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1 Abstract

Designing and implementing synthetic biological pattern formation remains a challenge due to
underlying theoretical complexity as well as the difficulty of engineering multicellular networks bio-
chemically. Here, we introduce a “cell-in-the-loop” approach where living cells interact through in
silico signaling, establishing a new testbed to interrogate theoretical principles when internal cell
dynamics are incorporated rather than modeled. We present a theory that offers an easy-to-use
test to predict the emergence of contrasting patterns in gene expression among laterally inhibiting
cells. Guided by the theory, we experimentally demonstrated spontaneous checkerboard patterning
in an optogenetic setup where cell-to-cell signaling was emulated with light inputs calculated in
silico from real-time gene expression measurements. The scheme successfully produced sponta-
neous, persistent checkerboard patterns for systems of sixteen patches, in quantitative agreement
with theoretical predictions. Our research highlights how tools from dynamical systems theory
may inform our understanding of patterning, and illustrates the potential of cell-in-the-loop for
engineering synthetic multicellular systems.

2 Introduction

Spatial patterning is crucial for the proper functioning of diverse multicellular biological systems
from slime molds [1] to developing embryos. The ability to synthetically engineer multicellular
patterning will facilitate advances in designing microbial communities [2] [3] [4], creating synthetic
biomaterials [5] [6], and programming tissue and organ growth [7] [8] [9] [10], among other appli-
cations [11]. While recent efforts to synthetically engineer multicellular patterning have met with
success (see [12], [13], [14] for reviews), relatively few of these efforts [15] [16] have been guided
by quantitative mathematical theory beyond numerical simulation. In contrast, conventional engi-
neering approaches rely on the predictive power of theory both to design complex systems and to
build the intuition necessary to envision new capabilities. Future progress in synthetic multicellular
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patterning will benefit from a firm understanding of the underlying theoretical principles, as well
as scalable, efficient methods for implementing—and validating—these principles in practice.

Gene expression patterning has received much focus in the theoretical literature [17] [18] [19] [20]
[21] [22] [23], and is also of particular interest in regenerative medicine, since it is central to the early
stages of embryonic development and eventual cell fate determination [7] [24]. There are a number
of challenges associated with engineering spontaneous gene expression patterning into biochemical
systems, including how to facilitate interaction among cells [25] and achieve spatial precision in the
resulting patterns [26] [27] [28]. Even when successful, these implementations are still constrained
by time, expense, and the availability of biological parts satisfying parameter requirements [29]
[30]. Moreover, it may be difficult to measure or monitor particular system components in real
time, which can hinder “debugging” and slow down the design-build-test cycle [31].

While numerical simulation is an important method for efficient prototyping, simulations are
only as valid as the models underlying them, and simplifications or faulty assumptions can limit
the experimental applicability of simulation results. We propose that future efforts in synthetic
patterning would benefit from an intermediate step between pure simulation and full biochemical
implementation, which could be used to validate theories or incrementally test synthetic designs be-
fore they are fully incorporated into the organism. Inspired by “human-in-the-loop” approaches for
engineering systems that must interact with complex, living individuals [32], we propose a “cell-in-
the-loop” approach in which physical signaling among cells is substituted with computer-controlled
inputs calculated in silico from real-time measurements of gene expression. Cell-in-the-loop, by
incorporating live cells into the “simulation”, eliminates the need to make assumptions about in-
dividual cell behavior during dynamic evolution, while retaining flexibility in testing parameters
that remain under computational control. These benefits are particularly essential for patterning
systems, in which the large number of interacting cells can make detailed simulations prohibitive
or impossible.

We implemented cell-in-the-loop using optogenetics, which have been shown to afford excellent
spatiotemporal precision in applications including feedback control [33] [34] [35] [36] and oscillatory
synchronization [37]. We engineered Saccharomyces cerevisiae to respond to blue light [38] by
increasing gene expression as measured by a fast-acting fluorescent reporter [39]. We used an
optogenetic platform capable of targeting individual cells independently of each other [36], such
that the light input to any given cell could be calculated based on the gene expression levels of
other cells that were interacting with the target cell. Both the network architecture (which cells
interacted with which) as well as the exact form of interaction were programmed into the computer,
allowing us to precisely modulate system parameters related to cell-to-cell signaling.

We adapted a general theory for pattern emergence in large-scale lateral inhibition systems
[40] [41] to inform our designs and predict steady-state outcomes. Specifically, we programmed a
computational signaling relation to emulate mutual inhibition among groups of cells and varied
the strength of the inhibition by tuning a single digital bifurcation parameter. Once the network
architecture and signaling relation were defined, inputs to cells were calculated solely based on
measurements of those cells without any further external control, creating a self-contained dynam-
ical system. Using this setup, we visualized gene expression levels of real cells by the brightness of
square patches on a virtual grid (Fig. 1). Depending on the value of the bifurcation parameter,
the system was expected to produce a homogeneous non-patterning outcome or generate contrast-
ing “checkerboard” patterns in which neighboring patches alternated between expressing high and
low levels of gene. We showed that checkerboard patterns could indeed emerge spontaneously in
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Figure 1: Spontaneous checkerboard patterning with optogenetically emulated cell-to-cell sig-
naling. Optogenetically responsive cells signal to each other through computer-controlled light inputs that
vary in intensity based on the gene expression levels of other cells. We enact lateral inhibition according to
the theory in Section 3.1 that predicts when cells will spontaneously separate into two classes of high and
low gene expression. In all figures, red denotes in vivo and blue denotes in silico components.

our system and that patterning outcomes were persistent across the last hour of the experiment.
Although stochastic effects dominated the precise outcomes of individual experiments, the theory
qualitatively predicted pattern emergence and quantitatively predicted average patch brightness
across a range of parameter values. Our results demonstrate the utility of a cell-in-the-loop ap-
proach for designing and evaluating systems of interacting cells, as well as probing the limits of
deterministic theory in the face of stochastic influence.

3 Results

3.1 Theory predicts checkerboard patterning using a test for bistability

We developed theory to predict the emergence of stable contrasting patterns in deterministic sys-
tems of laterally inhibiting cells [40] [41]. Here, we adapt the theory to the present optogenetic
implementation. We emphasize how our system was decomposed into in vivo and in silico compo-
nents, each of which corresponds to a particular element in the theory, and how this correspondence
enables empirical measurement and experimental design.

