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Abstract 

Spectral matching sequence database search engines commonly used on mass 

spectrometry-based proteomics experiments excel at identifying peptide sequence 

ions, and in addition, possible sequence ions carrying post-translational 

modifications (PTMs), but most do not provide confidence metrics for the exact 

localization of those PTMs when several possible sites are available. Localization 

is absolutely required for downstream molecular cell biology analysis of PTM 

function in vitro and in vivo. Therefore, we developed PTMProphet, a free and 

open-source software tool integrated into the Trans-Proteomic Pipeline, which 

reanalyzes identified spectra from any search engine for which pepXML output is 

available to provide localization confidence to enable appropriate further 

characterization of biologic events. Localization of any type of mass modification 

(e.g., phosphorylation) is supported. PTMProphet applies Bayesian mixture 

models to compute probabilities for each site/peptide spectrum match where a PTM 

has been identified. These probabilities can be combined to compute a global false 

localization rate at any threshold to guide downstream analysis. We describe the 

PTMProphet tool, its underlying algorithms and demonstrate its performance on 

ground-truth synthetic peptide reference datasets, one previously published small 

dataset, one new larger dataset, and also on a previously published phospho-

enriched dataset where the correct sites of modification are unknown. Data have 

been deposited to ProteomeXchange with identifier PXD013210. 

Keywords: proteomics, mass spectrometry, PTMs, PTM localization, 

PTMProphet, reference dataset analysis, protein phosphorylation, TPP 

Introduction 

Proteomics utilizing mass spectrometry (MS) to interrogate the identity, quantity 

and modifications of proteins has become an invaluable tool to define the protein 

context of biological samples.  Data-dependent analysis or “shotgun proteomics” 

remains the most widely used workflow as mature instrument workflows, software 

tools, and reference databases exist to identify large numbers of peptides and 

proteins in complex samples. This approach has given biologic insight into samples 

from many species and tissues. The utility of this approach extends to the detection 

of post-translational modifications (PTMs) and other possible modifications since 

all abundant ions in an experiment are analyzed together, and all modifications can 

be detected and characterized with suitable informatics approaches.   

In a typical experiment, a large fraction of all detectable peptide ions introduced 

into the MS are sequentially fragmented and the resulting product ion spectra are 

recorded.  The resultant recorded spectra from datasets that are expected to contain 

peptide ions are then subjected to an informatics analysis that attempts to identify 

the peptide sequences of the ions that yielded the spectra. However, these 

approaches typically require some a priori knowledge or assumptions on 

detectable proteins and potential modifications.  Spectra are most commonly 

identified with sequence search engines such as Mascot1, X!Tandem2, Comet3, and 

MS-GF+4, among others.  However, for each of these tools, expanding the number 

of potential mass modifications that must be considered expands the search space 

and can greatly increase computation time as well as reduce the identification 

sensitivity.  Spectra may also be identified by spectral library searching, wherein 

new spectra are compared to a library of previously observed spectra.  More 

recently, the search engine MSFragger5 demonstrated very fast wide mass 

tolerance searching that enables identification of spectra having a large mass error, 

potentially indicating a PTM contained within a peptide.   

In each of these approaches, the correct peptide sequence is often identified and 

the possible location of a PTM assigned. Yet, the confidence with which the 

modification is localized in the event of multiple possible amino acid residues is 

often not well characterized.  Most search engines provide the best matching 

peptide ion sequence and locations for PTMs, often with a confidence score 

quantifying the likelihood that the peptide ion sequence is correct, but do not 

generally provide confidence metrics for the PTM site assignments.  Indeed, there 

are often only a few potential site determining ions that allow differentiation 

between a PTM located on different sites within the same peptide, and evaluating 

those various possibilities to derive confidence metrics is non-trivial.  Robust 

metrics for local and global false localization rates (FLRs) should always be 

computed to complement the global and local false discovery rate (FDR) metrics 

that are currently commonly reported for peptide ion identification results. See 

Chalkley and Clauser6 for a review of FLR concepts and early tools, and Wiese et 

al.7 for a more recent comparison of tools. 

There are several existing tools for PTM site assignment, although most of them 

are designed only for specific search engines or types of PTMs.  Some tools 

determine most likely site localizations based on search engine score differences, 

such as the Mascot Delta Score8. The Protein Prospector SLIP score9 is built in to 

the Protein Prospector search engine10 and does not require a post-processing step. 

However, this score is only computed for modifications which were specified at 

search time; to compute SLIP scores on alternative residues not specified during 

the original search, a new search must be performed. Most other tools re-analyze 

the peaks in each spectrum to derive a PTM site localization probability based on 

all possible permutations of the modifications. According to the original 

publication, ASCORE11 is able to calculate localization probabilities for 

SEQUEST12 and Mascot1 searches of phosphopeptide data.  The PTM Score 

algorithm re-analyzes Andromeda13 search results as part of the MaxQuant 

software package14.  PhosCalc15 is an online web tool able to assess localization 

based on mgf or dta input files.  The phosphoRS tool16 has been extended to handle 

other types of mass modifications under the ptmRS17 name. The P-brackets 

approach18 uses complementary product ion pairs to increase confidence in the site 

assignments. The LuciPHOr tool19 localizes phosphorylation search results from 

pepXML20 input, and LuciPHORr221 extends this functionality to other kinds of 

PTMs. Other tools such as SLoMo22,23 and PhosphoScan24 focus on specific 

fragmentation types. The PTMiner25 tool can be used to assist in localizing the 

potential mass modifications discovered during open modification searches, and 

pSite26 can localize PTMs as well as compute the confidence with which de novo 

searching algorithms have correctly called each amino acid in a peptide sequence.  

