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Abstract The level of compaction of an intrinsically disordered protein may affect both its physical
and biological properties, and can be probed via different types of biophysical experiments. Small-
angle X-ray scattering (SAXS) probe the radius of gyration (Rg) whereas pulsed-field-gradient
nuclear magnetic resonance (NMR) diffusion, fluorescence correlation spectroscopy and dynamic
light scattering experiments can be used to determine the hydrodynamic radius (Rh). Here we
show how to calculate Rg and Rh from a computationally-generated conformational ensemble of
an intrinsically disordered protein. We further describe how to use a Bayesian/Maximum Entropy
procedure to integrate data from SAXS and NMR diffusion experiments, so as to derive conforma-
tional ensembles in agreement with those experiments.
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1 Introduction

In contrast to natively folded proteins, intrinsically disordered proteins (IDPs) generally lack well-
defined three-dimensional structures. Consequently, they explore a large number of distinct con-
formations, and their conformational properties are thus best described in statistical terms. One
useful and informative way of representing this large conformational ensemble is through a distri-
bution of the radius of gyration (Rg) of the IDP. The ensemble average 〈Rg〉 gives a rough measure
of how compact a protein is and may, for example, be compared to the values for other proteins of
similar lengths.

For a given configuration of a protein, the Rg may be calculated as the mass-weighted root
mean distance to the centre of mass:

Rg =

(∑
i ‖ri‖

2
mi∑

imi

) 1
2

(1)

where mi is the mass of atom i and ri is the position of atom i with respect to the center of mass
of the molecule.

Experimentally, one may obtain an estimate of the ensemble-averaged value of the Rg of a
protein by a Guinier analysis of small angle X-ray scattering (SAXS) profiles (1 ) or using various
extended models of the scattering data (2 , 3 ). For the sake of simplicity, we will loosely refer to
the experimental value as Rg, omitting the bracket notation and only use brackets for explicitly
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averaging computed values. Here, we note also that Rg calculated using Eq. 1 is not directly
comparable to that obtained from analyses of SAXS data due to contributions to the scattering
data from the solvent layer around the disordered protein (4 , 5 ).

Similarly, but via different physical principles, the hydrodynamic radius of a protein also reports
on the overall expansion of a protein. The hydrodynamic radius (Rh), also called the Stokes radius,
is defined as the radius of a theoretical hard sphere that would have the same translational diffusion
coefficient as the considered particle. The translational diffusion coefficient (Dt) of a protein may
in turn be determined e.g. by pulsed-field gradient Nuclear Magnetic Resonance (NMR) diffusion
experiments, fluorescence correlation spectroscopy and dynamic light scattering measurements,
and is related to Rh through the Stokes-Einstein equation (6 ):

Dt =
kBT

6πηRh
(2)

where kB is the Boltzmann constant, T is the temperature and η is the viscosity of the solvent.
Because both Rg and Rh probe the compaction of a disordered protein, and because they may

contain complementary information about the distribution of states (7 ) there have been several
studies on the relationship between the Rg and Rh for disordered proteins and polymers (7–10 ).

One such approach uses hydrodynamic modelling of protein conformations (11–13 ) to relate
protein structure to Rh (7 , 10 ). In line with theoretical expectations, the authors found that the
ratio Rg/Rh depends substantially on the compaction of the protein chain, so that compact states
have ratios ≈ 0.8 and expanded conformations have ratios between 1.2–1.6. Because the relative
level of compaction of the chain, when quantified by Rg, also depends on the chain length, the ratio
Rg/Rh also depends on the number of residues of the protein (N). Recently, these two effects were
combined into a single, physically-motivated and empirically parameterized equation that enables
one to calculate Rh for a configuration of an IDP from its Rg (14 ):

Rg

Rh
(N,Rg) =

α1

(
Rg − α2N

0.33
)

N0.60 −N0.33
+ α3 (3)

In addition to Rg and N (number of residues of the protein chain), the equation contains three
parameters that were fitted to maximize agreement between the model and hydrodynamic calcu-
lations (α1 = (0.216 ± 0.001)Å , α2 = (4.06 ± 0.02)Å , and α3 = (0.821 ± 0.002)Å). As discussed
further below, since conformational averaging acts on the diffusion properties, the ensemble av-
eraged value that should be compared to an experimentally measured Rh will not in general be
the same as the linear average over the values of each conformation (〈Rh〉). Also, note that the
equation was parameterized using Rg values calculated from the Cα coordinates only. Values of
Rg calculated in this way are generally very close to those calculated from all protein atoms, but
this parameterization makes it possible to use the approach to calculate Rh also for coarse-grained
Cα-only models.

