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ABSTRACT
Single neurons in visual cortex provide unreliable mea-
surements of visual features due to their high trial-to-trial
variability. It is not known if this “noise” extends its ef-
fects over large neural populations to impair the global
encoding of sensory stimuli. We recorded simultaneously
from ∼20,000 neurons in mouse visual cortex and found
that the neural population had discrimination thresholds
of 0.3◦ in an orientation decoding task. These thresholds
are ∼100 times smaller than those reported behaviorally
in mice. The discrepancy between neural and behav-
ioral discrimination could not be explained by the types of
stimuli we used, by behavioral states or by the sequential
nature of trial-by-trial perceptual learning tasks. These re-
sults imply that the limits of sensory perception in mice
are not set by neural noise in sensory cortex, but by the
limitations of downstream decoders.

INTRODUCTION
Sensory neurons respond with high variability to repeated
presentations of the same stimulus [1–8]. This variability is
thought to limit the accuracy of perceptual judgements be-
cause it is pervasive [9–12], and it is reduced during atten-
tional engagement [13–15] and over the course of perceptual
learning [16]. The hypothetical links between neural variabil-
ity, sensory information and perceptual judgements stand at
the foundation of several theoretical frameworks such as the
efficient coding hypothesis [17], the ideal observer model [18],
the Bayesian coding hypothesis [19–21] and the probabilistic
sampling hypothesis [22, 23].

However, it is not clear how variability measured from single
neurons or from pairs of neurons scales to local circuits of tens
of thousands of neurons [10]. Intuitively, one might expect the
noise to be averaged out over large enough numbers of neu-
rons. Theoretical studies have shown that most types of noise
are indeed harmless at the population level [24–27]; only a
special kind of correlated noise is detrimental to neural coding
because it can limit the total amount of information available
in the system. This “information-limiting” noise arises when
the estimation errors of single neurons are correlated to each
other at the level of the population [27].

In geometric terms, noise can only affect the encoding of a
stimulus when it aligns to the same neural subspaces which
the stimuli drive [28–30]. We now know that at least some
of the neural noise is orthogonal to the stimulus subspace,
and thus harmless. Specifically, we have shown orthogonality
to the stimulus space for the neural variability induced by the
animal’s own behavior across its entire brain [31]. However,

this behavior-related neural activity only accounted for ∼35%
of the total coordinated variability, leaving the possibility that
the rest is stimulus-related and thus potentially information-
limiting.

Estimating the impact of information-limiting noise on cod-
ing is difficult, because even small amounts of information-
limiting noise can put absolute bounds on the precision of
stimulus encoding [27]. To detect the effects of such small
noise, it is thus necessary to record from large numbers of
neurons. This introduces a new problem: the information con-
tent of such recordings cannot be estimated directly and de-
coding approaches must be used instead. Previous studies in
anesthetized macaques have decoded one-dimensional vari-
ables (i.e. the orientation of a grating) from populations of
at most 100 simultaneously-recorded neurons and reported
decoding errors in the 2-20◦ range [32–34]. It is not known
if these errors represent an absolute lower bound, or may
decrease further for larger neural populations. Some stud-
ies have suggested that small subsets of neurons are as
discriminative as the entire population [33, 35], while others
have shown consistent improvements in discrimination with in-
creasing numbers of neurons [36].

Here we aimed to measure the absolute lower bound on
decoding error for visual stimulus orientation by recording
from populations of ∼20,000 neurons in mice. If information-
limiting noise exists, we reasoned that the decoding error must
asymptote at some non-zero value as we increase the num-
ber of neurons we consider [27]. Instead, we found that we
could decode the orientation of a grating with mean errors as
low as 0.3◦, and this decoding error did not asymptote with
the number of neurons or stimuli we presented. To achieve
this decoding performance, it was important to take corre-
lations into account, but these correlations were not of the
information-limiting type. We also show that the low decoding
errors can be achieved by a variety of biologically plausible
learning strategies based on linear decoders. These results
imply that the visual cortex encodes visual features to high
precision on a trial-by-trial basis in mice, a species not known
for high acuity vision, and which performs poorly in orientation
discrimination tasks [37, 38].