The Trans-Proteomic Pipeline20,27,28 (TPP) is a suite of software tools and 

standardized file formats that enables open, transparent and interoperable analysis 

of shotgun proteomics data from start to finish29.  It is open source and designed to 

work on all three major operating system platforms, Microsoft Windows, 
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GNU/Linux, and Apple MacOS X.  The TPP supports many of the most popular 

search engine algorithms, including SEQUEST12, Mascot1, X!Tandem2, Comet3, 

ProteinProspector30, MS-GF+4, MSFragger5, among others, and enables users to 

apply statistical validation models that improve discrimination between correct and 

incorrect peptide-spectrum matches (PSMs) based on several corroborating lines 

of evidence that can be applied to the raw search engine scores.  The iProphet tool31 

further improves discrimination between correct and incorrect peptide 

identifications and enables the combination of the results of several search engines 

into a single result with highly controlled distinct peptide sequence level statistical 

significance measures.  ProteinProphet32 applies additional modeling at the protein 

level to provide probabilities and FDR estimates for protein identifications inferred 

from the PSM and peptide evidence.  In each of these tools, an expectation 

maximization algorithm is used to develop Bayesian mixture models from which 

confidence metrics are computed. 

PTMProphet is a tool designed to function within the TPP software suite that 

models the potential sites of PTMs independently of the spectrum identification 

provided by a search engine, and calculates robust probabilities for each potential 

modification site (PMS) which provide estimates for local FLR. To elaborate with 

an example, if the user is searching for phosphorylations on the common amino 

acids of S, T and Y during search time, and decides that they also want to localize 

potential rare phosphorylations (e.g. on D, H and C) in phosphorylated PSMs 

identified by the search engine, they can evaluate these possibilities with 

PTMProphet without rerunning the search and by simply allowing PTMProphet to 

localize the additional rare amino acid modifications.  In this way, the search time 

will not be increased by the additional complexity of the modifications considered 

and PTMProphet running time will be only marginally affected by the additional 

possibilities it will now be tasked with evaluating on a subset of PSMs.   

PTMProphet also computes information content measures based on the PMS 

probabilities which are utilized to compute global FLR at any confidence threshold.  

PTMProphet reads and writes results based on the pepXML20 formatted output of 

any search engine, whether processed with PeptideProphet and iProphet or not, and 

results are graphically visualized in the PepXML Viewer.  Below we describe the 

PTMProphet algorithm and demonstrate its application to several different 

datasets. The issue of correct assignment of PTMs underlies biologic and 

biomedical research where downstream research involving site directed 

mutagenesis and phosphomimentic amino acid substitutions is involved and time 

consuming. We present tools that enable a greater degree of surety in pursuing such 

research. 

Methods 

Implementation 

As with most other major TPP analysis tools, PTMProphet is implemented in C++ 

that cross-compiles across Windows, Linux, and OS X into a command-line 

executable.  This enables PTMProphet to become part of automated and distributed 

large-scale computing environments.  The tool can also be invoked via the TPP 

graphical user interface (TPPGUI) for interactive use.  The TPPGUI is 

implemented as a web interface with extensive JavaScript extensions to enhance 

usability.  This has the advantage that the TPPGUI can easily be used locally on 

the same machine or on remote machines. 

PTMProphet takes the results of the PSM identification process in pepXML20 file 

format as input.  This will typically be the output of PeptideProphet or iProphet, 

but any well-formed pepXML output by any tool will work.  For each PSM in the 

pepXML file, the original peak list is read from mzML33 or mzXML34 for 

subsequent analysis.  The proposed peptide-ion identification for the spectrum is 

assessed for all user defined modification variations.  Each specified type of mass 

modification that is expected in the peptide is assessed by considering all possible 

permutations of specified modifications on potentially modified sites within the 

peptide.  For each potentially modified site on the peptide, PTMProphet compares 

the best scoring peptidoform with the modification occurring at that site against the 

best scoring peptidoform with the modification not occurring at that site and thus 

occurring at a different site.  Peaks that are shared between two permutations 

provide no discrimination between the possibilities and are hence ignored.  Peaks 

that discriminate between the different permutations are scored as described below. 

The computationally intensive components of PTMProphet are multi-threaded, 

enabled by setting the MAXTHREADS=<number> option to a number not equal 

to 1 (default being 1).  Multiple threads are employed primarily during the 

evaluation and scoring of each individual PSM, which can occur in parallel.  There 

is no limit to the number of threads, and therefore multi-core computers can process 

datasets markedly faster than single core computers.  Only the expectation 

maximization (EM) machine learning component is single-threaded since EM 

iterations must occur serially.   

The major benefits of PTMProphet with respect to other similar tools are that it 

computes robust probabilities instead of arbitrary scores, computes modification 

information content based on the site probabilities, utilizes widely used pepXML 

for input and output instead of ad hoc formats, handles any combination of mass 

modifications not just phosphorylation, is free and open source, and is actively 

maintained to ensure ongoing relevance. 

Although the internal format for the TPP remains pepXML, export to 

mzIdentML35,36 is also supported.  Using the TPP tpp2mzid tool, the pepXML 

results can be exported to mzIdentML, including the PTMProphet results that are 

implemented using userParam XML tags specific to PTMProphet output.   

PTMProphet can be downloaded as part of, and integrated in, the TPP package at 

http://tppms.org/.  The source code is freely available at the TPP source code site 

https://sourceforge.net/p/sashimi/code/HEAD/tree/trunk/.   