Here we provide a step-by-step protocol to calculate Rg and subsequently Rh using Eq. 3 from a
computationally generated conformational ensemble of an IDP. Together with calculations of SAXS
data from simulations it is possible to compare the simulations to measurements of compaction. In
cases where the computed and experimental quantities are not in perfect agreement, one may go
one step further and refine the computational ensemble using the experimental data. We thus also
demonstrate how to refine the ensembles by integrating experimental SAXS and Rh measurements,
and thereby generate conformational ensembles that both take into account the physical principles
encoded in the simulations as well as information from experiments. In addition to the motivation
and description provided in this paper we also make available a Jupyter (Python) notebook with
guided examples for performing analysis and generating many of the figures discussed here. We do,
however, not provide instructions for how to generate conformational ensembles, and the reader is
expected to have a basic understanding of the Python programming language to use the examples
presented.

2 Materials

Experimental data and sequence of Sic1
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– We used the following sequence for the Sic1: GSMTPSTPPR SRGTRYLAQP SGNTSSSALM QGQKTPQKPS

QNLVPVTPST TKSFKNAPLL APPNSNMGMT SPFNGLTSPQ RSPFPKSSVK RT

– SAXS data for Sic1 (15 ) obtained from the Protein Ensemble Database (16 ) entry PED9AAA.
(http://pedb.vib.be/accession.php?ID=PED9AAA

– We used the previously measured (17 ) experimental value of Rh (21.5± 1.1Å)

Software:

– Flexible Meccano (18 ) available from http://www.ibs.fr/research/scientific-output/

software/flexible-meccano/?lang=en

– CAMPARI v3.0 (19 ) available from https://sourceforge.net/projects/campari/

– PULCHRA v3.06 (20 ) available from http://www.pirx.com/pulchra/index.shtml

– Pepsi-SAXS v1.4 (21 ) available from https://team.inria.fr/nano-d/software/pepsi-saxs/

– BME (22 ) available from https://github.com/KULL-Centre/BME

– MDtraj v1.9.3 (23 ) available from http://mdtraj.org/1.9.3/

– A Python Jupyter notebook (https://jupyter.org/) for performing the calculations and
analyses described in this paper is available from https://github.com/KULL-Centre/papers/

edit/master/2019/IDP-methods-Ahmed-et-al/

3 Methods

3.1 Generating Ensembles

We have chosen the 90 amino acid residues long protein Sic1 as an example for our calculations, as
this protein has been studied extensively by both SAXS and various NMR methods (15 , 17 ). We
used Campari (19 ) and Flexible-Meccano (18 ) to generate two conformational ensembles of Sic1
in its unphosphorylated state. In the ensemble we generated using Campari (Ensemble 1) we used
Monte Carlo sampling with the ABSINTH v3.2 implicit solvent model (24 ) and a temperature of
298K. The Sic1 protein was contained in a spherical simulation cell with a radius of 150 Å and an ion
concentration of ≈140 mM, matching the experimental condition (15 ). For the Flexible-Meccano
ensemble we generated conformations sampling random coil configurations as described (18 ). As
Flexible-Meccano only generates a model of the protein backbone, we used PULCHRA (20 ) with
default settings to add side chains to these structures and generate Ensemble 2. These side chain
coordinates are necessary when we calculate SAXS data from the conformational ensembles. In
total we generated 32,000 structures for Ensemble 1 and 10,000 structures for Ensemble 2.

3.2 Calculating Rg and Rh from ensembles

Many simulation and protein analysis software packages have the option of calculating the Rg of
the protein. In this example we will use readily available and open source software. For calculating
the Rg of the conformations we use MDTraj, a python module for protein analysis (23 ). Below we
provide Python code demonstrating how to load the ensemble and calculate Rg for each structure,
and then calculate Rh for each structure using Eq. 3. In the example we have collected all con-
formations of the ensemble in a trajectory file (here Ensemble1.trr). Depending on the file format
of the trajectory file, one may also need a coordinate file (structure.pdb) or a topology file. Once
these files are loaded, MDTraj is then used to calculate Rg for each structure in the ensemble,
which in turn is converted into Rh using Eq. 3.