Consider a system of N isogenic cells signaling to each other. Suppose we measure for each
cell a scalar output such as fluorescence that correlates positively with gene expression level and is
designated by wi for the ith cell. The input ui to a cell affects output levels with an empirically
characterizable dose response, which describes the steady-state level of wi for a constant-in-time
input. In our setup, the input ui is light, and increasing input intensity increases gene expression.
This portion of the theory represents the in vivo component of the system.
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Figure 2: Spontaneous contrasting patterning in a large lateral inhibition system can be pre-
dicted from bistability in a 2-cell system. The bistability of a 2-cell system can be used to evaluate
contrasting patterning in a full network of isogenic, mutually inhibiting cells arranged in a grid with periodic
boundary conditions. Bistability of the corresponding 2-cell system implies contrasting patterns exist in the
full system (see box entitled “Summary of theory”). Bistability can be assessed through an analytical test in
which the closed-loop dynamical system is “opened” into an input/output system by breaking the feedback
loop. If a constant-in-time input to the open-loop system produces a steady-state output value equal to the
input value, then that value is a steady state for the corresponding closed-loop system.

To synthesize ui, we first average the measured gene expression, wj , over all cells j signaling to
cell i, and denote this average as vi. We then set the input to the ith cell to ui = h(vi), where h(·)
is the signaling relation programmed into the computer. To enact mutual inhibition, increasing
gene expression in one cell must decrease gene expression in neighboring cells. Therefore, since
higher-intensity light induces higher gene expression, we select h(·) to be decreasing.

We chose a grid layout with periodic boundary conditions in which each cell signals four other
cells reciprocally. This layout satisfies all assumptions discussed in the box entitled “Summary of
theory”, therefore we can predict contrasting patterning in a full system of N cells based on the
bistability of an equivalent 2-cell system. If the 2-cell system is monostable, then both cells express
the same level of gene, and the N -cell system also has a stable state in which all cells express
the same level of gene. Inversely, if the 2-cell system is bistable, then one of the stable states
corresponds to one cell expressing high levels of gene and the other, low, and the other stable state
corresponds to the opposite situation. In this case, two stable, contrasting steady-state patterns
also exist for the N -cell system; that is, one subset of the N cells expresses identically high levels
of gene, and the remaining cells express identically low levels of gene (or vice versa). Contrasting
steady states can be visualized as checkerboards in which neighbors alternate between high and
low. The 2-cell system can be assessed for bistability using a standard technique illustrated in Fig.
2 and described in Section S1.1.

To apply the theory, we must know (1) the dose response, in our case in vivo gene expression
levels under varying intensities of light; and (2) the form of the signaling relation, here programmed
in silico. Thus, to carry out lateral inhibition experiments, we needed to measure an empirical dose

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2019. ; https://doi.org/10.1101/679597doi: bioRxiv preprint 

https://doi.org/10.1101/679597
http://creativecommons.org/licenses/by-nc-nd/4.0/


response of cells to light, and define the computational signaling relation controlling light inputs
such that intensity was inversely related to the responsiveness of cells interacting with the target.

Summary of theory

Consider a system of N identical cells modeled as single-input, single-output dynamical sys-
tems. Biochemical concentrations xi(t) ∈ Rn

+ in the ith cell evolve according to

d

dt
xi(t) = f(xi(t), ui(t)).

Each cell has output wi(t) = g(xi(t)) ∈ R+ and input ui(t) ∈ R+. Let the vector x(t) ∈ RNn
+

be the vertical concatenation of the vectors xi(t) for all N cells, and similarly for w(t) ∈ RN
+

and u(t) ∈ RN
+ . We assume each cell has a static input-output characteristic T (·), that is, if

a cell is given constant-in-time input ui(t) = u†i , it will reach a globally asymptotically stable

hyperbolic equilibrium x†i solving 0 = f(x†i , u
†
i ) with output w†i = T (u†i ) = g(x†i ). We assume

T (·) is bounded and increasing, meaning that increasing the input increases the output. In
our setup, the static input-output characteristic corresponds to the empirically measured dose
response.

Suppose the outputs of cells are connected to the inputs of other cells, forming a network.
We capture information about which cells signal to which by way of the interconnectivity matrix
M ∈ RN×N

+ with entries [M ]ij = 0 if cell j does not signal to cell i and [M ]ij > 0 otherwise,
with the value [M ]ij indicating the strength of signaling. We require that the sum over all
entries in a row equal the same constant, µ ∈ R+, regardless of the row, i.e.,

∑
j [M ]ij = µ for

all i. In our setup each cell receives signals from four other cells with equal weights 1
4 , therefore

µ = 1. Defining v(t) = Mw(t), we model lateral inhibition by letting the input to cell i be
given by ui(t) = h(vi(t)), where h(·) : R+ → R+ is bounded and decreasing.

Model reduction theorem: Let 1m represent the length-m column vector of all ones,
and similarly for 0m. If there exists a matrix M̄ ∈ R2×2

+ such that

ML = LM̄ where L =

[
1m 0m

0N−m 1N−m

]
(1)

for some indexing of cells, then M̄ is an interconnectivity matrix for an equivalent 2-cell system
whose steady-state solutions correspond to steady states of the N -cell system with interconnec-
tivity matrix M . In other words, if w̄∗ ∈ R2

+ is the output corresponding to a steady-state
solution to the 2-cell system, then w∗ = Lw̄∗ is a steady-state output to the N -cell system. �

Note that the cells indexed 1 through m take on steady-state output values w̄∗1 while those
indexed m + 1 through N take on steady-state output values w̄∗2. Condition (1) is satisfied
when cells can be grouped into two subsets within which nodes are interchangeable; that is,
reindexing nodes within a subset will not change M [41].

When

M̄ =

[
0 1
1 0

]
,
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the steady states of the 2-cell system are determined graphically from the fixed points of
h(T (h(T (·)))), as shown in Fig. 2 and explained in Section S1.1. For the reduced 2-cell system
the graphical test also ensures stability of the points corresponding to the lower/upper inter-
sections in Fig. 2, and instability of the point corresponding to the middle intersection, when
the cellular dynamics are monotone in the input/output sense [42]. The stability properties
established graphically for the 2-cell system are preserved in the full N -cell system when addi-
tional assumptions hold. Our setup satisfies one such assumption from [40], which stipulates
cells within a subset not signal to each other. Thus, if w̄∗ is the output corresponding to a
stable state in a bistable 2-cell system, then in the N -cell system, cells in one subset have higher
output than cells in the other subset. If the cells belonging to different subsets are spatially
interlaced or alternating, then the high/low dichotomy produces a spatially contrasting pattern
such as a checkerboard.

3.2 Empirical characterization informs computational parameter choice

We combined the blue light-inducible VP-EL222 expression system [43] [38] with a fast-acting nu-
clear translocation reporter (dPSTR) [39] to control and measure gene expression in Saccharomyces
cerevisiae. In the dark, constitutively expressed red fluorescent protein (RFP) fused to the synthetic
bZip domain SZ2 [44] is equally distributed between nucleus and cytoplasm due to passive diffusion
through the nuclear membrane. Under exposure to blue light, VP-EL222 molecules dimerize and
bind the cognate promoter to activate expression of a protein comprising two nuclear localization
signals (NLS) and SZ1 [44]. This protein then forms a heterodimer with the RFP reporter, thereby
localizing fluorescence in the nucleus. We quantitated the degree of nuclear localization (nuclear
localization score) as the difference between mean cytoplasmic and mean nuclear fluorescence nor-
malized to the mean fluorescence across the entire cell. In principle, the score is 0 if cells are not
at all responding (there is no nuclear localization) and positive otherwise (Fig. 3a,b).