RESULTS
We recorded from primary visual cortex in awake, head-fixed
mice that were free to run on an air floating ball. Each session
lasted for 120-180 minutes during which we presented images
to the left eye (Figure 1A). Our main stimuli were static grat-
ings, which lasted for 750ms and were rotated at a random
orientation on each trial. We recorded neural activity from
visual cortex using multi-plane two-photon calcium imaging,
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Figure 1: Recording setup and single-neuron variability. (A) Visual presentation setup. (B) Multi-plane imaging setup. (C) Section from a
recorded plane. (top plot) maximum fluorescence image. (bottom plot) cell masks detected with Suite2p, randomly colored. (D) Activity raster
of all neurons in one recording in response to static gratings of various angles. Neurons are sorted along the vertical axis by their preferred
angle, and smoothed with a Gaussian of width 50 neurons. (E) Single trial stimulus responses of an example neuron. (F) Responses from
(E) averaged over 3 bins following stimulus onset (gray dots), with average tuning curve (black line). (G) Distribution of the signal-to-noise
ratio (SNR) across neurons in this session. (H) Hypotheses for the alignment of decoding errors across the neural population. Each circle
represents a different trial. The black line denotes the true angle of the stimulus. Each arrow represents the decoded angle from a single
neuron’s response. (i) the errors are uncorrelated across neurons. (ii) some errors are correlated. (iii) all errors are correlated, and therefore
information about the stimulus is lost.

with 10-17 planes spaced 25 µm apart in depth, scanning the
entire stack repeatedly at an average 3 Hz (Figure 1B). We ob-
tained 19,665± 3,062 (s.d., n=6) neurons per recording using
the processing pipeline Suite2p [39] (Figure 1C). All analyses
were performed on deconvolved data, which localizes in time
the extended fluorescence responses of the calcium indicator
[40]. We have publicly shared the data and code for this paper
[41].

To visualize the patterns of population activity in a raster
plot, we sorted neurons by their preferred stimulus and binned
their activity along this stimulus-sorted axis (Figure 1D). As
previously shown [42], single neurons had high trial-to-trial
variability and sometimes failed to respond at all to their pre-
ferred stimulus (Figure 1E). We quantified this variability by
the signal-to-noise ratio (SNR) (Figure 1F), and found a mean
SNR of 0.11 for the example session, and 0.13± 0.01 (s.e.m.,
n=6) across recordings, similar to the single-trial SNR pre-
viously reported for natural image stimuli [36]. The aligned,
population-averaged tuning curves had a mean half-width at
half-max of 14.1◦ (Figure S1). The correlation between neural

response vectors for different orientations decayed smoothly
as a function of the difference in orientation (Figure S2A,B).
Using a manifold embedding algorithm in three dimensions
(ISOMAP, [43]), we found a predominantly one-dimensional
representation of the stimulus space, but nonetheless a rep-
resentation corrupted with noise (Figure S2C).

We distinguish between three types of potential neural vari-
ability that can affect coding (Figure 1H). First, the decoding
errors of single neurons might be uncorrelated across neu-
rons, in which case averaging over single-neuron predictions
would give an unbiased estimate of the true stimulus angle
with a small error (Figure 1Hi). A second possibility is that
decoding errors are partially-correlated over the population,
for example if subsets of neurons have correlated errors (Fig-
ure 1Hii). The third and final possibility is that decoding errors
are fully correlated over the population, so that averaging over
the predictions of even infinitely many neurons would give a
biased estimate of the true stimulus orientation (Figure 1Hiii).
This situation would indicate the presence of “information-
limiting” correlations [27].
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Figure 2: Decoders of stimulus orientation. (A) Single-neuron single-trial stimulus responses (gray dots) with average tuning curves (black
line). Right panel: log-likelihood of stimulus orientation based on each neuron’s observed response on trial #888. Actual stimulus is gray
dotted line. Right, bottom panel: average log-likelihood over all neurons. (B) True versus decoded stimulus on test trials. (C) Distribution of
absolute angle errors across trials. (inset: distribution of median decoding errors across recordings). (D) Neurons were split into two random
populations and the decoder was fit separately to each population. (E) Scatter plot of decoding errors from the two populations. The Spearman
correlation RS is reported (inset: distribution of RS across recordings). (F) Linear decoder schematic, with ”super-neuron” responses to test
stimuli. (G,H) Same as B,C for the linear decoder.

