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Abstract 

The Royal Irises, Iris section Oncocyclus, are a Middle-Eastern group of irises, characterized by 

extremely large flowers with a huge range of flower colors and a unique pollination system. The 

Royal Irises are considered to be in the course of speciation and serve as a model for evolutionary 

processes of speciation and pollination ecology. However, no transcriptomic and genomic data for 

molecular characterization are available for these plants.  

Transcriptome sequencing is a valuable resource for determining the genetic basis of ecological-

meaningful traits, especially in non-model organisms. Here we describe the de novo transcriptome 

sequencing and assembly of Iris atropurpurea, an endangered species, endemic to Israel’s coastal 

plain. We employed RNA sequencing to analyze the transcriptomes of roots, leaves, and three 

stages of developing flower buds. To identify genes involved in developmental processes we 

generated phylogenetic gene trees for two major gene families, the MADS-box and MYB 

transcription factors, which play an important role in plant development. In addition, we identified 

1,503 short sequence repeats that can be developed for molecular markers for population genetics 

in irises.  

In the era of large genetic datasets, the Iris transcriptome sequencing provides a valuable resource 

for studying adaptation-associated traits in this non-model plant. This first reported transcriptome 

for the Royal Irises, and the data generated from this study, will facilitate gene discovery, 

functional genomic studies, and development of molecular markers in irises, to complete the 

intensive eco-evolutionary studies of this group.  

Keywords: De novo assembly, Transcriptome, Iris, MADS-box, MYB, Microsatellites  
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Introduction 

Iris is the largest genus in the Iridaceae (Asparagales) with over 300 species (Makarevitch, 

Golovnina, Scherbik, & Blinov, 2003; Matthews, 1997). The genus is highly heterogeneous, with 

species exhibiting a wide range of plant sizes, and flower shapes and colors (Matthews, 1997). 

The Royal Irises (Iris section Oncocyclus) are a Middle-Eastern group of about 32 species that are 

endemics to dry, Mediterranean-type climates and found in the eastern Mediterranean Basin, 

Caucasica, and central Anatolia (Carol A. Wilson, Padiernos, & Sapir, 2016). Species of section 

Oncocyclus in Israel occur in small isolated populations and many are considered rare, threatened, 

or endangered (Shmida & Pollak, 2007). These species are characterized by a single large flower 

on a stem and perennial, short, knobby rhizomes, occasionally with stolons (Sapir & Shmida, 

2002; Carol A. Wilson et al., 2016). Plants are diploid with chromosome number of 2n=20 

(Avishai & Zohary, 1977). This number is relatively low for Iris species, whose chromosome 

number ranges from 2n = 16 in I. attica to 2n = 108 in I. versicolor (data obtained from 

Chromosome Count DataBase (Rice et al., 2015)), and genome size ranges from 2,000 to 30,000 

Mbp (Kentner, Arnold, & Wessler, 2003). 

The Royal Irises are thought to be undergoing recent speciation (Avishai & Zohary, 1980; Sapir & 

Shmida, 2002; Carol A. Wilson et al., 2016). Consequently, in recent years, they have emerged as 

a platform for the study of evolutionary processes of speciation, adaptation and pollination 

ecology (Arafeh et al., 2002; Dorman, Sapir, & Volis, 2009; Lavi & Sapir, 2015; Sapir & 

Mazzucco, 2012; Sapir, Shmida, & Ne'eman, 2005, 2006; Volis, Blecher, & Sapir, 2010; Carol A. 

Wilson et al., 2016; Yardeni, Tessler, Imbert, & Sapir, 2016). Evolutionary processes and adaptive 

phenotypes are governed by genetic differences. Thus, the study of plant ecology and evolution 

increasingly depends on molecular approaches, from identifying the genes underlying adaptation, 

reproductive isolation, and speciation, to population genetics. No genetic and molecular tools are 

yet available for the Royal Irises. Whole-genome sequencing of the Iris is a challenging task, due 

to its large genome size (Kentner et al., 2003), and therefore transcriptome sequencing may 

provide a feasible, still a strong genomic resource.  

Transcriptome sequencing is a powerful tool for high-throughput gene discovery, and for 

uncovering the molecular basis of biological functions, in non-model organisms (Jain, 2011). 

