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ABSTRACT2

The fast accumulation of high-throughput gene expression data provides us an unprecedented3
opportunity to understand the gene interactions and prioritize disease candidate genes. However,4
these data are typically noisy and highly heterogeneous, complicating their use in constructing5
large expression compendium. Recent studies suggest that the collective expression pattern6
can be better modeled by Gaussian mixtures. This motivates our present work, which applies a7
Multimodal framework (MMF) to depict the gene expression profiles. MMF introduces two new8
statistics: Multimodal Mutual Information and Multimodal Direct Information. Through extensive9
simulations, MMF outperforms other approaches for detecting gene co-expressions or gene10
regulatory interactions, regardless of the level of noise or strength of interactions. In the principal11
component analysis for very large collections of expression data, the use of MMI enables more12
biologically meaningful spaces to be extracted than the use of Pearson correlation. The practical13
use of MMF is further demonstrated with three biological applications: 1. Prioritizing KIF1A as14
the candidate causal gene of hereditary spastic paraparesis from familial exome sequencing15
data; 2. Detecting ANK2 as the ‘hot genes’ for autism spectrum disorders, derived from exome16
sequencing family based study; 3. Predicting the microRNA target genes based on both sequence17
and expression information.18
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1 INTRODUCTION

A massive amount of biological data have been accumulated in the past decades through the widespread20
application of high-throughput technology in molecular biology. These data contain more valuable21
knowledge which may be overlooked by inspecting each dataset individually. The gene expression datasets,22
which are publicly available in several sites (such as Gene Expression Omnibus (GEO) Barrett et al. (2013),23
ArrayExpress Kolesnikov et al. (2015) and etc.), provide us an unprecedented opportunity to discover24
valuable information. Different from structuralized data, analysis for gene expression is a data-driven and25
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unsupervised learning task. Integrating different data sources can enable us eliminate the issues caused26
by poor quality and incomplete training set. The analyses of large amount of gene expression collections27
have been applied in predicting gene functions Fehrmann et al. (2015), prioritizing disease candidate28
genes van Dam et al. (2015), predicting microRNA targets Gennarino et al. (2009, 2012), constructing29
gene co-expression network Lee et al. (2004), etc.30
These analyses rely heavily on the accurate detection of gene-gene interactions from large expression31
compendium, several computational approaches have been developed for this purpose. Computational32
approaches typically define gene-gene interactions by gene co-expression; the rationale is that, when two33
genes demonstrate correlated expression patterns, they are likely to interact.34
Pearson correlation followed by meta-analysis is widely employed to reconstruct gene co-expression35
network from large expression data. This approach benefits from its straightforward interpretation and36
computational efficiency. Lee Lee et al. (2004) performs the first study to prove the reproducibility of37
co-expression relationship across multiple datasets by counting the significant gene correlations from38
3,924 microarrays. The co-expressed gene pairs, supported by multiple datasets, are strongly enriched in39
biological function. MEFIT Huttenhower et al. (2006) utilizes a scalable Bayesian framework to integrate40
the Z-scores that are transformed from Pearson correlations between gene pairs, and is proved to be superior41
to the other integration methods. However, Pearson correlation can only capture linear correlation, which42
is not always the case for gene-gene interactions. This has prompted the use of mutual information (MI)43
in the inference of gene-gene interactions. The MI of two genes is a measure of their mutual dependence44
which can detect both linear and nonlinear dependencies Brunel et al. (2010); Meyer et al. (2008); Luo45
et al. (2008). For gene expression data, MI is computed by discretization through B-spline smoothing Daub46
et al. (2004), or by assuming Gaussian distributions Margolin et al. (2006).47
Although gene co-expression reveals the dependencies between genes, it cannot distinguish between the48
direct and transitive dependencies–the latter is often considered as false positives for gene regulatory49
relations as the regulators bind to their target genes physically. Many approaches have been proposed to50
remedy this. ARACNE Margolin et al. (2006) considers the lowest MI value among any triplet of genes as51
a transitive edge based on Data Processing Inequality.The CLR Faith et al. (2007) algorithm transforms52
the MI to Z-score to remove background promiscuous gene correlations. GENIE3 Huynh-Thu et al. (2010)53
creates a tree-based ensemble model for each target gene to predict and rank the potential regulatory links.54
TIGRESS Haury et al. (2012) proposes a robust and accurate method for stability selection to improve the55
feature selection in least angle regression for each target gene. If gene expression data follow a Gaussian56
distribution, transitive elements in the gene covariance matrix can be eliminated by using precision matrix,57
as demonstrated by MaxEnt Lezon et al. (2006) based on the maximum entropy principle.58
The sample size of the dataset is an important factor affecting the accuracy of inferring the gene-gene59
interactions, as several studies indicated before. One approach to alleviate this issue is to integrate60
expression data from available databases. HOCTAR Gennarino et al. (2009) infers the microRNA targets61
by considering the expression correlations between microRNA host gene and its potential target genes,62
which are calculated by integrating 3,445 different microarray hybridization experiments from Affymetrix63
HGU133A. However, HOCTAR neglects the transitive effects, which may report the genes that co-express64
with the real targets rather than to be regulated by the microRNA. Though integrating multiple datasets65
increases the sample size, the data will be severely obstructed by the heterogeneity: the collected samples66
are produced from different tissues, by different platforms, by different RNA extraction methods, and with67
varying qualities.68
Methods such as Pearson correlation followed by meta-analysis can relief the heterogeneous issue across69
datasets, but still are inane to the inner heterogeneity within each dataset. We note a related study with70
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the gene expressions of tumor tissues, which are often confounded by their surrounding normal tissues or71
mixed with different subclones Navin et al. (2011). To distinguish these tissues, TEMT Li and Xie (2013)72
models gene expression with Gaussian mixture models. We also note a result by Kim Kim et al. (2010)73
over the large expression compendium, where it found the majority of gene expressions follow multimodal74
distributions: 48.9% and 34.7% of probes should be modeled as for bi- and tri- modes distributions.75
Motivated by these results, we use Gaussian mixtures on our framework to infer gene interactions.76
Previous methods model the gene expressions according to their “global features”–following a common77
distribution. But actual situation is not always the case. Some genes merely express in a specific cellular78
condition or tissue Wang et al. (2014), they may be modeled by appropriate “local features”–following the79
combination of multiple distributions. To model the “local features”, we assume that the gene expressions80
are sampled from different distributions rather than independent and identically distributed random variables.81
Hence, we propose a Multimodal Framework (MMF) that depicts the large gene expression data explicitly82
by Gaussian mixture models. Under this framework, the correlations are evaluated more accurately83
through a new measure—Multimodal Mutual Information (MMI). MMF also allows a new measure84
called Multimodal Direct Information (MDI) to identify regulation relationship free from the influence of85
transitive correlations. These two measures form the basis of our framework to identify gene interactions86
from integrated large expression datasets.87
When comparing to the other methods for inferring gene-gene interactions, MMI and MDI demonstrate88
superior accuracy and noise tolerance according to the simulation results. We further successfully apply89
MMI and MDI to three biomedical problems and obtain encouraging results: 1. MMI identifies KIF1A90
as the causal gene of hereditary spastic paraparesis (HSP) correctly from familial exome sequencing data91
by detecting the strongest co-expression with the established disease casual genes; 2. MDI identifies92
ANK2 as the ‘hot gene’ from exome sequencing familial study for autism spectrum disorders (ASDs);93
3. MDI predicts the targets of microRNAs transcribed from the intragenic regions accurately. These94
experiments demonstrate the effectiveness of MMF in identifying gene interactions from large gene95
expression compendium.96