We characterized the dose response of individual cells to constant, targeted blue light expo-
sure (Fig. 3b,c). During these and subsequent patterning experiments, cells were grown in a
monolayer under the microscope and automatically imaged, segmented, tracked, and scored by a
software pipeline integrating open-source software YouScope [45] with custom Matlab R© scripts.
On average, cells exhibited a graded response to light intensity well described by a Hill function
(Fig. 3c). Variability from cell to cell was greater than for individual cells across time, perhaps
owing to variation in cell cycle state [46]. As the theory is deterministic, for patterning experi-
ments we ultimately substituted single cells with computationally defined patches of 4 or 6 cells,
with the patch response determined as the average response of the constituent cells. Generating
score distributions for such patches by bootstrapping from the single-cell dose response data shows
reduced temporal and patch-patch variability as well as reduced difference between temporal and
patch-patch variability relative to the single-cell case (Figs. 3d, S1.3).

Based on the range of cellular response scores, we defined the signaling relation h(·) for use in
patterning experiments, which determined the light input administered to a patch as a function of
the average scores of neighboring patches at each time step. We chose an inhibiting Hill function
with fixed Hill coefficient n = 2 and a single free parameter K with smaller values corresponding
to sharper inhibition. We combined the empirical dose response with the computational signaling
relation to generate theoretical predictions for the mono- or bistability of a 2-cell lateral inhibition
system as K was varied between 0 and 1, corresponding to non-patterning or patterning outcomes
in a full system.
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Figure 3: Experimental characterization of cellular dose response curves shows population-level
gradedness. (a) Blue light induces gene expression in optogenetically responsive Saccharomyces
cerevisiae via the VP-EL222 system [36], as measured by a nuclear translocation reporter
(dPSTR) [39]. Cells constitutively express RFP fused to SZ2. In the dark, RFP is distributed equally
between nucleus and cytoplasm due to diffusion. Blue light induces VP-EL222 dimerization, which activates
expression of an NLS fused to SZ1. SZ1 binds SZ2, such that the NLS promotes localization of RFP
in the nucleus, increasing nuclear fluorescence relative to cytoplasmic fluorescence. (b) For a single dose,
individual cells were illuminated for 80 min with a constant intensity of light. Single-cell responses to a single
intensity were calculated as the average score over the last 40 min. Pictured in the schematic are average
input intensities and responses for approx. 700 cells for 3 consecutive doses. (c) Although individual
cell responses vary, on the population level nuclear localization is graded with respect to the
intensity of the light input. Circles without outlines correspond to responses of single cells to single doses
across 3 experiments. The final dose response was determined as a Hill function fit to quantile means (solid
outline). Error bars are standard error. (d) Grouping cells into patches reduces both cell-cell and
temporal variability. Scores were binned by projected intensity (blue shaded bar) to generate histograms
of score distributions for given input levels. The bin cutoff is twice the maximum projected intensity used in
the final patterning experiments. Histograms for 6-cell patches were generated for each bin by bootstrapping
from individual cell scores within that bin. For an ergodic process, we would expect cell-cell and temporal
variation to be equal (gray dotted line); here, responses appear to be more variable from cell to cell than for
single cells across time. Grouping cells into patches of 6 across which response scores are averaged (triangles)
reduces the magnitude of difference between cell-cell or patch-patch and temporal variability.
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Figure 4: Schematic of automated workflow for patterning experiments. Cells growing in a
monolayer were placed under the microscope, which was connected to a computer system that controlled the
camera and blue light projection system. Cells were segmented and tracked in brightfield images and scored
in fluorescence images (here, false-colored red). After the first image was acquired, cells were randomly
assigned to patches to which they belonged for the remainder of the experiment. Grid visualizes scores at
a single time step, with each square representing one patch of cells. Brightness corresponds to the average
score of the constituent cells in the corresponding patch. The signaling relation, defined before experiment
start, determined the input light intensity administered to patches for the next time step (10 min) based on
the scores of neighboring patches to the north, south, east, and west, with periodic boundary conditions.
Cells in the same patch received the same input intensity targeted individually to each cell, as shown in the
projected image.

3.3 Cell-in-the-loop lateral inhibition spontaneously generates checkerboard
patterning

We ran a series of patterning experiments emulating lateral inhibition. Cells were randomly assigned
to patches such that cells belonging to the same patches were not necessarily neighbors in physical
space, thereby reducing spurious correlations that might arise from spatially dependent factors
other than the targeted light input. Once assigned, cells remained in the same patch throughout
the duration of an experiment. Patches were arranged to neighbor each other in “virtual space” as
visualized on a checkerboard (Fig. 4a).

During patterning experiments, cells were imaged and inputs adjusted every 10 min. We tested
systems of 16 patches with 6 cells per patch for four values of K between 0.1 and 1. Spontaneous
patterning was always achieved in the K = 0.1 case and never in the K = 1 case, with mixed
results for K = 0.2, 0.3, near one of the theoretically predicted critical points (Fig. S1.4a). Sample
time traces at K = 0.1 and K = 1 show, respectively, the gradual deviation in score between sets of
alternating patches that characterizes a contrasting pattern, or a rapid adoption of a non-patterning
state. Visualizing the checkerboard at individual time points or averaged over the last hour clearly
depicts the distinction between the two cases (Fig. 5a).

When averaged over the last hour and across experiments, the contrast level (mean scores of
sets of alternating patches) was quantitatively well predicted by theory in the bistable region and
the overall brightness (mean score across all patches) was well predicted in the monostable region
(Fig. 5b). When considering individual experiments, the variability in overall brightness increased
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with increasing K. In the predicted monostable cases, stochasticity also introduced a difference
between the means over alternating patches, though statistical analyses confirm that the difference
was indistinguishable from random (Table S1.4). Taken together, these results suggest that the
deterministic theory calibrated to population averages is an excellent quantitative predictor for
mean system behavior across time, patches (cells), and experiments, while at the same time even
small amounts of cell-cell variability and temporal stochasticity may cause a given experiment to
deviate considerably from quantitative forecasts.