## Loading trajectory and calculate Rg

import mdtraj as md

traj = md.load(" Ensemble1.trr",top=" structure.pdb")

# Select CA atoms

CA_atoms = traj.topology.select(’name CA ’)

traj.atom_slice(CA_atoms , inplace=True)

# Calculate Rg

rg = md.compute_rg(traj)
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# Convert Rg from nm to Angstrom as equation

# from Nygaard et al uses Rg in Angstrom

Rg = rg*10

# Number of amino acids in protein

N = traj.n_residues

# Function for Rh calculation

def getRh(rg,N):

# Parameters fitted in Nygaard et al.

a1 =0.216

a2=4.06

a3 =0.821

return (rg)/((a1*(rg -a2*N**(0.33)))/(N**(0.60) -N**(0.33))+a3)

# Rh calculation

Rh = getRh(Rg ,N)

Once Rg and Rh have been calculated for each structure, these can be used to generate histograms
of Rg (Fig. 1a) and Rh (Fig. 1b), and the average Rh can be calculated as for comparison to
experimental values (see Note 1). We also show the calculated average of Rg in the plots (Fig. 1)
(see Note 2) though as explained below, a better comparison to the experimental data requires
calculations of SAXS intensities from the conformational ensemble (see also Note 3).

a b
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Fig. 1 Analyzing compaction in ensembles of Sic1. Probability distribution of (a) Rg and (b) Rh calculated from
two ensembles that we generated of Sic1. Here, Ensemble 1 (red) was generated using Campari and Ensemble 2
(blue) was generated using Flexible-Meccano as described in the main text. (a) Solid vertical lines represents the
ensemble average Rg (〈Rg〉trans; see Note 2 for the definition) of Ensemble 1 (red) and Ensemble 2 (blue). (b) Solid
vertical lines represents the ensemble average Rh (〈Rh〉trans) calculated using Eq. 3 and as discussed in Note 1 from
Ensemble 1 (red) and Ensemble 2(blue). The experimental values of Rg and Rh are shown in black. The error of
the distribution and averages of Rg and Rh (shown as shaded areas) were estimated by block averaging using five
blocks.

As described above the ratio Rg/Rh depends substantially on the compaction of the protein
chain, so that compact states have ratios ≈ 0.8 and expanded conformations have ratios between
1.2–1.6 (14 ). For a protein of 91 amino acids, the switch-over point where the Rg/Rh = 1 lies at
conformations with Rg ≈ 27Å (see Note 4). Thus, conformations with Rg < 27Å have Rh > Rg
whereas conformations with Rg > 27Å have Rh < Rg. In this way, the distribution of Rh is ‘pushed’
towards the middle and has less density in the tails compared to the distribution of Rg (Fig. 1).

The distributions of Rg (Fig. 1a) and Rh (Fig. 1b) from Ensemble 1 and Ensemble 2 and
the resulting averages, can also be compared to the experimental values from SAXS and NMR
(15 , 17 ). These results reveal two different scenarios for the two ensembles. First, 〈Rh〉trans
calculated from Ensemble 1 (Campari) is in good agreement with the experimentally-determined
value of Rh (Fig. 1b). At the same time, the calculated value of 〈Rg〉trans is substantially lower
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than the average Rg value estimated from SAXS experiments (Fig. 1a). Second, for Ensemble 2
(Flexible-Meccano) we observe the opposite scenario, where the calculated 〈Rg〉trans is close to the
value estimated by SAXS (Fig. 1a), and the calculated 〈Rh〉trans is substantially greater than the
experimental value (Fig. 1b).

Disagreement between experiment and simulation is often indicative of problems with the molec-
ular force fields or sampling (25 ), though differences may also arise from problems in e.g. the model
used to calculate experimental data from structural ensembles (5 , 26 ). While it is possible to im-
prove molecular force fields directly against experimental data (27 ), we below describe how one
can refine a specific ensemble against one or more sets of experimental measurements.

3.3 A Bayesian/Maximum Entropy approach

Above we have analysed two ensembles and used Eq. 3 to estimate Rh which in turn could be
averaged and compared to NMR diffusion experiments. We also calculated Rg from the protein co-
ordinates, though as noted this value is not directly comparable to the experimental measurements
due to solvation effects (5 ). Nevertheless, the results suggested discrepancies between experiments
and simulations.