Independent neuron decoder: 2.4◦ error

Consider the first possibility, that the stimulus-dependent vari-
ability is uncorrelated between neurons. If that was true in
the data, we could decode from the neural population using
the “Naive Bayes” classifier [44], in which every observed re-
sponse R(n,θ) of a neuron n to a stimulus θ determines the
probability P(θ′|R(n,θ)) which that neuron gives to every pos-
sible stimulus θ′ (Figure 2A). Assuming independence, we can
multiply these probabilities across neurons to obtain the likeli-
hood P(θ′|R(1,θ),R(2,θ), ...) that the entire population gives
to every possible stimulus θ′. Equivalently, we can sum the
log-likelihoods across neurons (Figure 2A). We then select
the stimulus with the highest likelihood as the decoded ori-
entation, using interpolation to predict fractional stimulus val-
ues (see Methods). Finally, we can define P(θ′|R(n,θ)) ∼
N (R(n,θ)| fn(θ

′),σn(θ
′)), where fn,σn are means and vari-

ances optimized on the training data (Figure 2A).

This population decoder had a median decoding error of

2.39◦ ± 0.13◦ (s.e.m., n=6) (Figure 2B,C). This error may be
due to either: 1) single-neuron noise that was not fully aver-
aged out, or 2) correlations in decoding errors between neu-
rons. To test if the decoding errors were correlated, we split
the neurons into two populations, decoded from each, and
asked if the two decoding errors were in the same direction
with respect to the true stimulus (Figure 2D). We found that
the errors were highly correlated (Spearman’s R=0.65±0.11
(s.e.m, n=6)), which invalidated the independence assump-
tion of the decoder, and suggests that the error may decrease
further if correlations are taken into account (Figure 2E).

Linear decoders ignore correlations: 1◦ error

To account for correlations, a decoder must be able to ap-
propriately weigh neurons, potentially discarding neurons that
have too high correlations. This is most easily achieved
by simple linear decoders, which we modify here to pre-
dict continuous functions of the stimulus angle (Figure 2F),

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/679324doi: bioRxiv preprint 

https://doi.org/10.1101/679324
http://creativecommons.org/licenses/by/4.0/


rather than the stimulus angle itself, which is a circular vari-
able and thus not directly predictable by a linear method.
We called these intermediate functions “super-neurons” and
chose them to have von Mises tuning to orientation θ (Fig-
ure 2F): F(θ|θpref) = exp(cos(θ−θpref)/σ), with σ= 0.1, with
different super-neurons having different values of θpref that tile
the full range [0,2π]. On test data, we computed the activa-
tions of the super-neurons and picked the preferred angle of
the super-neuron with the highest activation as the decoded
stimulus, using interpolation methods to decode fractional an-
gles (Figure 2F).

The error of the linear decoder was 1.03◦ ± 0.04◦ (s.e.m.,
n=6) compared to the 2.39◦ for the independent decoder (Fig-
ure 2G,H). To achieve this decoding error, more than 256 prin-
cipal components were needed (Figure S3). The best de-
coding was achieved for horizontal gratings, and the worst
for vertical gratings, although the differences were small (Fig-
ure S4). The decoder was not affected by the presence of
spontaneous activity patterns [31], and performed equally well
whether these patterns were subtracted off or not (Figure S5).

To determine if the linear decoder achieved the minimum
possible error, we analyzed the asymptotic behavior of the er-
ror as a function of the number of neurons and stimuli. As op-
posed to the independent decoder, which nearly achieved its
saturating value of ∼2.12◦ (Figure S6A), the linear decoder’s
error continued to decrease with increasing numbers of neu-
rons (Figure S6B). We estimated that its error would plateau
at 0.71◦ in the limit of very many neurons. We performed a
similar scaling analysis with the number of training set stimuli
(Figure S6C). Again we found that the error continued to de-
crease with increasing numbers of stimuli, presumably due to
less overfitting. We estimated that the error would saturate at
0.38◦ for very many training stimuli.

This asymptotic analysis suggested that the most effective
way to further lower decoding errors would be to show more
stimuli. To do this we restricted the range of presented angles
to 43-47◦, and presented ∼4,000 stimuli in this range. This
increased the stimulus density from 10 trials/deg to 1,000 tri-
als/deg. To avoid boundary effects when decoding orienta-
tions in such a limited range, we switched to a decoding task
in which we infer if the true stimulus is above or below the
middle value of 45◦.

Neural discrimination thresholds of 0.3◦

For this new decoding task we built structured decoders that
predicted a single function f of the presented stimulus θ and
the threshold stimulus θ0: f (θ) = F(θ|θ0 + 15◦)−F(θ|θ0−
15◦), where F is the von Mises function defined above. We
used the sign of the neural prediction on test trials as the pre-
dicted class label of the decoder which for convenience we
refer to as “left” vs “right”.