Core Algorithm 
For each PSM in the input file, PTMProphet computes the sum of all intensities of 

peaks that are matched given a permutation of localization as follows.  Let Ψ(P) be 

the sum of all matched intensities for a given peptide P.  For each potentially 

modified site s on P, PTMProphet computes: 

𝑃𝑚𝑜𝑑 = argmax
∀𝑃 𝑤𝑖𝑡ℎ 𝑠𝑖𝑡𝑒 𝑠 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

Ψ(𝑃) 

and,  
𝑃𝑢𝑛𝑚𝑜𝑑 = argmax

∀𝑃 𝑤𝑖𝑡ℎ 𝑠𝑖𝑡𝑒 𝑠 𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
Ψ(𝑃) 

Thus, for each site s, Pmod is the top scoring peptide, the one that maximizes Ψ, 

among all peptides that have position s modified.  Conversely, for each site s, Punmod 

is the top scoring peptide, the one that maximizes Ψ, among all peptides P that have 

position s not modified. 

Then, PTMProphet computes the “shared in common” matched peak intensities, 

termed C(Pmod,Punmod), for all ions identical between peptides Pmod and Punmod. 

Next, PTMProphet computes the discrete intensity evidence for each PSM site s, 

assuming that the site is modified, Om, and assuming the same site is unmodified, 

Ou. 

𝑶𝒎 =  
𝜳(𝑷𝒎𝒐𝒅) − 𝑪(𝑷𝒎𝒐𝒅,𝑷𝒖𝒏𝒎𝒐𝒅)

𝑖
, 𝑶𝒖 =  

𝜳(𝑷𝒖𝒏𝒎𝒐𝒅) − 𝑪(𝑷𝒎𝒐𝒅,𝑷𝒖𝒏𝒎𝒐𝒅)

𝒊
 

Where, i is the intensity of the smallest peak in the spectrum, thereby providing an 

automatic scaling to the smallest level of presumed noise.  In order to reduce 

overconfidence in cases where one or two very small peaks are competing against 

no evidence for an alternative site, an additional, user-tunable scaling is provided 

by a MINO=<number> option, which adds a constant pseudo-count value (default 

0) to both Om and Ou.   PTMProphet then computes the Oscore as: 

Oscore = 
𝑶𝒎

𝑶𝒎+𝑶𝒖
 

Intuitively, the Oscore is the fraction of the observed intensity attributable to a 

modification at a particular site relative to the total intensity of all site-determining 

peaks.  PTMProphet also computes the Mscore, which is: 

Mscore = 
𝑴𝒎

𝑴𝒎+𝑴𝒖
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In this equation, Mm is the number of peaks unique to Pmod, and Mu is the number 

of peaks unique to Punmod, i.e. not in common between Pmod and Punmod.  Intuitively, 

the Mscore is the fraction of peaks attributable to a modification at a particular site 

relative to the total number of all site-determining peaks. 

PTMProphet then applies user-selectable Bayesian mixture models to all scores to 

compute probabilities for all sites, using a uniform prior probability for each 

potentially modified site.  With the EM=0 option, PTMProphet estimates the 

probability simply using Oscore.  With the EM=1 option, PTMProphet computes 

the Bayesian probability of each localization given the Oscore.  With the EM=2 

option, PTMProphet computes the Bayesian probability of each localization given 

the Oscore and Mscore together.  With the EM=3 option, PTMProphet computes 

the Bayesian probability of each localization given only the Mscore.  For options 

EM>0, PTMProphet applies an expectation maximization (EM) algorithm to 

iterate until the computed probabilities remain constant.  The default setting is 

EM=2, which in our tests performed best, as can be seen from the comparative 

analysis of PTMProphet using EM modes of 0 through 3, presented in 

Supplemental Table 3 

Next, all probabilities are renormalized so that for each PSM the sum of the 

probabilities for each type of mass modification equals the total number of 

modifications. For example, if a particular peptide with five possible modification 

sites contains two phosphorylated residues, the sum of all five probabilities will 

equal 2.0.  The modifications are potentially moved from the original location 

placed by the search engine to the locations with the highest probabilities, which 

can occur when the search engine is unable to correctly localize the modification 

at search time due to spurious peaks or other algorithmic deficiencies to discern 

between closely related modified peptides.  Peptide sequence strings with all 

embedded probabilities are also written out to pepXML in a format encoding a 

probability to three decimal places following each residue.  For example, in a PSM 

with one phosphorylation and one oxidation site, a string such as 

S(0.000)EM(0.780)M(0.220)EEDLQGAS(1.000)QVK can be written in the 

pepXML, denoting the probability, pi, that each potential site, i, harbors a particular 

type of modification.  For this example, the probabilities for phosphorylation are { 

0.000, 1.000 } and for oxidation are { 0.780, 0.220 } at the corresponding potential 

sites of those modifications. 

Comparing Modified PSMs 

Site probabilities are only directly comparable between PSMs having the same 

number of modifications and the same number of sites. Yet in a standard 

experiment it is natural to expect a diverse population of peptides to be present 

having different numbers of potentially modified sites and different numbers of 

modifications.  Therefore, a problem arises when we consider comparing modified 

PSMs identified within a single dataset between themselves and between different 

datasets.  Intuitively, a site probability of 0.75 in a peptide with one phosphorylated 

residue and two potentially phosphorylated sites (e.g.,  

S(0.250)ENNEEDLQGAS(0.750)QVK), suggests that there is a strong possibility 

(three quarter chance) that the modification is present at the site with the higher 

probability, which is greater than random chance (50%) that the modification is 

present at that site. Alternatively, if there are three modifications and four sites, 

e.g.,  S(0.750)ES(0.750)S(0.750)EEDLQGAS(0.750)QVK, the same probability 

0.75 means we have no additional information regarding the localization, since in 

this PSM a site probability value of 0.75 is exactly the random chance expectation 

given the number of modifications and potential sites present in the peptide.   