Few Iris transcriptomes have been already sequenced (Ballerini, Mockaitis, & Arnold, 2013; S. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2020. ; https://doi.org/10.1101/680363doi: bioRxiv preprint 

https://doi.org/10.1101/680363
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

Tian et al., 2015) (C.-S. Gu et al., 2017; C. Gu et al., 2018), all are of irises which are in distant 

clades from Oncocyclus iris (Carol A. Wilson, 2011). Currently, only one NGS-based dataset is 

available for the Royal Irises, which is a plastid genome sequence of Iris gatesii (Carol A Wilson, 

2014). Previous attempts to transfer molecular tools developed for Louisiana irises to Oncocyclus 

irises, such as the development of microsatellite loci or identifying candidate genes, have failed 

(Y. Sapir, un-published). Furthermore, Royal Iris species have low plastid variance (Y. Sapir and 

Y. Bar-Lev, un-published) and lack nuclear sequences. All these, call for a wider set of molecular 

tools. Our main objective was to generate a reference RNA sequence for the Royal Irises that can 

serve as a molecular toolbox.  

Here we report the de novo assembly of a transcriptome for Iris atropurpurea Baker, one of the 

Royal Irises species. I. atropurpurea is a highly endangered plant endemic to Israeli coastal plain 

(Sapir, 2016; Sapir, Shmida, & Fragman, 2003). In recent years this species has been studied 

extensively for its morphology (Sapir & Shmida, 2002), pollination (Sapir et al., 2005, 2006; 

Watts, Sapir, Segal, & Dafni, 2013), speciation, and population divergence (Sapir & Mazzucco, 

2012; Yardeni et al., 2016). In order to answer any further questions in this system, molecular 

tools are needed.  Transcriptome sequencing of I. atropurpurea will facilitate further studies of 

genetic rescue, population genetics, as well as finding genes that underlie different biological 

functions.   

One of the most important biological functions to understand plant evolution is plant development. 

To identify genes involved in developmental processes, we analyzed the phylogeny of sequences 

annotated to MADS-box and R2R3-MYB transcription factors families, which are involved in the 

regulation of diverse developmental functions. Homologs for genes of these families have been 

identified in Iris fulva of the Louisiana irises (Ballerini et al., 2013). We therefore aimed to 

identify their homologs in the Royal Irises. 

Plant development greatly depends on the function of MADS-box transcription factors, a very 

ancient family of DNA binding proteins, which are present in nearly all major eukaryotic groups. 

MADS-box genes comprise a highly conserved sequence of ~ 180 bp, which encodes the DNA 

binding domain in the MADS-box protein (Glover, 2014; Heijmans, Morel, & Vandenbussche, 

2012). MADS-box genes are divided into type I and type II. In plants, type I MADS-box genes are 

subdivided into three groups: Mα, Mβ and Mγ (De Bodt, Raes, Florquin, et al., 2003; Par�enicová 
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et al., 2003). They are involved in female gametophyte, embryo sac, and seed development. The 

type II MADS-box genes in plants are known as the MIKC MADS-box group and are extensively 

studied. MIKC proteins convey three additional distinctive regions: an intervening region (I), a 

keratin-like domain (K), and a C-terminal domain (C) (Gramzow, Ritz, & Theißen, 2010; 

Gramzow & Theissen, 2010). Found within this group are the MIKCc and MIKC* subgroups 

(Henschel et al., 2002). MIKCc MADS-box genes (the c stands for classic), are mainly involved in 

plant and flower development (Coen & Meyerowitz, 1991; Schwarz-Sommer, Huijser, Nacken, 

Saedler, & Sommer, 1990), and are phylogenetically divided into 14 major groups in Arabidopsis 

and rice(Arora et al., 2007; Becker & Theißen, 2003). The MIKC* group, in some reports, 

matches the Arabidopsis Mδ subgroup, defined as part of the type I group (De Bodt, Raes, Van de 

Peer, & Theißen, 2003). 

Another superfamily of transcription factors, that are important for plant development, are the 

MYB proteins, which contain the conserved MYB DNA-binding domain (Stracke, Werber, & 

Weisshaar, 2001). The MYB family members are categorized based on the number of MYB 

domain repeats: 1R- (MYB related genes, containing a single or partial MYB domain), R2R3-, 

3R- and 4R-MYB proteins (Dubos et al., 2010; Stracke et al., 2001; Yanhui et al., 2006). MYB 

proteins are widely distributed in plants, in which the R2R3-MYB subfamily is the most abundant 

(containing an R2 and R3 MYB domain) (Ambawat, Sharma, Yadav, & Yadav, 2013; Dubos et 

al., 2010; Stracke et al., 2001). The large abundance of the R2R3-MYB family in plants indicates 

their importance in the control of various plant specific processes, such as responses to biotic and 

abiotic stresses, development, defense reactions, flavonoid and anthocyanin biosynthesis, 

regulation of meristem formation, and floral and seed development (reviewed in(Ambawat et al., 

2013) and (Du et al., 2009)). 