Because our setup allowed us to monitor both gene expression levels and cell signaling levels,
we were able to assess convergence to (quasi-)steady state by comparing instantaneous input-
output curves (patch score vs. administered intensity) to the steady-state dose response (Fig.
5c). Specifically, since the time for cells to converge to steady state under exposure to light of
constant intensity (40 min) was longer than the time between changes to input intensity during
experiments (10 min), the instantaneous input-output curve during a patterning experiment would
only match the empirical dose response curve if the administered intensity remained relatively
constant for several frames before a given time point—i.e., if there was little temporal variability
for at least 40 min preceding the frame. Directly plotting the temporal variability in administered
input to individual patches does indeed reveal a decrease from the first to the last experimental
hour regardless of K value (Fig. S1.5a).

Lastly, we examined the effect of patch number on patterning outcomes through four experi-
ments with 36 patches, 4 cells per patch, and K = 0.1. None of the experiments spontaneously
achieved a checkerboard pattern across the whole board in 3 hr, although a control experiment
preinduced with the pattern showed that it was indeed persistent (Fig. S1.7). The input/output
curve did not approach the empirical dose response (Fig. S1.6) and temporal variability in admin-
istered intensity was the same during the first and third experimental hour (Fig. S1.5b), further
supporting the conclusion that the system never reached steady state. Interestingly, one experiment
produced two checkerboards in opposite corners that persisted throughout the last experimental
hour, but were inverted relative to each other and did not resolve before the end of the experiment
(Fig. S1.4b). Other experiments also exhibited transient local patterning, although to a lesser
degree. The local patterning and the increased convergence time are consequences of the fact that
a 36-patch system admits a much larger space of possible configurations than a 16-patch system.
Although variability in 4-cell patches was only modestly larger than in 6-cell patches (Fig. S1.3),
the stochasticity may also have contributed to a longer convergence time. These and related chal-
lenges will require further investigation in future efforts to synthetically generate gene expression
patterns with single-cell granularity.

4 Discussion

In this work, we employed cell-in-the-loop, a closed-loop, hybrid in vivo/in silico approach, to
validate a theory for spontaneous gene expression patterning among laterally inhibiting cells. We
engineered S. cerevisiae to respond optogenetically to light inputs, then emulated cell-to-cell signal-
ing in real time by modulating the intensity of light inputs to cells based on real-time measurements
of gene expression. The theory made accurate quantitative predictions for average steady-state pat-
terning outcomes across a range of parameters. Increasing system size—by increasing the space
of possible dynamic behaviors—diminished the probability of achieving global patterning on short
timescales in the absence of initial or external bias. Further theroetical research should explicitly
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Figure 5: Theory quantitatively predicts spontaneous patterning and patch intensity during
cell-in-the-loop experiments. (a) Sample time traces show emergence of a contrasting pattern
(K = 0.1) or convergence to a non-patterning state (K = 1). Gray lines correspond to score traces for
individual patches; green lines indicate the mean scores of sets of alternating patches. Checkerboards visualize
scores at single time points (bottom) or averaged over the last hour (top). (b) Theory quantitatively
recapitulates experimental results for mean patch response score. Black lines denote theoretical
steady-state points as a function of the bifurcation parameter K, with solid indicating stable and dashed,
unstable. All points are averaged over the last hour. Faded points correspond to individual experiments;
solid outlines are averages across experiments (N = 4 for K = 0.1, N = 3 for K = 0.2, 0.3, 1). Magenta
circular points are averages over all patches. Green points are averages over sets of alternating patches,
with upward- and downward-facing triangles denoting the higher and lower of the two means respectively.
Stochasticity in the experimental system introduced contrast between the average means of sets even in
regions that were deterministically suggested to be monostable. As predicted, the contrast level (difference
between means of sets of alternating patches) was higher for lower K. Experiment-to-experiment variation
in overall brightness (score averaged across all patches) was greater for higher K, an effect that cannot
be accounted for in a purely deterministic theory. (c) The 16-patch system with 6 cells per patch
converges to a steady state by about 2 hr into patterning experiments. Solid outline, score values
averaged over the last hour for individual patches and split into quantiles by administered intensities show
decent agreement with the empirical steady-state dose response curve. Error bars are standard error. Circles
without outlines are quantiles at individual time points pooled from N = 13 experiments (darker red at later
times). For comparison, the dose response curve fit to empirical data is plotted in gray.
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incorporate cell-cell variability and temporal stochasticity in order to improve our understand-
ing of variation in individual experimental outcomes, patterning robustness, and the link between
individual-level and population-level behavior.

Prior work using optogenetics to generate persistent spatial patterns in living cells has focused
on reproducing [47] [48] [49] or processing [50] pre-existing images projected by the light input. In
comparison to these studies, light in our system does not a priori encode a pattern to which the cells
conform; rather, light acts as a virtual signal transmitted from cell to cell. The input intensity is
determined by cellular responses that are in turn influenced by the received intensity, establishing
a closed-loop relationship independent of external control. That similar patterns are ultimately
observed in both the cellular responses and the optogenetic inputs arises as a consequence of their
mutual dependence.

Depending on the application, cell-in-the-loop offers benefits over purely biochemical or purely
computational approaches. First, it reduces the number of components that must be engineered
into cells. We integrated a single optogenetically induced promoter and a single reporter, and were
able to modulate patterning outcomes simply by reprogramming the computer. In this way, we
circumvented issues associated with synthetic cell-to-cell signaling, including parameter matching
and crosstalk [51] [28], and alleviated complications such as burden [52] [53] that arise from inte-
grating complex networks into cells [29] [31]. We were also able to achieve spatiotemporal control
over the whole population of interacting individuals and probe stochasticity at a finer level than
would be attainable with a conventional biochemical implementation.

Compared to a computer simulation, cell-in-the-loop makes no assumptions about cell behavior
or the form of biological noise, since the cells themselves are incorporated into the system. Although
we used this setup to test the validity of a theoretical principle, one could also envision testing the
accuracy of a full model for cell-to-cell signaling by simulating a proposed physical mechanism of
interaction, then comparing the outcome of such a system to the outcome of a purely physical
system. Cell-in-the-loop also allows one to track system components that might otherwise be
inaccessible or difficult to measure. For example, we were able to monitor the levels of both
gene expression and virtual signal simultaneously, which could be difficult to achieve in a solely
biochemical setup.