To address this issue, the normalized per-modification information content of the 

PTM site assignment probabilities, It, can be used instead of site probabilities to 

directly compare PSMs, regardless of the number of modifications and 

modification sites they contain.  Computing this for all PSMs provides a value by 

which all PSMs can be directly compared, sorted and filtered.  Based on the It 

values, estimates of the uncertainty contained within a filtered modified PSM list 

can be measured.  Computing these values for different datasets and analysis 

methods provides a method by which these datasets and methods can be evaluated 

and directly compared in the interest of optimizing methodologies.  Computing the 

information content of modified PSM site assignments is described in the following 

section. 

Information Content Calculation 

As a final step, PTMProphet computes the Normalized Per-modification 

Information Content, INFO_t or It, of each PSM and for each type t of modification 

present in the PSM, as follows: 

𝐼𝑡 = 1 − 𝐻𝑡
𝑛𝑜𝑟𝑚 

Where, Ht
norm is the normalized per modification entropy37 of modification of type 

t, having the range [0, 1]. It is calculated according to the formula: 

𝐻𝑡
𝑛𝑜𝑟𝑚 = −

∑ 𝑝𝑖 log𝑠/𝑚 𝑝𝑖
𝑠
𝑖=1

𝑚
 

Where: t is the modification type 

s  is the number of potential sites of modification of type t in 

the peptide 

m  is the number of modifications of type t in the peptide 

pi
 is the PTMProphet probability of the modification occurring 

at site i 

Additionally, the number of modifications of type t that can be localized with 

certainty in a given PSM, LMODS_t or 𝑀𝑡, has the range [0, m] and is calculated 

by PTMProphet as: 

𝑀𝑡 = 𝑚 − 𝐻𝑡 

Where:   𝐻𝑡 = − ∑ 𝑝𝑖 log𝑠/𝑚 𝑝𝑖
𝑠
𝑖=1  

For example, a value of 2.94 might indicate that nearly 3 modifications of type t 

are localized with high certainty in a given PSM. 

In addition to information content, PTMProphet computes and reports the mean 

best PTM-site probability for each PSM and modification type it contains.  For 

each type of modification localized in each PSM, this feature calculates the mean 

PTM-site probabilities of the top m number of highest confidence sites within the 

PSM, of that modification type.  As we demonstrate below, the mean best 

probability statistic for modifications of type t, MBPr_t, provides a remarkably 

accurate estimate of PSM-level false localization rates (FLR). 

PepXML Viewer 

The TPP PepXML Viewer application has been enhanced to display PTMProphet 

results graphically, allowing for visual exploration of PTMProphet localization 

data.  Figure 1 provides an example of a series of PSMs from the published 

reference phosphopeptide dataset (described below) for the peptide 

THLGTGMERSPGAMER.  There are two types of modifications considered in 

this analysis, phosphorylation (S,T,Y) and oxidation (M,W.)  Columns 1-3 in 

Figure 1 show the iProphet probability, the PeptideProphet probability, and the 

peptide sequence including the graphical display of the PTMProphet results.   

Columns 4-6 report the computed mean best probability, normalized information 

content, localized modification quantity for the localization of modified S,T,Y 

residues for each peptide.  Columns 7-9 show the same for the localization of 

modified M,W residues.  The final column in Figure 1 is the spectrum identifier; 

additional columns showing other peptide properties such as count of 

enzymatically consistent termini, retention time, precursor intensity among others 

can be displayed in the web interface but are not shown here. 

In the graphical display of column 3 (Figure 1), each potential site has a bar above 

the residue.  A gray bar indicates zero probability at a potential site, while the 

height of a non-gray colored bar indicates the fractional probability of the mass 

modification being correctly localized to that site.  Each type of mass modification 

has a different color (in this figure, green is phosphorylation and blue is oxidation, 
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although this is not fixed.)  The amino acid residue letter where the mass 

modification is assigned (due to the highest probability) is colored red.  The 

example peptide THLGTGMERSPGAMER has three potential phosphorylation 

sites and two potential oxidation sites.  In the first row (Fig.1), the phosphorylation 

is confidently localized to the N-terminal threonine, the first amino acid residue, 

and both methionines are oxidized.  The second PSM (row 2) has no 

phosphorylation at all and the last methionine only is oxidized.  The PSMs in rows 

3 and 4 have high-confidence phosphorylation localization on the first residue and 

no oxidation.  The PSM in row 9 has minimal peak evidence to localize two present 

phosphorylated residues, and the probability at all three sites is 0.667; notice that 

the modification localization information content of this peptide is zero.  For the 

PSM in row 10, a single phosphorylation is present on either the first or second 

threonine with probability 0.500, but presence on the serine is ruled out and given 

a probability of 0.000. 

 

Figure 1.  PepXML Viewer graphical display of PTMProphet results from 

the previously published reference dataset for peptide 

THLGTGMERSPGAMER.  In the third column of this display, bars are 

placed above each residue that is a potential site for a mass modification.  

Gray indicates probable absence at a site, while a non-gray color indicates 

probable presence at that site, proportional to the height of the box.  A full 

height box indicates a probability of 1.  Hovering the mouse pointer over a 

bar reveals a tooltip with extended numerical information.  Each type of 

modification has a different color.  See text for further discussion of the 

figure. 

Results 

To demonstrate the performance of PTMProphet, we ran the tool against three 

example datasets, i) a small reference dataset of synthetic peptides previously 

published and used to evaluate confident site localization with an Thermo Fisher 

Scientific Orbitrap Fusion Tribrid mass spectrometer (Dataset #1, Ferries et al. 

2017)17, ii) a large in-house generated and unpublished dataset of synthetic 

phosphopeptides with known phosphorylated sites (Dataset #2), and iii) a phospho-

enriched cell lysate dataset known to contain many mass modifications (Dataset 

#3, Söderholm et al.)43.  