2 MATERIALS AND METHODS

2.1 Multimodal framework97

The MMF is specifically designed for calculating gene-gene interactions from noisy and heterogeneous98
expression datasets. MMF considers the “local feature” under the assumption that the expression data of99
each gene are sampled from Gaussian mixture models rather than one Gaussian distribution (Materials100
and methods). MMI is first proposed to evaluate the co-expression between gene pairs based on Gaussian101
mixtures. We further implement MDI to eliminate transitive interactions according to maximum entropy102
principle (Materials and methods and Supplementary note), which shed light on the identification of103
regulatory interactions and master regulators. The key innovation of MMF is considering both “outer” and104
“inner” local features. The “outer” local feature refers to the local probability of expression profiles from105
the same mode; the “inner” local feature is the correlation of gene expressions in the same mode. Under the106
framework, we define a measure called MMI to capture the gene co-expression, and another called MDI to107
capture gene regulatory interactions. The entire framework of MMF is showed in Figure fig:Figure1.108

2.2 Gene expression data integration109

We collect gene expression profiles from GEO and choose the most comprehensive array platform110
HG U133 Plus 2.0 (TableS1); All of the samples are processed together to examine the performance of111
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MMF in the global network. Poor quality chips are removed through the affyQCReport package from112
Bioconductor. Likewise, GCRMA is utilized to extract the log scale expression profiles for each probe113
followed by quantile normalization. The intensity of probe smaller than two is regarded as missing value114
and imputed by impute package from Bioconductor. Some genes are annotated by multiple probes, their115
expression profiles are computed by averaging those probe expressions.116

2.3 Determine the number of modes for each gene117

We assume that the integrated expression data is an m × n matrix, D = (di,j)m×n, where each row i118
(denoted Di,•) represents a sample, and each column j (denoted D•,j) represents the expression profiles of119
one gene across all the samples.120
We now describe how MMF models the underlying distribution that gives rise to this expression data.121
First, we group the expression profiles of each gene into clusters, where each cluster is assumed to form a122
Gaussian distribution. The expression profiles of any gene pair are partitioned according to the Cartesian123
product of the clusters from the respective genes. Each partition follows bivariate Gaussian distribution.124
Denote the clusters of gene j as Cj,1, Cj,2, ..., Cj,cj , where cj is the number of clusters for gene j. The125
clusters for each gene is determined by maximizing the total log-likelihood of the Gaussian distributions126
formed. The log-likelihood of expression profiles di1,j , ..., di2,j (i1 < i2) to construct a Gaussian distribution127
is computed as128

lnL(i1, i2) = −i2 − i1 + 1

2
ln 2π − i2 − i1 + 1

2
ln σ̂2 − 1

2σ̂2

i2∑
i=i1

(di,j − µ̂i1,i2)2, (1)

where µ̂i1,i2 = 1
i2−i1+1

∑i2
i=i1

di,j and σ̂2 = 1
i2−i1+1

∑i2
i=i1

(di,j − µ̂i1,i2)2. Our aim is to partition the data,129
d1,j , ..., dm,j , into distributions such that the sum of log-likelihoods from all the distributions is maximized.130
This can be solved using dynamic programming as follows.131
Without loss of generality, we assume the expression profiles of gene j are sorted; that is, d1,j ≤ d2,j ≤132
... ≤ dm,j (it is clear that such a sorting can be performed very efficiently).133
Let T (i, k) denote the maximum likelihood by clustering the data d1,j ≤ d2,j ≤ ... ≤ di,j into k clusters.134
Then, the following recurrence relations can be formulated,135

136

T (i, k) =


max1≤t<i{T (t, k − 1) + lnL(t+ 1, i)}, k ≥ 2, i ≥ 2
lnL(1, i), k = 1, i > 1
−∞, otherwise

(2)