The neural discrimination threshold is defined as the angle
at which the decoder achieves 75% correct performance. The
discrimination threshold was 1.04◦ (Figure 3B) for the original

stimulus set at 10 trials/deg, and 0.32◦ for the new stimulus set
of 1,000 trials/deg (Figure 3C). An asymptotic analysis shows
that the error might have decreased further with more neurons
and more trials (Figure 3D). As a sanity check, we performed
control recordings with the laser path blocked (shutter on) and
found no ability to decode from the very low bleedthrough of
the screen into the microscope (see Figure S7).

In contrast to these low neural discrimination thresholds,
behavioral discrimination thresholds in mice are >25◦ [37, 38]
(Figure 3B). We wondered if some of the difference between
neural and behavioral discrimination could be related to be-
havioral states, because the mice in our experiments were
free to run on an air-floating ball. To quantify running-related
differences, we split test trials (but not training trials) in two
groups based on locomotion. We found that passive trials had
modestly increased discrimination thresholds of 1.25◦ com-
pared to 0.96◦ on running trials (Figure 3E).

Thus, behavioral states cannot account for the discrepancy
between behavioral and neural discrimination thresholds. We
next asked if the discrepancy may be accounted for by stim-
ulus properties, and used neural responses to new stimu-
lus sets (Figure 3F) to investigate this possibility. We varied
the size (full field vs 30◦) and duration (750ms vs 100ms) of
the static grating stimuli. We also presented drifting gratings
(2Hz), drifting gratings with low contrast (1 vs 0.05) and drifting
gratings with low contrast and large added noise. Finally, we
showed a complex stimulus without a well-defined absolute
orientation, and rotated it around its center. These manipula-
tions either did not increase discrimination thresholds or did
so modestly, up to at most 1.87◦ for the low-contrast, drifting
gratings (Figure 3F).

We also considered the possibility that the neural code
might change over the duration of the recording, making de-
coders obtained from the first half of the recording ineffective
on the second half. We therefore split train/test trials chrono-
logically rather than randomly. We found a modest increase
in discrimination threshold to 1.14◦ compared to the original
1.04◦ (Figure S8). We did not observe a change in the dis-
crimination threshold across cortical layers (L2/3 vs L4, Fig-
ure S9).

Thus, neither the stimulus properties nor the behavioral
states can account for the discrepancy between behavioral
and neural discrimination thresholds. We conclude that mice
might not be using their available neural information efficiently
in behavioral tasks. This may be a consequence of trial-by-
trial learning limitations, which we investigate next in simula-
tions.

Biologically-plausible learning by perceptrons
Our first hypothesis was that the sequential nature of trial-by-
trial learning makes it difficult to learn optimal decoders with-
out storing the neural responses to all previously presented
stimuli, which might be unfeasible (but see hippocampal re-
play e.g. [45, 46]). To construct an online decoder, which pro-
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Figure 3: Orientation discrimination. (A) Decoding task set up. (B) Neurometric curves were symmetrized and averaged across sessions.
The discrimination threshold was computed as the angle difference for which 75% correct performance is achieved. Psychometric results
reproduced from [38]. (C) In another set of recordings, we presented stimuli in the range 43-47◦, obtaining a higher density of training trials
of 750 trials/degree. The analysis in B was repeated on this data. (D) Asymptotic behavior of the discrimination threshold as a function of the
number of trials/deg (left) and the number of neurons (right). (E) Neurometric curves for subsets of trials divided into running and passive trials.
(F) Neurometric curves for other stimulus types: localized, short, drifting, drifting + low-contrast, drifting + low-contrast + noise, and complex.

cesses trials sequentially, we used perceptrons [47–51] (Fig-
ure 4A). The perceptron sums the activities of its input neu-
rons multiplied by a set of weights and then puts this output
(ypred) through a nonlinearity. In our case, the nonlinearity out-
puts the sign of the perceptron’s output and we use that sign
to predict the label (-1,+1 for left and right choices). The ob-
jective of learning in a perceptron is to change the weights as
to minimize the mean-squared error of the prediction.