Once established, a cell-in-the-loop system could couple with more complex cellular processes
to achieve real-world results. One could also envision using cell-in-the-loop as a rapid prototyping
platform or “stepping stone” to a fully biochemical implementation. In this paradigm, one would
begin with minimally engineered cells and then sequentially replace in silico components with
biochemical ones, testing at each stage whether the remaining portions of the network ought to
be modified in structure or value before the next component is incorporated into the cell. Such
an approach could also reveal shortcomings in proposed designs; for example, in our setup, 36-
patch systems failed to produce spontaneous patterns on our experimental timescale even with
“perfect” deterministic signaling, suggesting that it could be challenging to achieve large-scale
lateral inhibition patterning biochemically in a similar context. Thus, the addition of cell-in-the-
loop to the biological engineering process could greatly decrease the time, expense, and effort
required to develop synthetic multicellular systems for an increasingly rich and promising array of
applications.
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5 Methods

5.1 Plasmid and yeast strain construction

E. coli TOP10 cells (Invitrogen) were used for plasmid cloning and propagation. The dPSTR
reporter plasmid (pDB161) contains the coding sequences of UbiY-2xSV40NLS-SynZip1 [39], ex-
pressed from an EL222-responsive promoter (p5xBS-CYC180) [38], and mCherry-SynZip2 [39], ex-
pressed from the constitutive ACT1 promoter. It was constructed by first replacing the promoter
pRPL24A in the plasmid pDA183 [39] by pACT1 using SacI-XbaI cut sites and subsequently re-
placing the promoter pSTL1 by P5xBS-CYC180 using PCR and SapI-based Golden Gate cloning
[54].

The yeast strain used in this study (DBY165) was constructed by transforming the PacI digested
plasmid pDB161 into DBY41 [38], a strain with BY4741 background expressing VP-EL222 [43] from
the ACT1 promoter. The transformation was performed using the standard lithium acetate method
[55].

5.2 Culture preparation

Cells were grown at 30◦C in synthetic medium (SD) consisting of 2% glucose, low fluorescence
yeast nitrogen base (Formedium), pH 5.8, 5 g/l ammonium sulfate, and complete supplement of
amino acids and nucleotides. Cultures were started from plate, diluted, and maintained at OD600

< 1.5 between 24 and 32 hr before an experiment. For each experiment, between 3 and 5 mL of
cell culture were centrifuged at 20◦C, 3000 RCF for 6 min and enough supernatant was removed
to achieve an approximate OD600 of 4 after resuspension. Cells were then immediately placed on
agarose pads, prepared according to the procedure in Section S1.2.1.

5.3 Imaging

Images were taken under a Nikon Ti-Eclipse inverted microscope (Nikon Instruments) with a 40x
oil-immersion objective (MRH01401, Nikon AG, Egg, Switzerland), pE-100 bright-field light source
(CoolLED, UK), and CMOS camera ORCA-Flash4.0 (Hamamatsu Photonic, Solothurn, Switzer-
land) water-cooled with a refrigerated bath circulator (A25 Refrigerated Circulator, Thermo Sci-
entific). The temperature was maintained at 30◦C by an opaque environmental box (Life Imaging
Services, Switzerland), and a dark cloth was additionally placed over the microscope to fully shield
cell samples from external light. Experiments were conducted with a diffusor and a green interfer-
ence filter placed in the bright-field light path, with the Nikon Perfect Focus System (+/- 5 AU)
enabled. Fluorescence images were acquired using a Spectra X Light Engine fluorescence excitation
light source (Lumencor, Beaverton, USA), filter cube with excitation filter 565/24 nm, emission fil-
ter 620/52 nm, and beam splitter HC BS 585 (AHF Analysetechnik AG, Tübingen, Germany). The
final fluorescence images used for analysis were maximum projections across z-stacks of 5 images
spanning 0.6 µm.

During experiments, the microscope was operated by the open-source software YouScope [45].
Cell segmentation and tracking were performed on brightfield images using software tools developed
by [36] based on [56] and [57]. For each cell, the mean fluorescence in the nucleus, cytoplasm, and
across the entire cell were automatically calculated using custom Matlab (MathWorks) scripts
following the procedure in Section S1.2.2.
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5.4 Light-delivery system

Optogenetic inputs were delivered to cells using the setup developed in [36], in which images
generated on the computer are projected by a digital mirror device through a system of lenses that
focuses the light onto a microscope slide. Two neutral density filters (Thorlabs, 25 mm absorptive,
optical densities 0.5 and 1.3) were placed serially to achieve a total density of 1.8.

To ensure light mapped properly from the projector to the cell, images were modified prior
to projection in order to map pixels on the DMD to pixels in the camera images. The mapping
was determined through the procedure outlined in [36], Fig. S6B. The procedure was performed
immediately before experiment start on an area of the agarose pad unoccupied by cells.

We observed that there was a sigmoidal relationship between the administered illumination
intensity and the measured illumination intensity in the projection images, and also that images
of uniform intensity did not evenly illuminate the sample plane. To compensate for these effects,
we modified images before projection to linearize the administered-to-measured intensity relation-
ship and also to reduce the intensity of overilluminated regions to match the level attained by
underilluminated regions. Details of the procedure are available in Section S1.2.5.

Custom Matlab R© code was used for manually calibrating projector intensity before experiment
start (Section S1.2.5) and for automatically carrying out experiments.

5.5 Dose response

The theory relies on a deterministic dose response curve in which the expected steady-state response
score of a cell increases as a function of constant input intensity. We performed a series of dose
response experiments to verify that these conditions held for our yeast strain and then calculated
a dose response curve from the average response of cells to varying measured projected intensities.

Cells tended to respond much more strongly and unpredictably to the first administered input
than to later inputs regardless of the intensity of the first input. Therefore, before administering any
doses, all cells on the dish were illuminated for 10 min with uniform, middling intensity light, then
left in the dark for 20 min to allow the response to decay. Multiple doses were then administered in
immediate succession to cells on the plate. For a single dose, cells were illuminated with individually
targeted light with constant administered intensity per cell. Cells were imaged every 10 min. Cells
that were not successfully segmented and tracked at all sampled time points in a dose were discarded.
The steady-state response of a single cell was calculated as the average of the scores from 40 to 80
min under illumination.

The final dose response curve was fit to data aggregated from three experiments. Individual
cell responses were binned by projected intensity into 5 quantiles. The final dose response curve in
the form of a leaky activating Hill function

f(x) = a+ b
xn

cn + xn

was fit to the mean score values within each quantile vs. the mean measured projected intensity
within that quantile.

5.6 Patterning experiments

Before experiment start, all cells on the plate were illuminated for 10 min with uniform, middling
intensity light, then left in the dark for 10 min such that responses would not fully decay, allowing
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for some initial variation in nuclear localization score. Experiments lasted 3 hr, during which cells
were imaged and their inputs adjusted every 10 min. Preliminary experiments confirmed that
cells were alive and responsive up to 6 hr after placement under the microscope, although final
experiments were constrained to 3 hr to ensure cells remained in a monolayer.

5.6.1 Patch construction

Cells were randomly assigned to groups with a fixed number of cells per group. Each group
corresponded to a single computationally defined “patch”. The score for a patch was calculated as
the average of the scores of the cells comprising the patch. By “administering an input to a patch”,
we mean the cells in that patch were individually targeted with the same administered input. Most
experiments were performed with 16 patches of 6 cells per patch. Higher-dimensional experiments
were performed with 36 patches of 4 cells per patch.