Hence, the maximum T (i, k) and its corresponding clusters can be calculated through dynamic137
programming for a given k.138

2.4 Models for expression profiles of a single gene139

We assume a random variable Xj for the expression of gene j. Following our framework, Xj is140
decomposed into cj Gaussian random variables, denoted Xj,1, ..., Xj,cj . Denote the density function for141
cluster Cj,k as gXj,k

(x), 1 ≤ k ≤ cj . Then, the expression profiles for gene j is distributed according to142
the density function143

fXj
(x) =

cj∑
k=1

πj,kgXj,k
(x), (3)
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where144

πj,k =
1

m

m∑
a=1

B(da,j ∈ Cj,k) (4)

is the proportion of samples in cluster Cj,k; here, B denotes Boolean function.145
It is possible to introduce a notation of entropy for each gene whose expression profiles follow Gaussian146
mixture models:147

MEntropy(Xj)

=−
cj∑
k=1

∫
πj,kgXj,k

(xj)logπj,kgXj,k
(xj)dxj

=−
cj∑
k=1

[πj,klogπj,k

∫
gXj,k

(xj)dxj +

∫
πj,kgXj,k

(xj)loggXj,k
(xj)dxj ]

=−
cj∑
k=1

πj,klogπj,k +

cj∑
k=1

πj,k

∫
gXj,k

(xi, xj)loggXj,k
(xj)dxj

=−
cj∑
k=1

πj,klogπj,k +

cj∑
k=1

πj,k
1

2
log(2πeσ2k)

(5)

in which, σk denotes the standard deviation for the kth Gaussian distribution. MEntropy is used to148
normalize MMI and MDI to [0, 1] in Section Sec:backgroundnoise.149

2.5 Multimodal mutual information150

Computing MMI consists of four major steps: first, the expression profiles for each gene are clustered by151
assuming that each cluster is Gaussianly distributed; second, “outer” MI is computed by aggregating the152
Kullback-Leibler divergence from the discretized gene expression profiles; third, “inner” MI is calculated153
for each cluster formed by any two genes; fourth, the MMI of two genes is calculated by aggregating the154
“outer” and “inner” MIs across all the associated clusters.155

2.6 Models for expression profiles of gene pairs156

We capture the relations between expression profiles of two genes by bivariate Gaussian mixture models.157
Given the expression profiles of gene i and j (1 ≤ i, j ≤ n), we partition the data into ci × cj bins; that158
is, we take the Cartesian product of the clusters for gene pair i and j. We model each bin as a bivariate159
Gaussian distribution, and denote the density function of each distribution as gXi,k1

,Xj,k2
(xi, xj), where160

1 ≤ k1 ≤ ci and 1 ≤ k2 ≤ cj . The expressions of genes i and j is a mixture models with joint density161
function162

fXi,Xj
(xi, xj) =

ci∑
k1=1

cj∑
k2=1

π(i,k1),(j,k2)gXi,k1
,Xj,k2

(xi, xj),

π(i,k1),(j,k2) =
1

m

m∑
a=1

B(da,i ∈ Ci,k1)B(da,j ∈ Cj,k2),

(6)

where π(i,k1),(j,k2) is the proportion of samples shared by cluster Ci,k1 and Cj,k2 . We assume that the163
marginal distributions of gXi,k1

,Xj,k2
(xi, xj) are gXi,k1

(xi) and gXj,k2
(xj). Hence, the only parameter left164
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to be estimated is the covariance matrix (correlation matrix). Denote the covariance between variable Xi,k1165
and Xj,k2 as Cov(Xi,k1 , Xj,k2). Notice that we cannot utilize the covariance of shared expression profiles166
between Ci,k1 and Cj,k2 , we need to guarantee the marginal distributions of each bin are invariant.167

2.7 Covariance matrix estimation168

We calculate the covariance matrix SI to capture the covariance in each bin, whose entry SIi,j(k1, k2)169
denotes the covariance between two variables Xi,k1 and Xj,k2 . We first construct g′Xi,k1

,Xj,k2
(xi, xj) that170

according to the expression profiles shared between Ci,k1 and Cj,k2 . Assuming that gXi,k1
,Xj,k2

(xi, xj) ∼171

N (µ, SIi,j(k1, k2)) and g′Xi,k1
,Xj,k2

(xi, xj) ∼ N (µ′, SIi,j(k1, k2)
′), we can calculate SIi,j(k1, k2) by172

minimizing these Kullback-Leibler divergence between the two distributions by Eq. eqn:opt:173

arg min
SI
i,j(k1,k2)

{DKL(gXi,k1
,Xj,k2

(xi, xj)||g′Xi,k1
,Xj,k2

(xi, xj))}

= arg min
SI
i,j(k1,k2)

1

2
(tr(SIi,j(k1, k2)

′−1SIi,j(k1, k2))

+ (µ′ − µ)TSIi,j(k1, k2)
′−1(µ′ − µ)− k − log(

|SIi,j(k1, k2)|
|SIi,j(k1, k2)′|

)))

= arg min
SI
i,j(k1,k2)

{tr(SIi,j(k1, k2)′−1SIi,j(k1, k2))− log |SIi,j(k1, k2)|}

(7)

2.8 Aggregating the “outer” and “inner” mutual information174

After calculating the mixture distributions and their parameters, we need to aggregate MI from each bin175
to detect the interactions between two genes. By assuming that Xi,k follows a Gaussian distribution, the176
mutual information between Xi and Xj is estimated as177

MMI(Xi, Xj)

=

ci∑
k1=1

cj∑
k2=1

π(i,k1),(j,k2)log
π(i,k1),(j,k2)

πi,k1πj,k2

+

ci∑
k1=1

cj∑
k2=1

π(i,k1),(j,k2)
1

2
log

SIi,i(k1, k1)S
I
j,j(k2, k2)∣∣∣∣SIi,i(k1, k1) SIi,j(k1, k2)