Simple forms of online learning in a perceptron can be bi-
ologically realistic if they only require global error signals in
addition to information available locally at a synapse. We
investigate three such versions here. First, we consider a
“supervised Hebbian” learner, which changes the weight wk
by ∆wk = ylabel · xk, with xk the response of neuron k (Fig-
ure 4A). We also consider a gradient descent learner, which

changes the weights by ∆wk = (ylabel− ypred) · xk, and a re-
stricted form of gradient descent which uses the reinforcement
feedback (correct/wrong) in place of the full prediction error:
∆wk = sign(ylabel− ypred) · xk. We call this last one “reinforce-
ment descent”.

To test these online learning strategies, we designed two
tasks, one easy and one hard. In the easy task, the learn-
ing agents used the neural responses to our first stimulus set
with 10 trials/deg, restricted to angles between -30 and -5 de-
grees for the “left” choice, and 5 to 30 for the “right” choice
(Figure 4B). All three perceptron learners performed this task
perfectly, using a small number of training trials (Figure 4B). In
the hard task, the learners had to discriminate between posi-
tive and negative stimulus angles of up to 2◦, using the neural
data recorded at 1,000 trials/deg (Figure 4C). The supervised
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Figure 4: Online learning of discrimination tasks. (A) Trial-by-trial learning for a perceptron can use either 1) only the label information, 2)
only the trial reinforcement, or 3) both the trial reinforcement and the continuous valued prediction. Finally, non-incremental learning can use
all trials simultaneously, such the linear decoder previously used in Figure 3. (B) “Easy task” configuration and decoder learning performance,
averaged over the neural datasets which provide the inputs x. (C) Same as B for the “hard task”. (D) Alternative learning strategies that are
plausible but weak. The ”best neuron” learner chooses the neuron most correlated with the correct choice on the training set. The ”one shot”
learner uses just one training example of each class (left and right) to find a linear discriminant. The ”random projection” learner chooses the
best performing random projection out of 100. (E) Performance of the weak learners on the easy task.

Hebbian learner was unable to perform well in this task with an
asymptotic performance of 66%. However, the learners based
on gradient descent and reinforcement descent performed rel-
atively well at 83% and 77% compared to 86% for the optimal
linear decoder, which had instantaneous access to all trials
in its history (Figure 4C). Therefore, the perceptrons acquired
task information nearly as efficiently as the optimal linear de-
coder did.

We conclude that these simple online decoders can learn
the orientation discrimination task from neural data in a
sample-efficient way. Therefore, the trial-by-trial limitation
of animal perceptual learning experiments does not explain
the discrepancy between neural and behavioral discrimina-
tion thresholds. It follows that animals use highly subopti-
mal learning strategies in psychophysical experiments, per-
haps because those strategies are favorable in ecological con-
texts. We end this study by proposing examples of weak but
potentially relevant decoders, and leave it to future work to
test if any of these weak learners provide insight into animal
behavior. The decoders we propose (Figure 4D) are: 1) the
“best neuron” learner, which finds the neuron most correlated
with the correct choice on the training set and then uses this

neuron to make predictions on the test set; 2) the “one-shot”
learner, which uses neural responses from only one trial of
each stimulus category and builds a linear decoder along the
discriminant direction of these two trials; and 3) the “random
projection” learner, which tests 100 different random projec-
tions in parallel and retains the one that maximizes training
set performance. These decoders had test set performance
on the easy task in the range of 65-90% (Figure 4D), which
is inline with mouse behavioral performance on similar tasks
[37, 38, 52].

DISCUSSION

What sets the limits of sensory discrimination? Our analyses
imply it is not neural noise. We have shown this by recording
from very large populations of neurons in visual cortex and
computing neural discrimination thresholds as low as 0.3◦ in
mice, a species thought to have poor visual acuity. Simple
linear decoders were sufficient to achieve this performance,
although it is possible that nonlinear decoders may achieve
even higher performance ([53]; but see Figure S10). The neu-
ral discrimination thresholds were ∼100x lower than behav-
ioral discrimination thresholds, which we estimated at >25◦
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based on previous studies [38]. We were not able to explain
this discrepancy by varying six different stimulus properties,
by splitting trials according to behavioral states, or by learning
the decoder in a biologically plausible way.

We suggest two potential explanations for the discrepancy
between behavior and neurons. First, it might be that down-
stream decoders in the mouse brain are computationally lim-
ited, and cannot find the same discrimination directions in
neural space that are found by an ideal external observer.
Second, it might be that our methods for probing discrimina-
tion in mice are limited and better task designs may result in
better training and better discrimination. To better train mice,
more naturalistic tasks might be necessary, such as immer-
sive virtual reality navigation [52, 54, 55]. Alternatively, it may
be that mice do have latent task knowledge even if their be-
havior is poor [56], in which case future task improvements
should target the expression of this latent knowledge.
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METHODS
All experimental procedures were conducted according to
IACUC.