For dataset #1, we compare the performance of PTMProphet to the originally 

published results, which we further analyzed for information content of the 

modified site assignments.  First we assessed the accuracy of the PTMProphet 

implementation with this dataset consisting of a synthetic phosphopeptide library 

containing 175 distinct peptide sequences with 191 phosphorylation sites.  The 

synthesized peptides are divided into five pools for data dependent LC-MS/MS 

analysis on a Thermo Fisher Scientific Orbitrap Fusion Tribrid mass spectrometer, 

with the isomeric phosphopeptides (where the same peptide sequence is 

phosphorylated at different positions) allocated to different pools.  The original 

data were generated with several different fragmentation regimes (HCD, EThcD, 

and neutral-loss-triggered ET(ca/hc)D) and mass analyzers for MS/MS (Orbitrap 

(OT) versus ion trap (IT)).  Data acquired by all of these collection methods are 

supported by PTMProphet.  For simplicity, we only discuss the HCD results with 

high mass accuracy MS1 and MS2 scans acquired in the Orbitrap, which was 

reported by the authors to be the best performing method in terms of numbers and 

rates of correctly localized phosphosites identified by the ptmRS analysis. 

The RAW files for Dataset #1 were obtained from the ProteomeXchange38,39 

repository PRIDE40,41 identifier PXD007058 and converted to mzML33 with the 

ProteoWizard42 msConvert tool with peak picking enabled.  The high mass 

accuracy MS2 spectra were searched both with Comet and X!Tandem with the 

high-resolution K-score43 (HRK) enabled.  Mass tolerances were set to 25 ppm for 

precursors and 0.02 m/z for fragment peaks, along with an allowance for semi-

tryptic peptides and up to 4 missed cleavages (important because some of the 

synthetic peptides have more than 2 missed cleavages.)  In general, it is not very 

common to see 4 missed cleavage peptides and most natural datasets are only 

searched with 2 missed cleavages, unless the sample is only lightly digested. It is 

only important in this particular dataset because some of the synthetic peptides 

have this many cleavages. This results in a slight increase in search time, but does 

not affect the running time of PTMProphet.  The searches were performed allowing 

for fixed modification of carbamidomethyl on C, and variable modifications for M, 

W oxidation and S, T, Y phosphorylation.  The Comet and X!Tandem search 

results were individually processed with PeptideProphet using high mass accuracy 

setting in ppm mode, semi-parametric modeling, and an option to not penalize 

deltaCn* results for Comet (indicating homology between top matching peptides 

to a spectrum, a common occurrence for PSMs with mass modifications, where the 

top matches are the same peptide sequence with different modified sites.)  The two 

resulting files were merged and modeled with iProphet to produce a single 

pepXML output file. The resulting single pepXML file was processed through 

PTMProphet with default settings, except for MAXTHREADS=0 (allowing 

processing of spectra to occur in parallel on all cores in the machine), and specified 

mass modifications STY=79.9663 and WM=15.9949.  

For each PSM, mass offset and tolerance parameters are learned automatically by 

PTMProphet from the data by applying a Bayesian mixture model algorithm for 

mass tolerance selection.  Output was written to a new pepXML file with updated 

localizations along with probabilities and models.  Based on the learned iProphet 

models, applying an iProphet probability threshold of 0.9 yields a global peptide 

level FDR of 0.004, correctly identifying 4125 PSMs (17 incorrect), with a 

sensitivity of 0.90.  Decoy counting shows there are 13 decoy PSMs passing this 

threshold, matching 8 unique peptide sequences, out of 4142 PSMs mapping to 

1225 distinct peptidoforms and 609 distinct peptide sequences.  Of these PSMs, 

1467 mapped to a peptide precursor matching one or more peptidoforms in the 

peptide mixture, both in sequence and number of modifications.  Of these PSMs, 

we excluded those that could have been a result of potential carryover from a prior 

run, which left 1420 PSMs, which were then used to compute FLR statistics as 

follows.  The PSMs were sorted based on phosphorylation localization mean best 

probability (MBPr) in descending order.  The resulting list was traversed in order 

of decreasing MBPr, computing the global average error and the global reference-

based FLR among all results, including the current PSM and those above it in the 

list.  We also computed the number of correctly localized PSMs and the associated 

FLR rates per the reference.  Figure 2 panels A and B summarize the results 

obtained from this analysis.  In Figure 2A, we can see the number of correctly 

localized PSMs at different FLRs as measured by counting the PSMs with correctly 

and incorrectly localized sites according to the reference.  In Figure 2B, we can see 

the comparison of PTMProphet estimated FLRs to the reference-based FLRs at the 

PSM level.  In general, we can observe from Figure 2B that the PTMProphet 

analysis of this dataset gives a conservative FLR estimation for the entire dataset, 

meaning the mean best probability measure can be used to estimate false 

localization errors that are slightly above the actual error based on the reference 

annotation of correctly and incorrectly localized PSMs.  Furthermore, based on this 

analysis and as displayed in Figure 2A, PTMProphet correctly localized 1164 

PSMs at a reference-based PSM FLR of less than 1% in this dataset. 
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Figure 2. Panels A and B are from the Comet+X!Tandem TPP-based analysis of Dataset 1. Panel A displays a ROC plot showing the 

reference-based PSM FLR on the x-axis plotted against the number of correctly localized PSM on the y-axis; Panel B displays a plot 

comparing the reference-based PSM FLR on the x-axis vs the mean best probability estimated PSM FLR on the y-axis, the grey diagonal 

indicates the line where the reference-based FLR equals the estimated FLR. Panels C and D show the comparison of the Mascot analysis 

localization results of ptmRS in green, the PTMProphet localization analysis on all Mascot PSMs in blue, the PTMProphet localization 

analysis only on those Mascot PSMs for which ptmRS returned a localization result in yellow, and PTMiner results in red. Panel C displays 