Although there has been continued improvements in methods and force fields for sampling the
conformational landscape of IDPs, it is still not uncommon that simulations are not in perfect
agreement with experiments. In such cases, it is possible to bias the simulation to construct an
ensemble that is in better agreement than the unbiased ensemble (22 , 28–31 ).

We here use such a method to construct two new ensembles by reweighting the Campari and
Flexible-Meccano ensembles with the experimental data, thus obtaining ensembles that are in
better overall agreement with the SAXS and NMR diffusion experiments. Specifically, we use
experimental SAXS data (15 ) and NMR diffusion measurements of Rh (17 ), and use our recently
described Bayesian/Maximum Entropy (BME) protocol to reweight the conformational ensembles
(22 ). We focus solely on the technical details of the approach rather than the biological relevance.
Also, we exemplify using two experimental measures of compaction, but the approach is more
generally applicable (See Note 5).

Briefly described, BME is based on a combined Bayesian/Maximum Entropy framework, and
enables one to refine a simulation using multiple sources of (potentially noisy) data. The purpose
of the reweigthing is to derive a new set of weights for each configuration in a previously generated
ensemble so that the reweighted ensemble satisfies two criteria: (i) it matches the experimental
data better than the original ensemble and (ii) it achieves this improved agreement by a minimal
perturbation of the original ensemble. For additional details see Bottaro et al. (22 ) and references
therein. In the current examples, both ensemble 1 and 2 were generated as unbiased ensemble and
so the initial weights of all structures are uniform (w0

j = 1/n), where n is the number of structures
in the ensemble.

The reweighting approach described above may in practice be achieved by updating the weights,
wj , of each configuration in the input ensemble by minimizing a function (the negative log-
likelihood) (22 , 28 ):

L(w1 . . . wn) =
1

2
χ2(w1 . . . wn)− θSrel(w1 . . . wn). (4)

Here, the χ2 quantifies the agreement between the experimental data and the corresponding values
calculated from the reweighted ensemble. The second term contains the relative entropy, Srel,
which measures the deviation between the original ensemble and the reweighted ensemble Srel =

−
∑n
j wj log

(
wj

w0
j

)
. The temperature-like parameter θ tunes the balance between fitting the data

accurately (low χ2) and not deviating too much from the prior (low Srel). In practice, we determine
this hyperparameter by evaluating the compromise between balancing the two terms in L (22 , 28 )
(see also Note 6). When more than one set of experimental data is included in BME, the deviations
between calculated and experimental values are summed in a global χ2 function which is the sum
of a χ2 function for each set of data.
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In practice it turns out that in many cases there is a more efficient approach to minimize L
using the method of Lagrange multipliers, and this is the approach we take here (22 , 28 , 32 )
using the BME code, which is freely available at https://github.com/KULL-Centre/BME.

3.4 Calculating SAXS data from ensembles

The first step in the reweighting protocol is to collect the necessary data and structure it correctly
for input in BME. We first calculate the SAXS intensity profiles by fitting to the experimental curve
for each structure of the two ensembles using Pepsi-SAXS (21 ). Pepsi-SAXS has free parameters
for the solvation layer that are calculated for each fit. To decrease the risk of overfitting, we used
a two-step procedure. First, we fitted the parameters to each structure. Second, we calculate the
averages of the resulting fitted values of the solvation parameters and re-ran Pepsi-SAXS with these
parameters fixed to those averages. Alternative methods for calculating SAXS from conformational
ensembles exist (4 ) and may also be used (See Note 7 and Note 8).

We then structure the input files as shown below for SAXS BME input. The experimental
SAXS input file is structured such that it contains the following three columns: the momentum
transfer (q), intensity (I(q)), and the error (σI(q)) (as shown below). Each of these three columns
are m rows long, where m is the number of experimental data points. The input file for the calcu-
lated values contains n rows(number of structure in the ensemble), and m + 1 columns. The first
column is for labeling the individual structure/frame from the ensemble. Further details for how
to structure the input files for other data can be found in the original description of BME and in
the online examples (22 ).

Experimental file format:

# DATA=SAXS PRIOR=GAUSS

q1 I(q1) σ1
q2 I(q2) σ2
.
.
.

.

.

.
.
.
.

q179 I(q179) σ179

Simulation SAXS file format:

# label q1 · · · q179
frame1 I(q1)

CALC
1 · · · I(q179)

CALC
1

frame2 I(q1)
CALC
2 · · · I(q179)

CALC
2

.