Animals and surgery
We performed experiments on three mice bred to express
GCaMP6s in excitatory neurons: TetO-GCaMP6s x Emx1-
IRES-Cre mice (available as JAX 024742 and JAX 005628).

We also performed experiments on three wild-type C57 mice
in 17 recordings. In these mice, AAV-GCaMP6s-P2A-nls-
dTomato (Addgene plasmid #51084) was expressed virally
through injections into visual cortex. These mice were male
and female, and ranged from 2 to 8 months of age.

Surgical methods were similar to those described else-
where [31]. Briefly, surgeries were performed in adult mice
(P35P125) under isoflurane anesthesia (5% for induction, 1-
2% during the surgery) in a stereotaxic frame. Before surgery,
buprenorphine was administered as a systemic analgesic and
lidocaine was administered locally at the surgery site. During
the surgery we implanted a head-plate for later head-fixation,
and made a craniotomy of 4 mm in diameter with a cranial win-
dow implant for optical access. We targeted virus injections
(50-200 nl, 1-3 x 1012 GC/ml) to monocular V1 (2.1-3.3 mm
laterally and 3.5-4.0mm posteriorly from Bregma). To obtain
large fields of view for imaging, we typically performed several
injections at nearby locations, at multiple depths (∼500 µm
and ∼200 µm).

Data acquisition

We used a custom-built 2-photon mesoscope [57] to record
neural activity, and ScanImage [58] for data acquisition, ob-
taining 18,496± 3,441 (s.d., n=32) neurons in the recordings.
Multi-plane acquisition was controlled by a resonance mirror,
with planes spaced 25 µm apart in depth. 10-17 planes were
acquired sequentially, scanning the entire stack repeatedly on
average at 3 Hz. We synchronized stimulus presentation to
the beginning of each frame for the first plane, and computed
stimulus responses from the first three frames acquired after
stimulus onset for each plane. We used a custom online Z-
correction module (now in ScanImage), to correct for Z and
XY drift online during the recording.

The mice were free to run on an air-floating ball. For all
static image presentations an LED tablet screen at a 45◦ from
the left eye (we recorded in right visual cortex). For drifting
grating image presentations a custom circular screen made
of LED arrays was placed around the head of the mouse
[59]. We also repeated the static grating experiments with this
screen and obtained comparable decoding errors.

For each mouse, recordings were made over multiple days,
always returning to the same field of view. The field of view
was selected on the first recording day such that large num-
bers of neurons could be observed, with clear calcium tran-
sients and a retinotopic location (identified by neuropil fluo-
rescence) that was localized on the screen.

Visual stimuli

We showed various gratings and localized images. To present
stimuli, we used PsychToolbox-3 in MATLAB [60]. The stimuli
were presented for 750 ms (unless otherwise stated), alternat-
ing with a gray-screen inter-stimulus interval lasting on aver-
age 650 ms. After every 150 stimuli, the screen was left blank
(gray screen) for 32 seconds. The activity during these non-
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stimulus periods was used to project out spontaneous dimen-
sions from the neuronal population responses (see below).

All gratings were square and had a spatial frequency of 0.05
cycles / degree; drifting gratings had a temporal frequency
of 2 Hz. We showed random orientations/directions of these
stimuli on each trial.

The local stimulus was restricted to 30◦ of visual space and
used a lower frequency grating. The complex ”minimouse”
stimulus was also 30◦ of visual space and was rotated around
its center. Outside of these stimuli, the screen was gray.

Data processing
The calcium imaging processing pipeline and the subsequent
analyses use numpy, scipy, numba, scikit-image, and scikit-
learn [61–65]. The figures in the paper were made using mat-
plotlib in jupyter [66, 67].

Calcium imaging data was processed using the Suite2p
toolbox [39], available at www.github.com/MouseLand/
suite2p. Suite2p performs motion correction, ROI detection,
cell classification, neuropil correction, and spike deconvolution
as described elsewhere [31]. For non-negative deconvolution,
we used a timescale of decay of 1.25 seconds [40, 68].

Stimulus responses
We defined the stimulus response as the summed activity of
the first three bins (∼1 second) following stimulus onset. We
split the trials 75/25 into training and testing sets, with every
4th trial assigned to the test set.