SIi,j(k1, k2) SIj,j(k2, k2)

∣∣∣∣
=MMIO(Xi, Xj) +MMII(Xi, Xj)

(8)

in which | • | denotes matrix determinant. From Eq. eqn:MMI, we observe that MMI is calculated by178
aggregating two types of mutual information: MMIO(Xi, Xj), which we refer to as “outer” mutual179
information, and MMII(Xi, Xj), which we refer to “inner” mutual information. The “outer” mutual180
information is calculated by discretizing the continuous expression profiles into small bins, and is basically181
the same as the MI calculated for relevance networks (Butte and Kohane, 2000). The “inner” mutual182
information is the weighted aggregation of mutual information for each bin.183
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2.9 Multimodal Direct Information184

To remove transitive interactions between any gene pairs, we introduce a measure—Multimodal Direct185
Information— which is enhanced from MMI based on maximum entropy principle. The “outer” part of186
MDI, MDIO, is modified from the direct-coupling analysis (DCA) (Morcos, Pagnani, Lunt, Bertolino,187
Marks, Sander et al., 2011), that identifies the co-evolution between protein residuals. The inner part of188
MDI, MDII , is similar to MMII , but with the covariance matrix SI exchanged with a precision matrix,189
while ensuring the marginal distributions are invariant.190

2.10 “Outer” MDI191

DCA has been successfully applied to identify co-evolved protein residuals by removing false transitive192
connections. MDIO is based on a similar technique as DCA, but modified for gene expression data. First,193
MDIO introduces pseudosamples λ in each bin to avoid insufficient samples. Let pseudosamples be194
uniformly distributed across all the bins. Then, πj,k and π(i,k1),(j,k2) are rewritten as:195

πj,k =
1

m+ λ
(
λ

cj
+

m∑
a=1

B(da,j ∈ Cj,k))

π(i,k1),(j,k2) =
1

m+ λ
(
λ

cicj
+

m∑
a=1

B(da,i ∈ Ci,k1)B(da,j ∈ Cj,k2))

(9)

the covariance between any pair of genes (i, j) for the bin (k1, k2) in MDIO is given by196

SOi,j(k1, k2) = π(i,k1),(j,k2) − πi,k1πj,k2 (10)

2.11 “Inner” MDI197

Rather than normalizing each term as in MMII by the number of samples grouped in the particular bin,198
MDII introduces an “inner” psuedocount to provide the clusters for each gene the same sample size. For199
the kth bin of gene j, we denote the average expression of the samples in Cj,k is Cj,k. For each sample200
which is not a member of the cluster k (Xk

j ), its value is replaced with Cj,k in MDII . The covariance for201
the bin k1, k2 of gene i, j is202

SIi,j(k1, k2)
′ = Cov(Xk1

i , X
k2
j ) (11)

The same as MMI, SIi,j(k1, k2)
′ is further transformed to SIi,j(k1, k2) according to Eq.eqn:opt.203

Precision matrix204

In order to calculate the precision matrix more efficiently and accurately, we introduce a regularization205
parameter η. The precision matrix Θ is calculated as206

ΘO = (SOSO
′
+ ηOId)−1SO

ΘI = (SISI
′
+ ηIId)−1SI

(12)
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2.12 Aggregate “outer” and “inner” Direct information207

Finally, MDI is calculated by aggregating the MDIO(i, j) and MDII(i, j) across all the bins.208

MDIO(Xi, Xj) = Σ1≤ki≤ci,1≤kj≤cj |Θ
O
i,j(k1, k2)|

MDII(Xi, Xj) = Σ1≤ki≤ci,1≤kj≤cj |Θ
I
i,j(k1, k2)|

MDI(Xi, Xj) = MDIO(Xi, Xj) +MDII(Xi, Xj)

(13)

2.13 Background noise elimination209

MMI and MDI can be further adjusted to eliminate the background influence, or noise210
(Eq.eqn:backgroundnoise). After that, we rescale MMI and MDI to [0, 1] by dividing them with their211
upperbound max{MEntropy(Xi),MEntropy(Xj)} ((Eq.eqn:maximum)). In this paper, we perform this212
step by default, and simply write MMIadj and MDIadj as MMI and MDI .213

MMIOadj(Xi, Xj) = MMIO(i, j)− MMIO(·, j)MMIO(i, ·)
MMIO(·, ·)

MMIIadj(Xi, Xj) = MMII(i, j)− MMII(·, j)MMII(i, ·)
MMII(·, ·)

MDIOadj(Xi, Xj) = MDIO(i, j)− MDIO(·, j)MDIO(i, ·)
MDIO(·, ·)

MDIIadj(Xi, Xj) = MDII(i, j)− MDII(·, j)MDII(i, ·)
MDII(·, ·)

.

(14)

and214

MMIadj(Xi, Xj) =
MMIOadj(i, j) +MMIIadj(i, j)

max(MEntropy(Xi),MEntropy(Xj))

MDIadj(Xi, Xj) =
MDIOadj(i, j) +MDIIadj(i, j)

max(MEntropy(Xi),MEntropy(Xj))
.