Patches were arranged in “virtual space” into a square grid where each patch was connected
to (interacted with) each of the patches to the north, south, east, and west, with periodic (wrap-
around) boundary conditions such that each patch interacted with four other patches (its “neigh-
bors”). Note that, because cells were randomly assigned to patches, cells to neighboring patches in
virtual space were not necessarily adjacent in real space.

5.6.2 Signaling relation

Every imaging period (10 min), the input to each patch was adjusted according to the signaling
relation, which was chosen to be a Hill function with a minor computational adjustment to better
utilize the available range of illumination intensities. Specifically, the relation was given by

h(v) =
Kn

Kn + (max(smin, v)− smin)n
(2)

where v was the average score across all four neighbors of a patch, n was fixed at 2, and the minimum
score smin := 0.05 was the cutoff to deliver maximum illumination intensity. The bifurcation
parameter K varied by experiment, with higher K corresponding to weaker repression.

In particular, let xik be the score of the ith patch in the kth frame, and uik be the input to the
patch between the kth and (k + 1)th frames. Then uik was calculated as

uik = h

∑
j

xjk


where the summation is taken over the neighbors of patch i and L(·) is as given in (2).
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S1 Supplementary material

S1.1 Graphical test for bistability

Consider a 2-cell system of mutual inhibition with dynamics (and notation) as given in Section 3.1,
in which u2(t) = h(v2(t)) = h(w1(t)) and similarly u1(t) = h(v1(t)) = h(w2(t)). Now break the loop
such that u1(t) becomes the input and y(t) = h(w2(t)) the output of a the open-loop system. The

static input-output characteristic for the cascade, given by y† = h(T (h(T (u†1)))), is increasing. The

points where u†1 = h(T (h(T (u†1)))) (i.e., intersections of the static input-output characteristic with
a line of slope 1) are the steady states of the corresponding closed-loop system in which u1(t) = y(t)
(and we still have u2(t) = h(w1(t))). We will designate values at such intersections by superscript
asterisks (e.g., u∗1). When cell dynamics are monotone, then the steady state corresponding to
u∗1 is stable if the slope of h(T (h(T (u∗1)))) is greater than 1 and unstable if it is less than one.
In particular for our setup, this implies that if there is one intersection, the closed-loop system
is monostable, and if there are three intersections, the system is bistable, with the homogeneous
solution (u∗1 = u∗2) being unstable and the other two stable points corresponding to w∗1 high, w∗2
low, and vice versa [58].

S1.2 Detailed methods

S1.2.1 Agarose pad preparation

Figure S1.1: Example agarose pad used in experiments.

Two 2-slide-tall stacks of microscope slides were placed 1 cm apart parallel to each other on
top of a single microscope slide. 70 µL of 2% agarose (UltraPureTMAgarose, Invitrogen) and SD
medium solution were pipetted between the two stacks. A square 18 mm × 18 mm cover slip was
gently placed on the top. The pad was solidified for 1 hr. Immediately before placement under the
microscope, the stacks and cover slip were removed and the ends of the pad were sliced off with a
scalpel such that the final pad was about 15 mm × 15 mm and level across the top. 3 µL of cell
suspension were pipetted in increments of 1 µL onto three separate areas of the pad to ensure that
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at least one would have the correct density for use in the experiment. The pad was overturned
into a circular tissue culture dish with cover glass bottom (35 mm FluoroDishTM, World Precision
Instruments) lined inside with a strip of damp paper towel to maintain humidity throughout the
course of the experiment. The dish was closed and sealed with a strip of parafilm, then placed
in the microscope’s environmental box (Life Imaging Services, Switzerland). Cells were allowed to
settle for 30 min before experiment start.

S1.2.2 Scoring

0 min 10 min 20 min 30 min

Figure S1.2: Example time lapse of maximum projection fluorescence images for cells under constant
illumination.

We assessed induction of gene expression using a fast-acting, nuclear translocation-based report-
ing system [39], where higher responses corresponded to greater fluorescence in the cell nucleus.
Accordingly, we defined the scoring scheme as

score =
mean fluorescence in nucleus−mean fluorescence in cytoplasm

mean fluorescence across entire cell

such that a score of 0 indicates no difference between nuclear and cytoplasmic fluorescence.
Our experiments required us to calculate the response score automatically at each time step.

The score for each automatically segmented cell was calculated for an approximated location of the
nucleus, determined as follows: First, an image was formed by taking a box around the segmented
cell in the maximum projection fluorescence image and converting the non-cell pixels to black.
A black border 5 pixels wide was added around the image. Then the image was blurred with a
Gaussian filter of standard deviation 2 pixels and the brightest pixel in the blurred image was
located. This point was considered to be the center of the nucleus. We noted by observation that
the nucleus was almost always 5 pixels in radius, therefore the pixels falling within a circle of radius
5 pixels around the center were presumed to belong to the nucleus and were subsequently used in
the calculations of the mean fluorescence. All remaining pixels belonging to the cell were considered
to belong to the cytoplasm. The score was then calculated as indicated above.

S1.2.3 Segmentation/tracking errors

The automated imaging pipeline occasionally failed to identify cells in particular frames. In the
majority of cases the system was able to recover the cell within one or two frames. In dose response
experiments, cells that were not tracked for the entirety of a dose were discarded. During patterning
experiments, cells that were not tracked in a frame did not receive input for the following 10 min, and
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scores for their corresponding patches were calculated as averages over the scores of the remaining
cells. In no experiments were all cells in a patch simultaneously dropped in the same frame.

16-patch

K Fraction Dropped Measurements

0.1 0.041666667
0.1 0.029605263
0.1 0.049342105
0.1 0.026864035
0.2 0.038377193
0.2 0.038377193
0.2 0.091557018
0.3 0.10252193
0.3 0.097039474
0.3 0.064144737
1 0.029057018
1 0.04879386
1 0.090460526

36-patch

K Fraction Dropped Measurements

0.1 0.094298246
0.1 0.041666667
0.1 0.119152047
0.1 0.148391813

Table S1.2: Fraction of all measurements (one measurement = a single cell in a single frame) that were
dropped in each experiment.

S1.2.4 Preliminary dose response experiments verify gradedness and independence
of dose history

In order for the theory to apply, we needed to verify (a) that the magnitude of cell response increased
with received light intensity; and (b) that the dose response would be independent of dose history
for the duration of the final patterning experiments. By “dose history”, we refer to the number,
intensity, and order of doses administered to cells prior to a particular time of interest.