Splitting cells into two populations
When looking at correlated decoding errors, we split the neu-
rons into two populations. We first divided the XY plane into
8 non-overlapping strips of width 150 µm, and assigned the
neurons in the even strips to one group, and the neurons in
the odd strips to the other group, regardless of the neuron’s
depth. Thus, there did not exist neuron pairs in the two sets
that had the same XY position but a different depth. This spe-
cial division was performed to avoid contamination artifacts
between overlapping cells or between consecutive planes.

Tuning curves and SNR
We fit the training trials with nbasis = 10 cosine and sine ba-
sis functions, where θ is the angle of the stimulus shown in
radians:

B =



cos(0)
sin(θ)
cos(θ)

...
sin(nbasis ·θ)
cos(nbasis ·θ)


We performed linear regression from B to the neural re-
sponses and used the fitted function fn(θ) as the tuning curve.
To compute the signal-to-noise ratio, we defined the signal as
the variance of the tuning curve and the noise as the variance

of the residual noise after subtracting out the tuning curve
value.

Independent decoder
For the independent decoder, we built generative models of
the neural data by modelling the mean and standard devia-
tion of each neuron. The mean was obtained as a function of
stimulus angle using the tuning curve fits fn(θ) above. The
standard deviation σn(θ) was fit similarly, after subtracting the
mean predictions on the training set, by squaring the residu-
als and fitting them in the same set of basis functions. With
the mean and standard deviation defined for each neuron and
each stimulus, we computed the probability that a novel neural
pattern R(n) was produced by a putative stimulus orientation
θ′:

P(θ′|R(n))∼N (R(n)| fn(θ
′),σn(θ

′)).

These probabilities were evaluated in log-space for a dis-
crete set of θ′ (n=48 orientations) and summed across neu-
rons. To decode orientations more finely, we upsampled the
log-probability curves by a factor of 100 using kriging interpo-
lation. The stimulus angle corresponding to the peak of the
upsampled curve was used as the decoded orientation.

Linear decoder
To decode circular angles using locally linear decoders, we
regressed the neural activity onto ”super”-neurons (see Fig-
ure 2F). These super-neurons were von Mises tuning curves
(n = 48) with peaks equally spaced along 360◦ and with
σ = 0.1:

vk = e(cos(θ−θk)−1)/σ

θk = 360(k−1)/n

We fit the transformation from neurons to super-neurons on
training trials and then predicted the super-neuron responses
on test trials. As for the independent decoder, we upsampled
the super-neuron responses from 48 to 4,800 to decode stim-
ulus angle more finely.

Removal of ongoing activity dimensions
Approximately half the variance of visual cortical population
activity represents behavior-related fluctuations [31]. In Fig-
ure S5 we projected out the ongoing activity dimensions to
show that they had no influence on sensory coding. To
do this we computed the top 32 principal components of z-
scored and binned (3 frames = ∼ 1 second) ongoing activ-
ity. The spontaneous, ongoing neural activity was recorded
during gray screen presentations, and these were presented
after every 150 stimulus presentations for 32 seconds each
time. To remove these dimensions from stimulus responses,
the stimulus-driven activity was first z-scored (using the mean
and variance of each neuron computed from ongoing activity),
then the projection onto the 32 top spontaneous dimensions
was subtracted.
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Asymptotics
To fit the asymptotic error, we modeled the scaling of the me-
dian error with the parametrization α+ β√

N
, where N is the

number of neurons or the number of stimuli (Figure S6). The
scaling of 1/

√
N was chosen because it corresponds to the

decay of the standard deviation of an average of independent
random variables with the same variance. We fit α and β to
the last 12 points of each curve in Figure S6 using linear re-
gression.

Linear decoder for discrimination
To perform the discrimination task with a linear decoder, we
took a similar approach to the linear decoder described above.
Instead of having super-neurons with von Mises tuning, the
super-neurons for this task (n = 32) are differences of von
Mises functions centered above and below the discrimination
boundary:

dk = e(cos(θ−θk−dt)−1)/σ− e(cos(θ−θk+dt)−1)/σ

θk = 360(k−1)/n

dt = 15◦

Neural networks for decoding
We used PyTorch [69]) to train a neural network to perform the
discrimination task in Figure 3 on the 10 trials/degree record-
ings. This network consisted of two rectified-linear layers and
an output sigmoid. The input layer consisted of 256 units using
the top principal components from the data (this reduced over-
fitting). The two hidden layers consisted of 100 units each. We
trained the network for 50,000 iterations using stochastic gra-
dient descent with momentum of 0.9 and a learning rate of
1e-3. The cost was a binary cross-entropy loss. We averaged
over 5 random initializations of the neural network for each
recording.