.

.
.
.
.

.

.

.

frame(n) I(q1)
CALC
n · · · I(q179)

CALC
n

Once these calculations have been done, we may load the data in python and run BME:

## Import module

import bme_reweight as bme

# Initialize reweighting class

rew = bme.Reweight ()

# Locate input files

exp_saxs = ’exp_saxs.txt ’

calc_saxs = ’calc_saxs.txt ’

# Load data to BME

rew.load(exp_saxs ,calc_saxs)

# Optimize using theta=5

chi2_before ,chi2_after , srel = rew.optimize(theta =5)

# Get updated weights

rewighted_weights=rew.get_weights ()

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/679373doi: bioRxiv preprint 

https://github.com/KULL-Centre/BME
https://doi.org/10.1101/679373


7

3.5 Reweighting Sic1 ensembles against SAXS and NMR diffusion experiments

We used the methods described above to determine a reweighted ensemble of Sic1 that takes
into account both the prior information encoded in the initial ensemble (from Campari or Flexible-
Meccano) as well as the experimental measurements of compaction from NMR diffusion and SAXS.

Before reweighting was applied, Ensemble 1 appears too compact when judged by agreement
with the Rg-value extracted from the SAXS data, but is in good agreement with the NMR diffusion
data (Fig. 1). In contrast, Ensemble 2 is in good agreement with the SAXS-derived Rg, but appears
too expanded when compared to the NMR diffusion measurements (Fig. 1). The goal was therefore
to examine whether one could construct an ensemble that provides a useful compromise between
the two data sets. We note here that the NMR diffusion data were recorded at 278 K (17 ), whereas
the SAXS data were obtained at room temperature (15 ), though we only expect a modest change
in compaction in this temperature range (33 , 34 ). We note also that our goal is not to discuss in
detail the conformational ensemble of Sic1, but rather to showcase how one may combine different
measures of compaction.

We reweighted the two ensembles against the NMR and SAXS data and compared to the
unweighted ensembles (Fig. 2). The first step is to chose the temperature-like hyperparameter,
θ, that sets the balance between fitting the data and not deviating too much from the input
ensemble. The latter may be quantified by calculating the fraction of the frames in the input
ensemble, Neff = exp(Srel), that effectively contribute to the calculated ensemble averages after
reweighting. Thus, Neff = 1 corresponds to the initial unweighted ensemble and a low value of
Neff indicates that only a small fraction of the original ensemble has been selected to improve
agreement with experiments. We scanned values of θ and calculated the agreement with both the
SAXS and NMR diffusion data at each value of θ and for each of the two ensembles (Figs. 2a and
2b). Note that we here plot a reduced χ2 (χ2

red) for each of the two experiments individually , but
that the optimization acts to reduce the sum of the two non-reduced χ2-values. Since there is a
179 points in the SAXS measurements, this sum contains a large contribution from the SAXS data
(see Note 8). In our analyses here, we chose θ = 100 for Ensemble 1 and θ = 7 for Ensemble 2,
though in practical applications it would be advised to examine the results of other choices (See
Note 6).

The effect of reweighting can be seen both on the distribution of Rg (Fig. 2c and 2d) and Rh
(Fig. 2e and 2f). The more compact Ensemble 1 is shifted to include more expanded structures,
bringing 〈Rg〉trans substantially closer to the value estimated from the SAXS data, while only
increasing the calculated Rh value ≈ 15% above the experimental value. Similarly, the more ex-
panded Ensemble 2 is shifted to give greater weight to more compact configurations, bringing the
calculated Rh closer to experiment while only shifting the 〈Rg〉trans down by ≈ 13%.

While it is convenient to examine the distribution of Rg before and after reweighting, the actual
reweighting is done against the SAXS data not the estimated Rg. As explained above, the solvent
layer around the protein also contributes to the SAXS measurements, and there may be ≈5–10%
difference in the Rg calculated from the protein coordinates and the value estimated by SAXS (5 ).
We thus also show the agreement between the experimental and calculated SAXS curves (Fig. 2g
and 2h). It is clear that the reweighted SAXS curves are substantially closer to the experimental
data, though there still remains some discrepancy in the low-q range for Ensemble 1.