(15)

3 RESULTS

3.1 Simulation for evaluating MMI and MDI215

We follow closely the procedures in SIMON and TIBSHIRANI (2012) for simulation. We sample the216
gene pair expression profiles from bivariate Gaussian mixture distributions (with two modes) with the217
covariance changing from 0.1 to 0.9. The empirical distribution is constructed by the same procedure,218
implying the same distribution but with randomly assigned covariances.219
We evaluate eight measures besides MMI: 1. Pearson correlation; 2. Spearman correlation; 3. Kendall’s rank220
correlation; 4. Mutual information based on kernel density estimation (MI(KDE)); 5. Mutual information221
based on B-spline (MI(bspline), with 10 partitions for each gene); 6. Maximal information coefficient222
(MIC); 7. Maximum Asymmetry Score (MAS); 8. Maximum Edge Value (MEV). These measures are223
evaluated by their power, that is, the proportion of simulations exceed the top 5% correlations from the224
empirical distributions. To evaluate the noise tolerance of these correlation measures, we introduce uniform225
distributed noises weighted by ω

κ to the simulated expression profiles, where “ω” presents the amount of226
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noise and “κ” denotes the noise level. We assign “ω” to a constant value 3 and set “κ” to change from 0227
to 3 in the simulations. We also evaluate MMI with different cluster numbers to assess its sensitivity to228
clustering error.229
We test MDI against five famous approaches for inferring regulatory interactions: ARACNE, CLR, GENIE3,230
MaxEnt and TIGRESS. In order to explicitly reflect the nature of direct interaction, we construct a tree231
structure, in which each node has only one parent (except the root) and merely directly interacts with232
its parent. In other words, the expression profiles of offsprings are totally determined by their parents.233
The expression profile for each node is sampled from a Gaussian mixture models with two modes. The234
joint distribution of a parent and one of its offsprings is a bivariate Gaussian distribution with specified235
covariance. The area under ROC (AUC) is applied to evaluate the methods’ performances. The involved236
noise signals are the same as those applied for the simulations for MMI.237

3.2 Simulation results for MMI238

We perform 1000 simulations to construct empirical distributions. MMI obtains higher powers than the239
other measures in all the simulations (Figure fig:Figure2), regardless of the magnitude of covariance or noise240
signals exist. MMI explicitly groups the samples for each gene into two modes followed by aggregating241
four bins together, where the correlation for each bin is calculated independently. This partitioning strategy242
makes the expression profiles for each bin follow a Gaussian distribution, which makes MMI easier to243
capture their correlations.244
It is critical to lessen the influence of noise that may introduce the false positive results. By considering245
the “local feature”, MMI has better noise tolerance than other measures for uniform distributed noise. The246
noise is not always uniformly distributed across different studies or platforms. When heavy noise affects247
only a particular proportion of expression profiles, MMI tolerates the noises as they are usually grouped248
into isolate bins as the second bin illustrated in Figure fig:Figure1.249
The second best method is MI(bspline), a non-parametric method which approximates the probabilistic250
density function by discretizing the continuous expressions into bins. While MI(bspline) seems to capture251
the information of MMIO, but neglects the correlation in each bin. The other MI estimation, MI(KDE),252
utilizes Gaussian kernel to approximate the entire distribution to a Gaussian mixture models. The measure253
is demonstrably robust, but has an issue with efficiency–making it difficult to be applied to large expression254
compendium. Two rank based statistics, Spearman’s rank correlation coefficient and Kendall’s rank255
correlation, perform acceptable for high variance, but are found lacking when the covariance is small.256
Considering MMI’s sensitivity to errors in terms of the cluster number for each gene, we assign different257
cluster number, from 2 to 5, on a Gaussian mixtures of two modes. We denote these MMI instances258
as MMI(2), MMI(3), MMI(4) and MMI(5). The results are as demonstrated in Figure fig:Figure3. As259
expected, MMI(2) performs the best in all cases. The performance deteriorates as the cluster number260
deviates further from the true value. This indicates that the correctness in the number of cluster is crucial261
to MMI’s performance. However, we note even the performance of MI(5) is comparable to the other262
measures’.263

3.3 Simulation results for MDI264

We simulate five tree structures, respectively of 10, 20, 50, 100 and 200 nodes. For each tree structure,265
we define a spectrum of covariances from weak to strong (0.1, 0.2, 0.4, 0.6 and 0.8), as well as a uniformly266
distributed noise. When noise is neglected, MDI consistently performs the best (Table 1 (a), 2 (a), 3 (a), 4267
(a), 5 (a)). This advantage is very significant in the case of small covariance (0.1) with large number of268
nodes (200), where the AUC of MDI is 15.7% higher than the second best method, that is, CLR. MDI269

Frontiers 9

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2019. ; https://doi.org/10.1101/680116doi: bioRxiv preprint 

https://doi.org/10.1101/680116
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zhang et al. A multimodal framework for detecting gene-gene interactions

performs the best in 69 out of 75 simulations (92%). The 6 cases where MDI does not achieve the best270
result are the cases of high noise level, in which ARACNE or CLR show better performance (Table 1271
(c), 2 (c), 5 (b), 5 (c)). However, the AUC values of MDI remain comparable in these cases. We note272
that the three MI-based methods, MDI, ARACNE and CLR, to perform better than MaxEnt, GENIE3273
and TIGRESS in general, which suggests that MI-based methods may be more appropriate for capturing274
regulatory relationship.275

3.4 Transcriptome components analysis for large expression compendium276

Recently, Fehrmann et al. Fehrmann et al. (2015) propose a new perspective that the transcriptome277
components, as an underlying regulatory factor, can influence a batch of target gene expressions. The278
transcriptome components are calculated by principal component analysis on a correlation matrix, each of279
them capture a proportion of variance in the correlation space. The correlation matrix used in their study is280
computed with Pearson correlation. In this experiment, we compute a correlation matrix with MMI, and281
examine if the matrix could result in similar, or better results.282
We evaluate the transcriptome components with Cronbach’s α value; transcriptome components with283
the values larger than 0.7 are generally considered as high quality ones and can be used to predict gene284
functions in the future. We further evaluate the biological function enrichment of principal components by285
grouping genes’ coefficients according to MSigDB Subramanian et al. (2005). The gene set enrichment286
Z-score is computed by comparing the coefficients between the genes belonging and not belonging to287
the particular function by two-sample t-test. These TCs are regarded as enriched in a function term if the288
p-values are less than 0.05, after 10,000 simulations.289
The results are as shown in Figure fig:Figure4. Using the matrix obtained from MMI, we find 657290
transcriptome components with high quality, in which 650 transcriptome components are enriched in291
at least one biological function in MSigDB. On the other hand, for the matrix obtained from Pearson292
correlation, the corresponding values are only 379 and 369. Thus, the use of MMI achieves nearly twice293
functional TCs than Pearson correlation. These functional transcriptome components can be further used to294
predict potential gene functions.295

