis. J.H. quantified TF diffusion on DNA. 
J.C.M.G. supervised the study. J.C.M.G., J.H. and M.R. 
wrote the manuscript.  

Competing financial interests 
The authors declare no competing financial interests. 

Data availability 
Data supporting the findings of this manuscript will be 
available from the corresponding author after 
publication upon reasonable request. All raw single 
particle tracking data will be freely available in Matlab 
file format after publication. 

Code availability 
The GRID software is freely available. A MatLab version 
of GRID and GRID simulation packages are available at 
https://gitlab.com/GebhardtLab/grid. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/679258doi: bioRxiv preprint 

https://doi.org/10.1101/679258
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

References 
 

1. Craig, I., Thompson, A. & Thompson, W.J. 
Practical Numerical Algorithms Why Laplace 
Transforms Are Difficult To Invert Numerically. 
Computers in Physics 8, 648-653 (1994). 

2. McWhirter, J. & Pike, E.R. On the numerical 
inversion of the Laplace transform and similar 
Fredholm integral equations of the first kind. 
Journal of Physics A: Mathematical and General 
11, 1729 (1978). 

3. Barone, P., Ramponi, A. & Sebastiani, G. On the 
numerical inversion of the Laplace transform 
for nuclear magnetic resonance relaxometry. 
Inverse Problems 17, 77-94 (2001). 

4. Berman, P., Levi, O., Parmet, Y., Saunders, M. & 
Wiesman, Z. Laplace Inversion of Low-
Resolution NMR Relaxometry Data Using Sparse 
Representation Methods. Concepts in Magnetic 
Resonance Part A 42, 72-88 (2013). 

5. Voelz, V.A. & Pande, V.S. Calculation of rate 
spectra from noisy time series data. Proteins-
Structure Function and Bioinformatics 80, 342-
351 (2012). 

6. Zhou, Y.J. & Zhuang, X.W. Robust 
reconstruction of the rate constant distribution 
using the phase function method. Biophysical 
Journal 91, 4045-4053 (2006). 

7. Zhou, Y.J. & Zhuang, X.W. Kinetic analysis of 
sequential multistep reactions. Journal of 
Physical Chemistry B 111, 13600-13610 (2007). 

8. Mazza, D., Abernathy, A., Golob, N., Morisaki, T. 
& McNally, J.G. A benchmark for chromatin 
binding measurements in live cells. Nucleic 
Acids Res 40, e119 (2012). 

9. Gebhardt, J.C.M. et al. Single-molecule imaging 
of transcription factor binding to DNA in live 
mammalian cells. Nature Methods 10, 421-+ 
(2013). 

10. Loffreda, A. et al. Live-cell p53 single-molecule 
binding is modulated by C-terminal acetylation 
and correlates with transcriptional activity. Nat 
Commun 8, 313 (2017). 

11. Chen, J. et al. Single-molecule dynamics of 
enhanceosome assembly in embryonic stem 
cells. Cell 156, 1274-1285 (2014). 

12. Sugo, N. et al. Single-Molecule Imaging Reveals 
Dynamics of CREB Transcription Factor Bound 
to Its Target Sequence. Scientific Reports 5, 9 
(2015). 

13. Speil, J. et al. Activated STAT1 Transcription 
Factors Conduct Distinct Saltatory Movements 
in the Cell Nucleus. Biophysical Journal 101, 
2592-2600 (2011). 

14. Caccianini, L., Normanno, D., Izeddin, I. & 
Dahan, M. Single molecule study of non-specific 
binding kinetics of Lacl in mammalian cells. 
Faraday Discussions 184, 393-400 (2015). 

15. Groeneweg, F.L. et al. Quantitation of 
Glucocorticoid Receptor DNA-Binding Dynamics 
by Single-Molecule Microscopy and FRAP. Plos 
One 9 (2014). 

16. Hammar, P. et al. Direct measurement of 
transcription factor dissociation excludes a 
simple operator occupancy model for gene 
regulation. Nature Genetics 46, 405-+ (2014). 

17. Ha, T. & Tinnefeld, P. Photophysics of 
Fluorescent Probes for Single-Molecule 
Biophysics and Super-Resolution Imaging. 
Annual Review of Physical Chemistry, Vol 63 63, 
595-617 (2012). 

18. Callegari, A. et al. Single-molecule dynamics and 
genome-wide transcriptomics reveal that NF-kB 
(p65)-DNA binding times can be decoupled 
from transcriptional activation. Plos Genetics 
15, 23 (2019). 

19. Ho, H.N., van Oijen, A.M. & Ghodke, H. The 
transcription-repair coupling factor Mfd 
associates with RNA polymerase in the absence 
of exogenous damage. Nature Communications 
9 (2018). 