3.6 Summary

We have shown here how it is possible to calculate Rh from a conformational ensemble using
Eq. 3 and compare to experimental data obtained e.g. from NMR diffusion measurements. Such
measurements provide an alternative view of the compaction to that obtained e.g. from SAXS
experiments, and indeed it has previously been shown that simultaneous refinement against Rh
and Rg can provide insight into the shape of the distribution of Rg (7 ).

We chose the protein Sic1 for exemplifying our analyses since the level of expansion has been
measured for this protein using both SAXS and NMR diffusion measurements. Since the data
were recorded at slightly different conditions and temperatures, we do not aim to make strong
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Fig. 2 Constructing ensembles to improve agreement with experiments. We used BME reweighting with SAXS
and Rh data for Ensemble 1 (a, c, e, g) and Ensemble 2 (b, d, f, h). We label the Rh data as I(Rh) as we here
use intensity-based averaging of the measurements (Note 1). (a,b) We plot Neff (the effective number of frames
left after reweighting) vs. χ2 when the scaling parameter θ is varied (top axis). The left axes show χ2

red for each
of the two experiments, whereas the right axis shows the total χ2 that is the sum of the two (non-reduced) χ2

values (Note 8). For further analyses we chose θ = 100 (Ensemble 1) and θ = 7 (Ensemble 2). (c-f) We show the
distribution of Rg (c,d) and Rh (e,f) before (red) and after (blue) reweighting the two ensembles. Averages over
these distributions (both before and after reweighting) are shown either as standard (linear) averages (dashed lines)
or ‘transformed’ averages (〈Rg〉trans and 〈Rh〉trans as described in Notes 1 and 2). (g,h) We show the calculated
SAXS intensity from the original ensemble and the refined ensembles and compared to the experimental data. In
panels c–f the experimental data are shown in black lines and the errors are shown as shades. Errors in calculated
values were estimated by block averaging using 5 blocks.
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conclusions about the conformational ensemble of Sic1, and have used it here mostly to showcase
the methods for analyses.

We generated two ensembles and show that one is in relatively good agreement with the NMR
diffusion data whereas the other is in better agreement with the SAXS data. At this moment the
origins of these differences are unclear. Variation in experimental conditions such as temperature
may affect both Rg and Rh (34 ). Also, it is possible that our approach for calculating Rh is not al-
ways sufficiently accurate since it is inherently limited to the accuracy achievable by hydrodynamic
modelling (14 ), and an important question for future research is whether we can provide better
models to link conformation and calculated values of Rh. Finally, despite continued improvement
in methods for calculating SAXS data from ensembles (4 ) there are still potential sources of error
from e.g. solvation effects (5 ). Nevertheless, we note that by reweighting the ensembles against
both sets of experiments it is possible to construct an ensemble that provides a reasonable balance
between the two. As more proteins are studied by both NMR and SAXS it should be possible to
test and improve our relationship between Rg and Rh, thus enabling further insight into the rules
that govern compaction of IDPs.

4 Notes

1. When calculating averages over ensembles, in particular for broad ensembles such as for IDPs,
it is important to take the correct form of averaging into account. The best way to calculate
averages over experimental quantities will depend both on the type of experiment and often also
e.g. on the time scales for conformational averaging. Throughout this paper we make the as-
sumption that averages can be calculated as time-independent averages over the conformational
ensemble. In the case of measurements of the hydrodynamic radius, Rh, we have explored two
different types of averaging. In case the experiment measures the average diffusion coefficient,
then according to Eq. 2 then the average should be calculated as 〈Rh〉trans = 〈R−1

h 〉−1. Here we
have introduced the notation 〈Rh〉trans to represent that the averaging takes place on a trans-
formed value (in this case proportional to R−1

h ). When Rh is measured by pulsed-field gradient
NMR diffusion measurements (35 ) the NMR signal intensity, I, is proportional to exp

(
−R−1

h

)
and it may therefore be more appropriate to use this function to perform the averaging. In this
case

〈Rh〉trans = − ln
(
〈exp

(
−R−1

h

)
〉
)−1

It is this intensity-based averaging that we use here, though in practice we have found it to
give essentially the same result as using 〈R−1

h 〉−1.
2. Similar to the issue of averaging Rh discussed in Note 1 above, we use 〈Rg〉trans = 〈R2

g〉1/2 when
calculating averages over the radius of gyration. This kind of averaging mimics the averaging
in the low-q range of SAXS curves. Note, however, that 〈Rg〉trans calculated in this way should
not directly be compared to experimental values of Rg since the latter includes solvation effects.