3.5 Apply to the exome sequencing for familial Mendelian disorders296

Exome sequencing has been widely applied in identifying disease causal genes in the families affected297
by rare Mendelian disorders. However, it is a formidable task to pinpoint the causal one from very large298
amount of candidate genes. Erlich et al. Erlich et al. (2011) propose a novel method to remove meaningless299
genes by disease network analysis, working under the assumption that the disease causal gene should share300
biological functions with the other established genes of the disease. After bioinformatics analysis, there301
remains 15 candidate genes to be determined. Instead of utilizing interactions from databases such as Gene302
Ontology, KEGG pathway, we propose to evaluate gene-gene interactions by their co-expressions. We303
remove five genes that are missing in the Affymetrix HG U133A and calculate the average co-expression304
for each candidate gene with the ten established genes (Supplementary note) associated with HSP by305
MMI. Among the 10 candidate genes, the causal gene KIF1A is the only one significantly co-expresses306
with established genes (FDR < 0.05) after 10,000 simulations (Figure fig:Figure5).307

3.6 Apply to de novo mutations to identify the ‘hot gene’308

De novo mutations have been proven to be associated with many neurodevelopment disorders Iossifov309
et al. (2014); Fromer et al. (2014), especially for schizophrenia and ASDs. These genes with de novo310
mutations do not act individually, they are enriched in the same protein-protein interactions, gene ontology311
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term or regulatory network De Rubeis et al. (2014). We apply MDI to identify the ‘hot gene’, which312
organize the other genes in the network. We construct the directly interaction network by involving 33313
candidate genes (Supplementary note) identified in the latest family based study of ASDs De Rubeis et al.314
(2014) (with TADA He et al. (2013) FDR < 0.1). MDI identifies ANK2 as the ‘hot gene’, with the most315
connections with the other genes (Figure fig:Figure6).316
ANK2 has been detected to contain recurrent de novo mutations recently Willsey et al. (2013), and is317
one of the five ‘high-confidence’ ASDs candidate genes (the other four are CHD8, DYRK1A, GRIN2B,318
SCN2A). The expression of ANK2 peaks slightly during mid-fetal development, which is the crucial time319
for ASDs risk. ANK2’s expression closely matches that of many other ASDs candidate genes, including320
SCN2A Willsey et al. (2013). In 1991, a study conducted by Kordeli and Bennett Kordeli and Bennett (1991)321
finds that knockout mice’s ANK2 may lead to their lack of brain structures called the corpus callosum—a322
symptom which is likely related to ASDs; about one-third of the patients with corpus callosum are also323
affected by ASDs. These evidences strongly suggests to us that MDI may have identified the key gene in324
ASDs; ANK2 may play a key role in ASDs pathogenesis.325

3.7 MicroRNA targets prediction326

We have noticed that, in HOCTAR, the microRNA targets is predicted by jointly considering the sequence327
feature and expression correlation between targets and microRNA host gene. But it may produce false328
targets due to their functional similarity with the real targets. This may result in their co-expression with329
each other. In HOCTAR, the Pearson correlation can barely distinguish transitive co-expression and direct330
regulation. In this test, we do a comparison between MDI and Pearson correlation used in HOCTAR as331
well as other three sequence-based prediction software-TargetScan Lewis et al. (2005), miRnada John et al.332
(2004) and PicTar Krek et al. (2005). To remove the false positives, we extract the putative targets that are333
confirmed by at least two of the three sequence-based software mentioned. The intragenic microRNAs334
and their host genes are derived from miRIAD Malone et al. (2013). The validated microRNA-target pairs335
used as benchmark are collected by literature search (TableS2). In Figure fig:Figure7, we illustrate the336
rank of validated microRNA-target pairs for each microRNA against the percentile. For MDI, there are337
90.70% (78/86) of the validated pairs locate in the top 50 percentile, which outperform Pearson correlation338
(63.95%,55/86). The three sequence-based prediction algorithms perform well, TargetScan 69.33% (52/75),339
miRanda 78.87% (56/71) and PicTar 74.19% (23/31). This suggests that acceptable prediction can already340
be achieved using only the overlap of sequence-based prediction software. Incorporating expression341
correlation can increase the accuracy of microRNA target prediction, but it is important to remove the342
transitive correlations. (In Figure fig:Figure8 we extract the reliable targets with greater MDI than the343
validated targets for each microRNA.)344