The following experiments were performed with an ND filter of optical density 2 (Thorlabs, 25
mm absorptive). Cells were illuminated for 10 min with uniform light, then left in the dark for 20
min before doses were administered. Cells were imaged every 10 min. Doses were administered for
40 min and the administered intensity of a dose varied for different collections of cells on the same
plate simultaneously. Hereafter, we use “dose response experiment” to refer to a particular collec-
tion of cells on the same plate receiving the same series of administered doses. Two dose response
experiments were conducted simultaneously per plate, with four or five doses per experiment. For a
single time point, the measured projected intensity received by a cell was calculated as the average
of the mean measured projected intensity across all pixels occupied by the cell.

A series of general linear models were fit to the data for each cell. The natural log of the score
(response variable) was treated as a function of the agarose pad, frame, dose number (ordered
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by time of appearance during experiment), frames since dose start, current measured illumination
intensity, and the measured illumination intensity for all frames up to the minimum experimental
duration (16 frames) before the current frame. Intensities for time points before the start of the
experiment were set to 0. An analysis of deviance for the full model (Table S1.2) suggests that the
illumination history past the current illumination contributes little to the current score.

Furthermore, we determined by observation that cells had reached a quasi-steady state response
before 30 min, and found that fitting a general linear model to steady-state times only (30 min and
40 min into a dose) greatly diminishes the importance of plate, frame, dose number, and frames
since dose start (Table S1.2). Moreover, a reduced model for the steady-state score that includes
only the current intensity has an AIC substantially similar to that of the full steady-state model
(2675 for the reduced vs. 2622 for the full). Together, these analyses suggest that it is reasonable
to consider steady-state dose response as a function of current illumination intensity alone.

Variable Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL NA NA 4117 3905.828561 NA
Im0 1 1051.353764 4116 2854.474798 0
Im1 1 148.2219005 4115 2706.252897 1.65E-53
Im2 1 0.229287964 4114 2706.023609 0.544725097
Im3 1 4.35808067 4113 2701.665528 0.008275942
Im4 1 1.320218071 4112 2700.34531 0.146119572
Im5 1 0.074542198 4111 2700.270768 0.729833304
Im6 1 0.240410136 4110 2700.030358 0.535126523
Im7 1 1.161222828 4109 2698.869135 0.17286582
Im8 1 0.187482186 4108 2698.681653 0.583904657
Im9 1 2.286447549 4107 2696.395205 0.055792838
Im10 1 0.249079692 4106 2696.146126 0.527855487
Im11 1 0.596308281 4105 2695.549817 0.328685196
Im12 1 0.142415919 4104 2695.407402 0.633115034
Im13 1 0.323652973 4103 2695.083749 0.471767645
Im14 1 0.836572299 4102 2694.247176 0.24730139
Im15 1 1.060493657 4101 2693.186683 0.192713497
Im16 1 3.170352656 4100 2690.01633 0.024309053

FramesSinceDoseStart 1 106.9288382 4099 2583.087492 4.29E-39
Pad 1 13.86651829 4098 2569.220973 2.47E-06

Frame 1 0.002190109 4097 2569.218783 0.952796489
DoseNumber 1 9.159326761 4096 2560.059457 0.00012912

Table S1.2: Results for a general linear model of cell response score across four experiments at all points
in time. ImX indicates the measured projected intensity preceding the current by X frames (0 is current
frame). The AIC for this model is 9745. As expected, the time since dose start contributes a large drop in
deviance, as cells did not instantly settle to a new steady state when the intensity was changed.
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Variable Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL NA NA 1185 1140.234564 NA
Im0 1 481.0998049 1184 659.1347596 1.03E-201
Im1 1 15.65834255 1183 643.476417 4.58E-08
Im2 1 0.206888356 1182 643.2695287 0.529734222
Im3 1 1.351828641 1181 641.9177 0.108199518
Im4 1 1.058581525 1180 640.8591185 0.155179456
Im5 1 0.658939118 1179 640.2001794 0.262075464
Im6 1 0.111574008 1178 640.0886054 0.644450512
Im7 1 0.009561578 1177 640.0790438 0.892536317
Im8 1 2.783572744 1176 637.2954711 0.021164596
Im9 1 1.374292916 1175 635.9211782 0.105311673
Im10 1 3.334521299 1174 632.5866569 0.011640495
Im11 1 1.633214394 1173 630.9534425 0.077459177
Im12 1 0.519193207 1172 630.4342493 0.319493668
Im13 1 0.000278015 1171 630.4339712 0.981621402
Im14 1 3.592110318 1170 626.8418609 0.008831956
Im15 1 2.201528614 1169 624.6403323 0.040371525
Im16 1 3.868935675 1168 620.7713966 0.006577405

FramesSinceDoseStart 1 4.202474492 1167 616.5689221 0.004622429
Pad 1 0.000989428 1166 616.5679327 0.965336552

Frame 1 6.225817085 1165 610.3421156 0.000566296
DoseNumber 0 0 1165 610.3421156 NA

Table S1.2: Results for a general linear model of cell response score across four experiments for steady-state
frames (30 and 40 min after dose start) only. ImX indicates the measured projected intensity preceding the
current by X frames (0 is current frame). Note that the frames since dose start, pad, frame, and dose number
are less significant in this model relative to the full model in S1.2. The AIC for this model is 2622.

S1.2.5 Ensuring uniform illumination intensity

We calculated our intensity corrections based on the following model: If u is an N ×N input image
(normalized to [0, 1]) and ur is that image magnified to size M ×M , then the measured intensity
y (normalized to [0, 1]) is an M ×M -dimensional image given by

y = s(v(ur))

where s(·) is a sigmoidal function applied identically to each pixel, and v(·) is a function that varies
by pixel to represent the uneven illumination intensity. This suggests that, to achieve a desired yd,
an input image should be calculated as

ur = v−1(s−1(yd))

(which can be appropriately resized to obtain u).
s−1(·) was already determined from previous experiments with the setup [36]. This correction

was calculated once, as it did not appear to change between experiments. v−1(·) was calculated
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Figure S1.3: Variability as in Fig. 3 for 4-cell patches.

before each experiment by sampling the measured intensity at a number of points spaced across
the sample plane when the administered intensity was maximized. To do so, one hundred circles
arranged in a grid were projected one at a time onto the slide at maximum administered intensity
and the reflected images for each circle were measured. The mean measured intensity of all the
pixels in a single circle was treated as a sample of the “true” illumination intensity at the point on
the sample plane corresponding to the center of the circle, such that a 2D quadratic polynomial
surface could be fit to all mean circle intensities in order to interpolate the illumination intensity at
all points on the sample plane. These sample points were normalized to the maximum and a second
2D quadratic polynomial surface was fit to the inverse sigmoid of these normalized sample points.
A target intensity value was chosen and the surface fit was renormalized relative to this intensity
value to obtain a matrix V representing the factor by which bright areas were overilluminated
relative to areas of underillumination, such that the matrix Ṽ consisting of the element-by-element

inverse of V (i.e.,
[
Ṽ
]
ij

= 1
[V ]ij

) was normalized to [0, 1]. Subsequently, inputs ur were calculated

to achieve the desired output yd as
ur = Ṽ � s−1(yd)

where � indicates element-by-element multiplication.
The sigmoidal intensity correction was used for all experiments. The flattening correction

procedure was carried out before experiment start on an area of the plate unoccupied by cells, and
was performed for all experiments except the dose response experiments.
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S1.3 Patterning experiments