ROC plots showing reference-based PSM FLR on the x-axis plotted against the number of correctly localized PSMs on the y-axis; Panel 

D displays the plot comparing the actual reference-based PSM FLR on the x-axis to the mean best probability estimated PSM FLR on 

the y-axis, the grey diagonal indicates the line where the reference-based FLR equals the estimated FLR.  Panels E and F display the 

analysis results from running PTMProphet analysis on Dataset 2. Panel E displays ROC plots showing reference-based FLR  on the level 

of PSMs in blue and best scoring peptidoform in each run in orange on the x-axis plotted against the number of correctly localized PSMs 

and best scoring peptidoforms in each run on the y-axis; Panel F displays the plot comparing the actual reference-based PSM and best 

scoring peptidoform in each run FLR on the x-axis to the mean best probability estimated PSM and best scoring peptidoform in each run 

FLR on the y-axis, the grey diagonal indicates the line where the reference-based FLR equals the estimated FLR. 
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Next, we compared the performance of PTMProphet to the originally published 

results of this dataset.  While we can’t compare PTMProphet in detail to all 

available site localization tools with their different strengths and weaknesses, we 

compare it here to ptmRS17 and PTMiner, a pair of representative recently 

developed and well-performing PTM localization tools. We wanted to compare 

PTMProphet to the best performing tools and thus used the best performing dataset 

from the best performing method, HCD Orbitrap, and analysis tool, ptmRS, from 

the Ferries et al. 2017 publication. The analysis includes filtered Mascot search 

results containing 3563 PSMs and filtered ptmRS results containing 542 PSMs.  

We ran PTMProphet on the Mascot results using the same settings that we applied 

to the Comet/X!Tandem/TPP analysis.  Because ptmRS results are reported as 

potential modification site probabilities, for each PSM, we were able to easily 

apply the formulas for computing MBPrSTY and ISTY to ptmRS phosphorylation site 

assignments.  We computed these statistics for each localized PSM, applying it to 

PTMProphet, ptmRS, and PTMiner analysis of the published Mascot results.   

The performance pattern observed for the PTMProphet analysis of the Mascot 

result is similar to the performance pattern observed for PTMProphet on the Comet 

+ X!Tandem analysis of the same dataset. Figure 2D demonstrates that 

PTMProphet and PTMiner computed localization errors yield conservative FLR 

estimates when compared with reference-based error rates.  In comparison, the 

ptmRS computed localization errors yield FLR estimates that are anticonservative 

when compared with reference-based error rates, meaning that ptmRS is 

underestimating the true error rate.  The ptmRS tool gives an anticonservative 

result for nearly all reference-based FLRs in the dataset.  For instance, at the 

reference-based FLR of 1%, PTMProphet estimated FLR is slightly above 1%, 

while ptmRS estimated FLR is still below 0.25%.  Figure 2C demonstrates that on 

a small subset of PSMs ptmRS does identify a greater number of correctly localized 

PSMs at reference FLRs of less than 1%. At FLRs above this PTMProphet shows 

a slightly higher number of correctly localized PSMs than ptmRS. In all, when we 

consider the number of correctly localized peptidoforms at an actual FLR of less 

than or equal to 1% we find that PTMProphet identified 156 peptidoforms, ptmRS 

identified 148 peptidoforms and PTMiner identified 141 peptidoforms in this data 

set (data presented in Supplemental Table 1.) 

The analysis described above was applied only to those PSMs which matched the 

order sheet sample peptides for each run, both in sequence and number of 

modifications. In other words, we only analyzed PSMs where the correct precursor 

was in the correct sample, excluding PSMs with incorrect number of modifications 

or those that had potential for cross-run carryover contamination.  Cross-run 

contaminating peptides could be correctly localized, but present in the incorrect 

run and thus represent false negative results that should be left out from the ground-

truth answer assessment. Among the PSMs where the correct precursor was found 

in the correct sample and the PSM could not have been the result of cross-run 

carryover, the ptmRS site assignment disagreed with the reference on 26 PSMs (2 

of which were high confidence), of which 16 were correctly assigned by 

PTMProphet (13 with high confidence and 3 with mid-range confidence.) 

PTMProphet results considering only the PSMs for which ptmRS also had a result 

and filtered in a similar fashion, disagreed with the reference on 17 PSMs (3 of 

which were high confidence), of which 7 were correctly assigned by ptmRS (all 7 

with high confidence).  Thus, PTMProphet showed less disagreement with the 

synthetic reference peptides and was able to correctly localize more PSMs among 

those where the ptmRS software disagreed with the reference set.  Supplemental 

Table 1 lists the PSMs that were incorrectly localized by each software. 

Supplemental Table 1 provides the worksheets that were used to generate the 

figures for PTMProphet and ptmRS analyses of the localization results of the 

Ferries et al. dataset.  The table includes Excel exported raw results of PTMProphet 

and ptmRS that were processed to generate the plots shown above.  Also included 

is the comparative analysis of the incorrectly localized PSMs by ptmRS, PTMiner, 

and PTMProphet, as compared to the other software tools. 

Next, we evaluated PTMProphet on a larger dataset (Dataset #2 has been deposited 

to PRIDE44 under ProteomeXchange39 identifier PXD013210) generated from 

1342 chemically synthesized phosphopeptides with 5329 S, T and Y residues that 

could potentially be phosphorylated (see Supplemental Table 2).  These peptides 

are up to 26 amino acids long and contain between one and eleven S, T and Y 

residues per sequence, with 83% of all peptides containing two to six S,T,Y sites.  

This reference set contains 493 distinct peptide sequences (37%) and 849 distinct 

peptidoforms (63%) with the same sequence but phosphorylated residues assigned 

to different sites on the sequence, e.g., SIS[167]TVSSGSR and 

SISTVS[167]SGSR, to reflect the challenges of correct site assignment in natural 

samples.  629 of the 1342 selected human peptides have empirical evidence while 

713 peptides were designed in silico by taking backbones from empirical peptides 

and moving the empirically observed phospho group to another S, T or Y residue.  