4 DISCUSSION

Bioinformatics data analysis task always encounters sample size issue, especially for biomedical data,345
which suffer from pathogenic difference and sample heterogeneity. While the cost for high-throughput346
technology has decreased dramatically in recent years, the collection of extremely large samples is still347
luxury that few studies can afford. Integrating the huge amount of biological data readily available from348
public databases remains the best option. Several studies has proved the superiority of data integration,349
much attention has been paid on how to efficiently store and search useful knowledge from large expression350
compendium. However, the integration of these database is plagued by pathogenic difference and sample351
heterogeneity.352
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The genes do not act alone, they tend to be grouped together and with particular topological structure,353
we call it as pathway. The pathway relies on the interactions between genes, including causal and non-354
causal interactions. The causal interactions refer to regulatory interactions, the regulators or their products355
physically bind to those target genes’ sequences to make their status changed. The non-causal interactions356
are a kind of indirect interactions, where the genes interact with each other through transitive ones.357
Intuitively, these genes may share similar functions. Several databases have collected many experimental358
validated interactions. But such data are usually incomplete and biased, for example only a small proportion359
of transcription factors targets are well studied. We require an approach that can explore the interactions360
from unstructured data based on their inherent activities.361
Such large amount of gene expression data shed light on evaluating the gene-gene interactions, which362
can be detected by computing expression dependencies. On the other hand, it is an uneasy task because363
traditional methods are no longer appropriate for large expression collection. Previous findings suggest that364
gene expressions from multiple datasets follow a Gaussian mixture models. Inspired by this observation,365
we propose MMF, a framework that depicts the gene expression data by Gaussian mixtures. Each mode366
captures one type of “local features”, which denotes noise or particular cellular status, hence allowing the367
heterogeneous data sets to be integrated naturally. Two measures, MMI and MDI, are defined over the368
framework to capture gene-gene co-expression and regulatory interactions, respectively. They outperform369
other measures in the simulation tests, and several real data benchmarks proved their practicality to detect370
important interactions or genes.371
MIC is a comparable method that can detect novel associations in large datasets Reshef et al. (2011). It also372
considers the “local feature” to improve the accuracy and resist the noisy influence. Two major drawbacks373
prohibit MIC to be widely applied in large expression data. First, as an improvement of B-spline, MIC374
considers the best grid partition to calculate mutual information for gene pairs. But from our simulations,375
usually MIC cannot find the best choice for the data from Gaussian mixture models. In addition, MIC376
ignores the expression correlation within each grid, which makes the power decreased; second, MIC377
attempts the partition for every pair of genes, which introduce a huge computational burden. MMI explicitly378
solves these two problems and achieves better performance.379
In the future, we plan to apply MMF to other types of continuous data and extend it to other underlying380
distributions such as Poisson distribution or Negative binomial distribution. We believe MMF can find381
wide application in discovering new interactions from integrated gene expression data, as well as help in382
furthering the analysis of big biomedical data.383

5 CONCLUSION

The fast accumulation of high-throughput gene expression data provides us an unprecedented opportunity384
to understand the gene-gene interactions and prioritize the disease candidate genes. However, most of the385
previous approaches can not accurately depict gene expression profiles from large expression compendium386
due to considerable noise and heterogeneity between samples. We propose a new statistical measure387
Multimodal framework to model gene expressions with mixtures of Gaussian distributions, which is further388
extended to Multimodal Mutual information and Multimodal Direct information for calculating gene-gene389
co-expression and gene regulation, respectively. The practical use of MMF is further demonstrated in three390
biological applications: 1. Prioritizing KIF1A as the candidate causal gene of HSP from familial exome391
sequencing data; 2. Detecting ANK2 as the ‘hot genes’ for ASDs, derived from exome sequencing family392
based study; 3. Predicting the microRNA target genes based on both sequence and expression information.393
We believe MMF can be served as a general framework for discovering relationships within very massive394
biomedical datasets.395
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Table 1. Simulation result for 10 nodes tree by comparing MDI with other methods in terms of AUC.
(a) Simulation without any noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.64 0.79 0.57 0.58 0.53 0.81
0.2 0.92 0.97 0.68 0.73 0.60 1
0.4 1 1 0.89 0.76 0.71 1
0.6 1 1 0.92 0.47 0.56 1
0.8 1 1 0.84 0.68 0.55 1

(b) Simulation with 3/5 random noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.64 0.64 0.59 0.61 0.53 0.75
0.2 0.88 0.88 0.54 0.70 0.58 1
0.4 0.96 1 0.72 0.77 0.7289 1
0.6 0.89 1 0.83 0.49 0.5643 1
0.8 1 1 0.66 0.6543 0.5643 1

(c) Simulation with 6/5 random noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.63 0.40 0.46 0.61 0.56 0.46
0.2 0.60 0.71 0.50 0.67 0.54 0.87
0.4 0.85 1 0.80 0.58 0.65 1
0.6 0.79 0.99 0.71 0.53 0.57 0.99
0.8 0.94 0.97 0.73 0.65 0.55 0.98

Table 2. Simulation result for 20 nodes tree by comparing MDI with other methods in terms of AUC.
(a) Simulation without any noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.69 0.74 0.4541 0.47 0.49 0.87
0.2 0.89 0.98 0.52 0.42 0.44 1
0.4 1 1 0.87 0.61 0.65 1
0.6 1 1 0.90 0.57 0.54 1
0.8 1 1 0.93 0.64 0.61 1

(b) Simulation with 3/5 random noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.52 0.53 0.35 0.47 0.50 0.73
0.2 0.87 0.93 0.56 0.43 0.45 1
0.4 1 1 0.77 0.61 0.62 1
0.6 1 1 0.83 0.55 0.54 1
0.8 0.98 1 0.85 0.60 0.59 1

(c) Simulation with 6/5 random noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.53 0.61 0.47 0.50 0.49 0.69
0.2 0.59 0.67 0.5324 0.50 0.48 0.86
0.4 0.78 0.87 0.6340 0.61 0.66 0.99
0.6 0.97 0.99 0.65 0.49 0.47 0.99
0.8 0.88 0.99 0.75 0.64 0.57 0.98
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Table 3. Simulation result for 50 nodes tree by comparing MDI with other methods in terms of AUC.
(a) Simulation without any noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.53 0.79 0.54 0.49 0.53 0.94
0.2 0.93 1 0.62 0.52 0.53 1
0.4 1 1 0.85 0.61 0.56 1
0.6 1 1 0.95 0.61 0.57 1
0.8 1 1 0.95 0.56 0.57 1