20. Agarwal, H., Reisser, M., Wortmann, C. & 
Gebhardt, J.C.M. Direct Observation of Cell-
Cycle-Dependent Interactions between CTCF 
and Chromatin. Biophysical Journal 112, 2051-
2055 (2017). 

21. Richter, M. Inverse Probleme. (Springer, 2015). 
22. Istratov, A.A. & Vyvenko, O.F. Exponential 

analysis in physical phenomena. Review of 
Scientific Instruments 70, 1233-1257 (1999). 

23. Ho, H.N., Zalami, D., Köhler, J., van Oijen, A.M. 
& Ghodke, H. Identifying multiple kinetic 
populations of DNA binding proteins in live cells 
using single-molecule fluorescence imaging. 
bioRxiv, 509620 (2019). 

24. Normanno, D. et al. Probing the target search of 
DNA-binding proteins in mammalian cells using 
TetR as model searcher. Nat Commun 6, 7357 
(2015). 

25. Raccaud, M. et al. Mitotic chromosome binding 
predicts transcription factor properties in 
interphase. Nature communications 10, 487 
(2019). 

26. Berg, O.G., Winter, R.B. & Vonhippel, P.H. 
Diffusion-Driven Mechanisms of Protein 
Translocation on Nucleic-Acids .1. Models and 
Theory. Biochemistry 20, 6929-6948 (1981). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/679258doi: bioRxiv preprint 

https://doi.org/10.1101/679258
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

27. Elf, J., Li, G.W. & Xie, X.S. Probing transcription 
factor dynamics at the single-molecule level in a 
living cell. Science 316, 1191-1194 (2007). 

28. Gorman, J. & Greene, E.C. Visualizing one-
dimensional diffusion of proteins along DNA. 
Nature Structural & Molecular Biology 15, 768-
774 (2008). 

29. Hipp, L. et al. Single-molecule imaging of the 
transcription factor SRF reveals prolonged 
chromatin-binding kinetics upon cell 
stimulation. Proceedings of the National 
Academy of Sciences of the United States of 
America 116, 880-889 (2019). 

30. Morisaki, T., Muller, W.G., Golob, N., Mazza, D. 
& McNally, J.G. Single-molecule analysis of 
transcription factor binding at transcription 
sites in live cells. Nature Communications 5, 
4456 (2014). 

31. Ball, D.A. et al. Single molecule tracking of 
Ace1p in Saccharomyces cerevisiae defines a 
characteristic residence time for non-specific 
interactions of transcription factors with 
chromatin. Nucleic Acids Research 44, e160 
(2016). 

32. Masson, J.B. et al. Mapping the Energy and 
Diffusion Landscapes of Membrane Proteins at 
the Cell Surface Using High-Density Single-
Molecule Imaging and Bayesian Inference: 
Application to the Multiscale Dynamics of 
Glycine Receptors in the Neuronal Membrane. 
Biophysical Journal 106, 74-83 (2014). 

33. Hettich, J. & Gebhardt, J.C.M. Transcription 
factor target site search and gene regulation in 
a background of unspecific binding sites. 
Journal of Theoretical Biology 454, 91-101 
(2018). 

34. Cho, W.K. et al. Mediator and RNA polymerase 
II clusters associate in transcription-dependent 
condensates. Science 361, 412-415 (2018). 

35. Persson, F., Linden, M., Unoson, C. & Elf, J. 
Extracting intracellular diffusive states and 
transition rates from single-molecule tracking 
data. Nature Methods 10, 265-269 (2013). 

36. Monnier, N. et al. Inferring transient particle 
transport dynamics in live cells. Nature Methods 
12, 838-+ (2015). 

37. Reisser, M. et al. Single-molecule imaging 
correlates decreasing nuclear volume with 
increasing TF-chromatin associations during 
zebrafish development. Nature 
Communications 9, 11 (2018). 

38. Hammar, P. et al. The lac Repressor Displays 
Facilitated Diffusion in Living Cells. Science 336, 
1595-1598 (2012). 

39. Gorman, J., Plys, A.J., Visnapuu, M.L., Alani, E. & 
Greene, E.C. Visualizing one-dimensional 
diffusion of eukaryotic DNA repair factors along 
a chromatin lattice. Nature Structural & 
Molecular Biology 17, 932-U937 (2010). 

40. Slutsky, M., Kardar, M. & Mirny, L.A. Diffusion in 
correlated random potentials, with applications 
to DNA. Physical Review E 69, 11 (2004). 

41. Clauß, K. et al. DNA residence time is a 
regulatory factor of transcription repression. 
Nucleic Acids Res 45, 11121-11130 (2017). 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/679258doi: bioRxiv preprint 

https://doi.org/10.1101/679258
http://creativecommons.org/licenses/by-nc-nd/4.0/