S1.3.1 Global oscillations in score at experiment start

The apparent global oscillations in score before contrast emerges in the K = 0.1 case (Fig. 5a) may
be a consequence of the fact that cell responses are delayed relative to the frequency with which
administered inputs are changed. Intuitively, since all patches begin with similar scores, then
during the next imaging period the inputs to all patches will also be roughly the same magnitude.
Assuming the scores are initially low, then the lateral inhibition relationship ensures that inputs
during the next imaging period will all be similarly high. Cell scores will continue to increase for
about two periods following a period of high input, such that an intervening single period of lower
input will not drastically affect cell score until about two periods later, when the input has decreased
even further due to the continued rise in score from the first high input. A similar effect causes a
steep drop in cell scores, restarting the cycle. Imperfect initial conditions and stochasticity ensure
that the oscillations eventually decay, allowing for convergence to the contrasting steady state.

S1.3.2 Permutation tests to verify contrast

Stochasticity introduces some difference between the mean scores of any two sets of patches re-
gardless of whether they alternate. We conducted statistical tests to verify that the difference in
mean between sets of alternating patches exceeded what would be expected for any other arbitrary
grouping of patches into two equal-sized sets, i.e., that the contrast arose as a consequence of lateral
inhibition separating the patches into two distinct populations of low- and high-scoring cells, rather
than due to chance variation in mean scores alone for cells belonging to the same population. In
particular, for each experiment we conducted permutation tests against an empirical distribution
of N = 5000 relabelings, with the null hypothesis that scores for alternating patches were drawn
from the same distribution (i.e., the partition into sets of alternating patches is arbitrary). Tests
were conducted three times per experiment with results reported in Table S1.4. The contrast in
the K = 0.1 case was statistically significant in all experiments, while the apparent contrast in the
K = 1 case was statistically indistinguishable from contrast between random sets of patches. For
each of K = 0.2 and K = 0.3, the majority (2 out of 3) of replicates yielded results consistent with
theoretical notions of mono- and bistability at a p-value of 0.05.

S1.3.3 Temporal variability in score

Although variability in administered intensity decreased from the first to the last experimental
hour in 16-patch experiments, temporal variability in individual patch scores remained nearly the
same throughout the experiment (Fig. S1.5a). The result is not surprising if cells were comparably
variable regardless of input intensity, in which case convergence of the mean score need not imply
reduction in temporal variability. The administered intensity may also appear less variable since
it was calculated based on an average over the scores of 4 neighbors, which at a given time step
would have a variance 1

16 that of an individual patch.
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Figure S1.4: Checkerboards from scores averaged over the last hour for (a) 16-patch and (b) 36-patch
(K = 0.1) patterning experiments. Although the 36-patch experiments did not achieve global checkerboard
patterning, one experiment showed persistent local patterning in which two small checkerboards appeared in
opposing corners. The local patterns were inverted relative to each other and did not resolve before the end
of the experiment. (c) 2D Fourier transforms conducted on the checkerboard averages from (1) reveal that
the greatest weight is given to the highest-contrast spatial mode in all 4 experiments with K = 0.1, 2 out of 3
experiments with K = 0.2, 1 out of 3 experiments with K = 0.3, and none of the 3 experiments with K = 1.
Pictured are the spectral components (horizontal frequency increasing top to bottom, vertical frequency
increasing left to right) that contribute to last-hour checkerboards for each experiment. The intensity of
each component indicates its weighting relative to other components in the same experiment. Note also the
relatively higher weighting for lower-frequency spatial modes in the K = 0.3 and K = 1 cases relative to the
K = 0.1 and K = 0.2 cases.
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K trial1 trial2 trial3

0.1 0 0.0002 0
0.1 0 0 0
0.1 0 0 0
0.1 0 0 0
0.2 0.0006 0.0008 0.0008
0.2 0.4422 0.4348 0.4356
0.2 0.0234 0.0226 0.017
0.3 0.0158 0.0156 0.0164
0.3 0.1262 0.1282 0.1322
0.3 0.146 0.1348 0.1388
1 0.6516 0.6444 0.645
1 0.4108 0.4116 0.4018
1 0.1966 0.1942 0.2144

Table S1.4: Two-tailed permutation tests for difference in mean score averaged across the last hour between
sets of alternating patches, conducted against empirical distributions constructed from N = 5000 relabelings
for each experiment individually. The empirical distributions of difference in means between relabeled sets
of patches were randomly drawn three times per experiment and the resulting p-value calculated for the
alternating patch allocation. Tests were performed against the null hypothesis that scores were drawn from
the same distribution for all patches. ForK = 0.1, the null hypothesis was rejected at a p-value of 0.0002 in all
four experiments. For K = 1, the null hypothesis failed to be rejected at any reasonable p-value. Results were
less clear for values close to the critical point, for which one experiment with K = 0.2 (theoretically bistable)
failed to reject at any reasonable p-value, and one experiment with K = 0.3 (theoretically monostable)
rejected at a p-value of 0.02.
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Figure S1.5: (a) Temporal variability in administered intensity to individual patches decreased from the
first to the last experimental hour, while temporal variability in score remained relatively constant. (b) In
four experiments with 36 patches and 4 cells per patch, temporal variability in administered intensity and
score for individual patches remained equally high throughout the experiment duration (3 hr), suggesting
steady state was not reached in that time.

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2019. ; https://doi.org/10.1101/679597doi: bioRxiv preprint 

https://doi.org/10.1101/679597
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 0.5 1
administered intensity (a.u.)

0

0.1

0.2

0.3

0.4

0.5

0.6

nu
cl

ea
r l

oc
al

iza
tio

n 
sc

or
e

Figure S1.6: Administered input vs. measured patch score over time in the 36-patch experiments does not
show convergence to the steady-state dose response curve in 3 hr, unlike in the 16-patch case (Fig. 5). Points
are quantiles across N = 4 experiments with K = 0.1 for single time points, with more opaque (darker)
points corresponding to later times.
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Figure S1.7: Control experiment verifying persistence of checkerboard pattern in full lateral inhibition
system with 36 patchs, 4 cells/patch. Patches were preinduced for 20 min to display a checkerboard pattern.
From 20 to 70 min, the system was run in closed-loop with lateral inhibition signaling relation K = 0.1.
Pictured is the time course for individual patch scores (gray) with averages over sets of alternating patches
in red (as in Fig. 4). Board is visualization for individual patch scores averaged over the last 50 min.
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