3. Notes 1 and 2 discuss the transformations that are relevant for comparing calculated and
experimental quantities. We note, however, that during the reweighting protocol and generally
when one makes quantitative comparisons between experiments and computation it is in general
better to compare to the direct experimental quantities. In the case of SAXS experiments we
thus judge agreement and perform reweighting against the experimentally measured intensities.
In the case of the Rh measured for Sic1 by NMR diffusion experiments, we transform the
experimental value of Rh (and its error), as well as the values calculated for each structure
using the function I ∝ exp

(
−R−1

h

)
, as described in our associated Jupyter notebook. We

note that in the future it might be more appropriate to perform such fitting to the measured
intensities as a function of the gradient strength.

4. The level of compaction as quantified by the value of Rg at which Rg = Rh (R0
g) can be

estimated by rearranging Eq. 3 to obtain: R0
g = α−1

1 (1−α3)(N0.60−N0.33) + (α2−N0.33). For

a protein with N = 91 one obtains R0
g = 27Å.

5. We have here described approaches to refine ensembles against SAXS and NMR diffusion mea-
surements. The BME method has also been used for IDPs with NMR chemical shifts (36 ), and
may also readily be applied to SANS data, NOEs, scalar couplings or other measuremenets
that can be calculated as averages over configurational ensembles.
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6. Currently, the value of the hyperparameter θ (which sets the balance between information from
the data and the force field) is set manually. In certain cases it may be possible to set it via a
cross-validation approach (36 ) or may be integrated out as a Bayesian ‘nuissance parameter’
(28 )

7. We have here used Pepsi-SAXS to calculate X-ray scattering curves from a conformational
ensemble due to its ease of use and the relatively high computational efficiency. The latter is
particularly important for large conformational ensembles. We note, however, that several other
methods exist and suggest users in particular to keep solvent effects in mind when calculating
and interpreting SAXS data (4 , 5 ). In the Jupyter notebook avialable online we provide a
script that performs a two-pass run of Pepsi-SAXS to find a reasonable value of solvent-related
parameters in the calculations.

8. When plotting χ2
red in Fig. 2, we calculate it by normalizing χ2 by the number of experimental

data points: χ2
red = m−1χ2. We note that this an approximation because the number of degrees

of freedom can be smaller because different parameters are fitted such as parameters involved
in calculated the SAXS curves. Also, in the case of reweighting the weights themselves may
be considered as free parameters. Thus, we note that the reweighting does not involve this
normalization, and that the χ2

red is only shown in Fig. 2 to give the reader an impression of the
level of agreement. We also note that when fitting the Rh the resulting sum in χ2 only contains
a single term. Finally, we note that we here simply combine the χ2 from the SAXS and NMR
diffusion experiments by adding up the two individual χ2 terms. In the current implementation,
BME does not enable automatic balancing of independent experiments and instead sets this
balance by the error estimates of the individual experiments. We note, however, that while the
SAXS data for Sic1 contains 179 individual data points, the amount of information in a SAXS
experiments typically corresponds to a smaller number of parameters (37 ) and a more careful
balance between the information in the SAXS and NMR diffusion experiments should take such
effects into account (38 ).

5 Acknowledgements

We thank Dr. Tanja Mittag for providing feedback on the manuscript, Dr. Andreas Haahr Larsen
for general discussions about SAXS experiments and calculations, and Dr. Martin Blackledge for
suggesting to use intensity-based averaging for Rh. The research described here was supported by
a grant from the Lundbeck Foundation to the BRAINSTRUC structural biology initiative.

References

1. Guinier A, Fournet G (1955) Small angle X-ray scattering. John Wiley and Sons,New York
2. Zheng W, Best RB (2018) An extended guinier analysis for intrinsically disordered proteins.

Journal of molecular biology 430(16):2540–2553
3. Riback JA, Bowman MA, Zmyslowski AM, Knoverek CR, Jumper JM, Hinshaw JR, Kaye EB,

Freed KF, Clark PL, Sosnick TR (2017) Innovative scattering analysis shows that hydrophobic
disordered proteins are expanded in water. Science 358(6360):238–241

4. Hub JS (2018) Interpreting solution x-ray scattering data using molecular simulations. Current
opinion in structural biology 49:18–26

5. Henriques J, Arleth L, Lindorff-Larsen K, Skepö M (2018) On the calculation of saxs profiles
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