(b) Simulation with 3/5 random noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.50 0.63 0.50 0.48 0.50 0.83
0.2 0.80 0.94 0.60 0.5279 0.51 1
0.4 0.99 1 0.78 0.63 0.58 1
0.6 1 1 0.88 0.62 0.60 1
0.8 1 0.99 0.87 0.55 0.54 1

(c) Simulation with 6/5 random noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.48 0.52 0.51 0.46 0.50 0.64
0.2 0.55 0.64 0.49 0.47 0.50 0.86
0.4 0.82 0.90 0.64 0.57 0.55 1
0.6 0.96 0.99 0.75 0.60 0.57 1
0.8 0.97 0.99 0.84 0.60 0.59 1

Table 4. Simulation result for 100 nodes tree by comparing MDI with other methods in terms of AUC.
(a) Simulation without any noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.66 0.74 0.54 0.53 0.54 0.91
0.2 0.90 1 0.64 0.60 0.54 1
0.4 1 1 0.82 0.54 0.54 1
0.6 1 1 0.96 0.60 0.58 1
0.8 1 1 0.97 0.56 0.55 1

(b) Simulation with 3/5 random noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.56 0.66 0.56 0.52 0.52 0.80
0.2 0.86 0.92 0.60 0.58 0.52 0.98
0.4 1 1 0.74 0.54 0.53 1
0.6 1 1 0.92 0.60 0.57 1
0.8 1 1 0.93 0.54 0.56 1

(c) Simulation with 6/5 random noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.62 0.56 0.55 0.52 0.52 0.63
0.2 0.63 0.65 0.56 0.57 0.53 0.82
0.4 0.76 0.93 0.63 0.52 0.51 0.99
0.6 0.97 1 0.79 0.58 0.56 1
0.8 0.96 1 0.81 0.56 0.57 0.99
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Table 5. Simulation result for 200 nodes tree by comparing MDI with other methods in terms of AUC.
(a) Simulation without any noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.6432 0.7172 0.5277 0.49 0.50 0.83
0.2 0.8780 0.9732 0.6040 0.51 0.49 1
0.4 1 1 0.84 0.59 0.57 1
0.6 1 1 0.97 0.61 0.62 1
0.8 1 1 0.98 0.59 0.63 1

(b) Simulation with 3/5 random noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.56 0.63 0.53 0.4901 0.51 0.75
0.2 0.71 0.89 0.56 0.52 0.51 0.97
0.4 0.99 1 0.75 0.60 0.56 1
0.6 1 0.91 0.98 0.61 0.60 1
0.8 1 1 0.94 0.59 0.63 0.96

(c) Simulation with 6/5 random noise

ARACNE CLR GENIE3 MaxEnt TIGRESS MDI
0.1 0.50 0.51 0.49 0.48 0.49 0.49
0.2 0.54 0.52 0.51 0.53 0.49 0.59
0.4 0.58 0.66 0.61 0.54 0.55 0.74
0.6 0.68 0.78 0.66 0.58 0.60 0.86
0.8 0.83 0.90 0.72 0.58 0.61 0.90
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Figure 1. The procedure and purpose for MMI and MDI under Multimodal framework. Two genes Xi
and Xj come from Gaussian Mixture models with two and three modes, respectively. The samples are
divided into six bins as the Cartesian product of the clusters for Xi and Xj . The expression profiles are
highly co-expressed in the 1st, 3rd and 5th bins. The 4th and 6th bins are marginally correlated. There are
only a few samples in the 2nd bin with weak correlation. The SI and SO are calculated with deeper color
demonstrating stronger covariance. MMI calculates the co-expression between gene pairs (purple circles),
regardless whether there are transitive nodes (red circles) between them. MDI captures the regulatory
interactions (arrows present regulation directions), the transitive interactions are eliminated (dashed lines).
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Figure 2. Power and noise tolerance comparing MMI with other methods in simulation data. Simulation
Data are sampled from bivariate Gaussian mixture models with different covariances. We add different
amount of noise in the simulation data. (A) Covariance=0.1, (B) Covariance=0.2, (C) Covariance=0.4, (D)
Covariance=0.5, (E) Covariance=0.8, (F) Covariance=0.9.

Figure 3. Power and noise tolerance for MMI by assigning different number of modes. The numbers in
brackets denote the number of modes. (A) Covariance=0.1, (B) Covariance=0.2, (C) Covariance=0.4, (D)
Covariance=0.6, (E) Covariance=0.8, (F) Covariance=0.9.
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Figure 4. Covariance explained by eigenvalues and their Cronbach’s α values. (Left: MMI, Right: Pearson
correlation). We choose top 1000 principle components to calculated the variance they explained and their
stability.

Figure 5. The P-values calculated by their average co-expression with known genes of pure HSP after
10,000 times simulation. The co-expression values are calculated by MMI. KIF1A, the real disease causal
gene, is the only significant one comparing with other 10 candidate genes. The green dashed line represents
the P-value=0.05.
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Figure 6. The ‘hot gene’ calculated by the weighted connective degree for each candidate genes. The size
and color of nodes represent their weighted connective degree and expression level, respectively.
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Figure 7. The performance of MDI to recognize previous validated microRNA targets. MDI is compared
with Pearson correlation and three sequence based target prediction approaches (miRanda, PicTar,
TargetScan), respectively. The ranks of validated targets (pink line) are demonstrated as the percentile
among the all predicted results for each microRNA.
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Figure 8. The microRNA regulatory network predicted by MDI. For each microRNA, we plot all the
predicted targets with greater MDI than the validated ones. The pink diamonds and blue circles present
microRNAs and their targets, respectively.
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