Peptides were pooled as such some isomeric peptides were allocated in different 

pools while others were in the same pool, again to reflect the challenges in real 

samples.  This dataset was collected from pools of 95 peptides (except for 4 pools 

with fewer peptides) by data dependent LC-MS/MS analysis on a SCIEX 

TripleTOF 5600+ (see Supplemental Methods for details).  

The raw data were converted to mzML using the SCIEX mzML converter with 

option /proteinpilot for peak picking, /zlib for compression and /index for indexing 

the files.  The data were searched using both Mascot (version 2.4) and X!Tandem 

(version Jackhammer TPP 2013.06.15.1).   The searches were done specifying 

parent mass tolerance of 0.1 Da with isotopic offsets for both search engines and 

fragment mass tolerance of 0.8 Da for Mascot.  Carbamidomethyl on Cys was the 

only static modification applied in the search and the variable modifications 

include phosphorylation on S, T and Y and oxidation on M for both search engines.  

The spectra were searched against a database of these synthetic peptides appended 

to a large synthetic peptide database described in Kusebauch et al. 45 and decoys 

based on the randomized versions of the synthetic peptides. 

The search results of both search engines were processed with PeptideProphet and 

the pepXML results of both PeptideProphet analyses were combined using 

iProphet (compiled from SVN revision 7336 of the TPP code).  Finally, we ran 

PTMProphet on this dataset to localize the PTMs with default settings, except for 

MAXTHREADS=0 (allowing processing of spectra to occur in parallel on all CPU 

cores), MINPROB=0.9 (making PTMProphet apply localization to PSMs having 

an iProphet probability of 90% and higher.)  Next, we analyzed the FLRs 

comparing PTMProphet estimated FLRs based on mean best probabilities to the 

actual FLRs based on correctly localized PSMs and peptidoforms.   

As can be surmised from Figure 2 panels E and F, when comparing estimated FLRs 

to actual FLRs, PTMProphet provided a conservative estimate of false localization 

error on both the level of PSMs and on the level of peptidoforms, taking the highest 

scoring PSM identifying each peptidoform type in each run.  The highly 

conservative nature of PSM level FLR on this dataset stems from the fact that there 

is a large number of PSMs in the dataset when compared to the number of 

peptidoforms in the dataset.  PTMProphet assigns the sites correctly on many of 

the lower quality PSMs but with lower probability than in the higher quality PSMs, 

so while the localization is correct the lower PTM site probability on the lower 

scoring PSMs contribute to an upper bound estimate on the actual localization 

error.  As can be observed when comparing the orange curve to the blue curve in 

Figure 2F, when we considered only the best scoring PSM of each peptidoform in 

each run, the FLR estimates became much more accurate when compared to the 

dataset ground truth, while still remaining conservative estimates of site 

localization error. 

We also applied PTMProphet to Dataset #3, a phosphopeptide enriched dataset 

derived from human cells. We selected and reanalyzed the PRIDE repository 

identifier PXD001620, as originally presented and described in detail by 

Söderholm et al.46.  Briefly, the dataset is from human macrophage cells infected 

with influenza A virus.  The protein samples are digested with trypsin, enriched for 

phosphopeptides using PHOS-Select™ Iron Affinity Gel (Sigma Aldrich, MO, 

USA) and subjected to data dependent LC-MS/MS analysis on a Q Exactive mass 

spectrometer.  The raw files were converted to mzML using msConvert and 

searched with Comet and X!Tandem, followed by PeptideProphet analysis on the 

search engine results.  The search mass tolerances were set to 10 ppm for precursors 

and 0.03 m/z for fragment peaks, along with an allowance for semi-tryptic peptides 

and up to 2 missed cleavages.  The database used in the search was the PeptideAtlas 

Tiered Human Integrated Search Proteome47 (THISP) database compiled on 2018-
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01-01, appended with the Influenza A protein sequence database.  The THISP 

protein sequences were of Tier 2, meaning the sequence database includes the core 

primary isoforms from neXtProt (nP), cRAP contaminants, plus "varsplic" 

alternative splice isoforms from neXtProt, immunoglobulin variable region 

sequences from Swiss-Prot, and IMGT48.  Also appended were decoy sequences 

created from random shuffling of tryptic peptides in the target protein sequences.  

The searches were performed allowing for fixed modification of carbamidomethyl 

on cysteines and variable modifications as follows:  methionine and tryptophan 

oxidation, serine, threonine and tyrosine phosphorylation, n-terminal acetylation, 

pyro-glu from glutamine and pyro-carbamidomethyl as a delta from 

carbamidomethyl-cysteine, pyro-glu from glutamic acid, and deamidation of 

asparagine and glutamine.  To keep running times for searches at a reasonable 

level, the selection of modifications considered in the search was based on the 

modifications used in the original publication, with the additions of deamidation of 

asparagine and glutamine, and the oxidation of tryptophan, which our laboratory 

regularly uses in database searching.  The Comet and X!Tandem search results 

were individually processed with PeptideProphet using high mass accuracy setting 

in ppm mode, semi-parametric modeling and enabling the option to use the 

expectation score for modeling of Comet results.  The two resulting PeptideProphet 

pepXML files were merged and modeled with iProphet to produce a single 

pepXML output file. 

 

Figure 3.  Estimated total number of correctly localized modifications of 

each type versus the mean best probability (MBPr) estimated false 

localization rate (FLR), computed by summing (1-MBPr) over all PSMs 

traversed in order of decreasing MBPr. 