Random forests for decoding
We used scikit-learn [65] to train a random forest ensemble
classifier to perform the discrimination task using the neural
activity from the 10 trials/degree recordings. We used 1000
trees and averaged over 5 random initializations of the classi-
fier for each recording.

Perceptron learners
The perceptrons used the learning rule

wk = wk +η ·err · xk,

err ∈ {ylabel, ypred− ylabel, sign(ypred− ylabel)}

where η is the learning rate and the three cases for “err”
correspond to the supervised hebbian, the gradient descent
and the reinforcement descent decoders. The gradient de-
scent decoder has been derived from the error cost function:

Cost(w) = ∑
trials

(< w,x >−ylabel)
2
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S1: Population tuning curves. (A) Cosine and sine basis functions were fit to all neurons’ stimulus responses (train trials) in all recordings
(same as in Figure1F). The preferred angles of those basis function are reported here as a distribution. Each line represents a different
recording. (B) On test trials, the responses of neurons with similar preferred angles (determined on train trials) were averaged. (C) Same as
B, averaged over all recordings. (D) Same as C, but normalized between 0 and 1. The half-width half-max of these tuning curves are 14.1◦.
(E-F) Same as A-D for drifting grating responses. The half-width half-max of the tuning curves in H are 15.1◦.
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S2: Manifold of stimulus responses. (A) Correlation between neural responses on all pairs of trials of a recording. (B) Same data as
A, with correlation plotted as a function of stimulus angle difference. The black line shows the binned and smoothed average. (C) The
∼20,000-dimensional vectors were embedded into three dimensions using ISOMAP. Points are colored by the angle of the presented stimulus.
Diametrically opposite points on the manifold come in closer proximity to each other than expected from a pure circle, due to the correlation of
the neural patterns at π angle difference.
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S3: Linear decoding using principal components (A) True angle versus decoded angle using the same linear decoding strategy used for all
neurons (Figure2F), for an example recording. (B) Median decoding error as a function of the number of principal components kept, averaged
over recordings. Error bars are standard error. Dashed line is decoding error using full dataset.
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S4: Decoding error as a function of stimulus angle. (A) All the stimulus sets. (B) Decoding error vs stimulus angle for each trial of an
example recording of each stimulus set. (C) Plot of B after taking the absolute value and binning. Each line is a different recording.
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S5: Principal components of spontaneous, ongoing activity do not influence decoding accuracy. 32 principal components of sponta-
neous, ongoing activity were subtracted from the stimulus responses, and the linear decoder was trained on these responses. The median
decoding errors of the subtracted responses are plotted vs the original.
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S6: Asymptotics. (A) Independent decoder fit to random subsets of neurons, averaged over all recordings. Error bars are standard error. (B)
Same as (A) for the linear decoder. (C) Linear decoder fit using random subsets of stimuli and all neurons.
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S7: Control (laser off). To ensure that the visual stimulus screen did not contaminate the fluorescence signals collected by the photo-multiplier
tube (PMT), we performed recordings in which the shutter on the 2p laser was kept closed, but all other conditions remained the same. With
the laser off, the PMT signals were near-zero and reflected mainly auto-fluorescence, photon noise and 60Hz signals, most probably from
the monitors. (A) Example frame from one of the recordings used in the paper. (B) Example frame of control recording with laser OFF. (C)
Discrimination of stimuli in laser OFF recordings (n=3 mice, >4000 total trials/mouse). The discrimination performance appeared to be at
chance.
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S8: Chronological splitting of train/test trials. (A) Train and test trials interleaved (same as Figure3B). (B) Chronological split across
the 120-180 minutes of recording: training trials were first 75% of stimuli presented and test trials were last 25% of stimuli presented. The
discrimination threshold was only modestly higher.
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S9: L2/3 vs L4. (A) Discrimination of static gratings (10 trials/deg) using only neurons in at depths ∼125-225 µm. (B) Same as (A) with
neurons (∼375-4755 µm deep).
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S10: Decoding with multilayer neural networks and random forests Same decoding task and data as Figure3B. (A) Two-layer neural
network. (B) Random forest classifier.
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