The resulting single pepXML file was processed through PTMProphet with default 

settings, except for MAXTHREADS=0 (allowing processing of spectra to occur in 

parallel on all CPU cores), MINPROB=0.8 (making PTMProphet apply 

localization to PSMs having an iProphet probability of 80% and higher, 

corresponding to an iProphet estimated PSM error rate of 0.4% and PSM sensitivity 

of 97.9% at this iProphet probability threshold) and considering the following mass 

modifications: STY=79.9663, WM=15.9949, QC=-17.026549, E=-18.010565, 

NQ=0.984016, and n-terminus=42.0106.  The selection of MINPROB is largely an 

arbitrary choice made by the user. This should be made based on the corresponding 

error-rate the user is willing to accept in the results.  We selected a lower minimum 

probability on this dataset where the correct localizations are unknown, using some 

lower scoring PSMs to extend the FLR range in the ROC plots, while keeping the 

PSM error rate well below 1%.  Figure 3 summarizes the modifications localized 

with varying degrees of certainty, across all PSM matches in the dataset, based on 

the information content calculations for each type of modification analyzed by 

PTMProphet.  We can see from the plot, matching expectation based on the 

experimental design, the most common modification observed in this dataset is 

indeed phosphorylation.  PTMProphet was able to localize in total, across all 

PSMs: 16,876 phosphorylation modifications of S, T or Y, 7220 oxidation 

modifications of M or W, 3717 n-terminal acetylation modifications, 1784 pyro-

glu from Q or pyro-carbamidomethyl from carbamidomethyl-C modifications, 

1156 deamidations of Q or N modifications, and 65 pyro-glu from E modifications, 

at 5% estimated FLR or less.    The n-terminal acetylation modification is always 

localized with perfect certainty for the obvious reason that each linear peptide has 

but a single n-terminal location. 

Conclusion 
In molecular cellular biology and biomedicine the correct and appropriate 

assignment of a post-translational modification enables the rapid progression of 

further investigations on molecular pathology and physiology. The investigator 

needs surety on mass spectrometry observations to progress work via routes such 

as phosphomimetic site directed mutagenesis. We therefore developed the peptide 

modification localization confidence tool PTMProphet (with supporting tutorials) 

in an automatable fashion through its inclusion in the Trans-Proteomic Pipeline for 

the rapid and accurate calculation of localization statistics for mass spectrometry 

PSM data.  Use of information content for PTM site assignments is incredibly 

useful for sorting, filtering and comparing of modified PSMs.  PSMs containing 

different numbers of potential PTM sites and different numbers of PTMs can now 

be directly and fairly compared.  Additionally, the information content provides an 

upper-bound FLR estimate that can be used to directly compare site assignments 

made by different parameters or algorithms as long as the algorithm reports its 

localization as site probabilities that sum to the number of modifications contained 

in the peptide.  Although, in our analysis the use of information content for 

PTMProphet site assignments provided an ultra-conservative upper-bound 

estimate of actual FLR and mean best probability provided a less conservative 

though still conservative result, it appears the actual statistic to apply depends on 

the algorithm used and less conservative algorithms may get more accurate results 

by employing information content calculations.  Whichever way FLR is ultimately 

estimated, we think that it would be beneficial for PTM site assignment algorithms 

to report their localization confidences as PTM site probabilities that sum to the 

number of PTMs in each PSM, as opposed to arbitrary scores. 

PTMProphet can be applied to any modification that is measured as a mass 

difference in a mass spectrometer.  For modifications that are generally labile in a 

collision cell, e.g. glycosylation, special considerations must be made.  

Specifically,  collision energy and selection of fragmentation methods must be 

carefully considered when attempting to measure labile PTMs.  For PTMs that 

appear on a specific amino acid (e.g. lysine in the case of ubiquitination), special 

considerations for enzyme selection during sample prep must be made to avoid 

trypsin cleavage of ubiquitinated lysine residues.  PTMProphet localizes 

modifications of any type, as specified by the user during execution time. 

In order to facilitate adoption, we provide a step-by-step tutorial of the tool that 

guides users how to use and evaluate the software on a sample dataset on their own 

computer.  The tutorial is available at http://www.tppms.org/tools/ptm/, and leads 

the reader through installing TPP on a Microsoft Windows computer, downloading 

the sample data set, processing the sample data set, and evaluating the results. As 

can be understood from running the tutorial, improved ease of use of the software, 

from the installation of the TPP in general, to downloading of public data, to the 

invocation of PTMProphet, and to visualizing, filtering and sorting of PTMProphet 

site assignments specifically, has been achieved. In the current version of the TPP, 

the PTMProphet software tool is available as open source code that is compiled 

and provided freely within the TPP architecture.  Following the installation of the 

TPP, the user has to copy their own data to a specified location readable by the TPP 

on the analysis computer, select this data inside the application, and specify a 

minimal set of required parameters, to be able to run the analysis.  Selection of user 

specified parameters are minimized to specifying the types of modifications to be 

localized in the data.  For each PSM, PTMProphet will automatically select the 

mass differences to be applied based on the machine learned mass difference 

parameters for that PSM.  Thereby, the burden to run the software and select 

optimized parameters for analysis is minimized for the user. 

PTMProphet software scales well so it can be applied to many datasets and has 

been demonstrated to work well on previously published and new complex datasets 

with comparison to other well-characterized PTM localization software.  Its 

performance and usability capabilities on very large datasets is demonstrated by 

the identification and localization of all 8 million PSMs represented in the Human 

Phospho PeptideAtlas 2017 being processed through a development version of 
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PTMProphet to derive global phosphorylation patterns across dozens of datasets. 

All future versions of the Phospho-PeptideAtlas will utilize this version or updates 

of PTMProphet to enhance the quality of the large-scale phosphopeptide data 

identification repository of PeptideAtlas. 
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