Here we employed phylogenetic approach to identify homologs of MADS-box and R2R3-MYB 

transcription factors in the I. atropurpurea transcripts. We sequenced transcriptomes from various 

tissues and flower bud developmental stages. From these, we established an annotated database for 

I. atropurpurea, potentially applicable to other species of the Royal Irises, and explored the 

homologs of MADS-box and R2R3-MYB. This is the first reported transcriptomes for the 

Oncocyclus section. The sequenced Iris transcriptome offers a new foundation for genetic studies 

and enables exploring new research questions.  
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Methods 

Plant material  

We used two accessions (genotypes) of I. atropurpurea, DR14 and DR8. Plants were brough

from a large I. atropurpurea population in Dora (32°17'N 34°50'E) in Israel (figure 1a) and grow

at the Tel Aviv University Botanical Garden. Aiming at finding genes related to flowe

development and floral traits, we used three different bud developmental stages. We defined bu

developmental stage 1 as the earliest detectable bud, where the bud has no color. Stage 2 is a bu

around 1.5 cm in size with the anthers still prominently visible above the petals, and at the onset o

color production. Stage 3 is a full-colored bud, over 2 cm in size and with the petals covering th

anthers (figure 1b). Earlier stages of flower development in the Royal Irises are nearly impossibl

to detect in naturally-growing plants. In these stages the meristem is attached to the rhizom

underground and requires much destruction of the plant to be found (Perl, 1984). We collecte

tissues from the root, young leaf and four buds in three developmental stages (one bud from stage

1 and 3, and two buds of stage 2) from DR14. We also collected buds in stages 1 and 2 from DR

to enlarge the representation of rare or low expressed genes. Unfortunately, due to the low numbe

of flowers (buds) per plant in Royal Irises, we were unable to obtain replicates for all bud stages. 

 

Figure 1. Plant materials used for RNA sequencing. a. Iris atropurpurea flower in the field sit
where collected (Dora). b. Representation of three stages of bud development (1 to 3) in 
atropurpurea, as defined in the text.   

RNA isolation and sequencing 

We extracted total RNA from all the tissue samples using the RNeasy Mini Kit (Qiagen, Hilden

Germany), according to the manufacturer's instructions. We measured the quantity and quality o
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each RNA sample using Qubit fluorometer (Invitrogen) and Bioanalyzer TapeStation 2200 

(Agilent Technologies Inc., USA), respectively. Only RNA samples that presented sufficient 

260/280 and 260/230 purity and RIN (RNA integrity number) above 8.0 were used for 

sequencing. RNA was processed by the Technion Genome Center as following: RNA libraries 

were prepared using TruSeq RNA Library Prep Kit v2 (Illumina), according to manufacturer’s 

instructions, and libraries were sequenced using HiSeq 2500 (Illumina) on one lane of 100 PE run, 

using HiSeq V4 reagents (Illumina). Sequences generated in this study were deposited in NCBI’s 

Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) under the GEO accession 

number GSE121786. 

De novo transcriptome assembly and annotation 

The quality of the raw sequence reads was estimated using FastQC. De novo assembly of the Iris 

transcriptome was done using Trinity (version trinityrnaseq_r20140717), with a minimum contig 

length of 200 base pairs (bp) (Grabherr et al., 2011). We estimated assembly quality using Quast 

(v. 3.2) (Gurevich, Saveliev, Vyahhi, & Tesler, 2013). Contigs (isoforms) that are likely to be 

derived from alternative splice forms or closely-related paralogs were clustered together by Trinity 

and referred to as “transcripts”. The initial reads from each sample were mapped back to the Iris 

transcriptome that was assembled, using trinity pipeline and Bowtie (v. 1.0.0). The number of 

mapped reads per transcript per sample was counted using RSEM (v. 1.2.25) (B. Li & Dewey, 

2011).  

To find the putative genes and function, transcripts were aligned against the UniProt non-

redundant protein database (26-09-2016) and against PFAM protein family database (El-Gebali et 

al., 2018), using BLASTX alignment with an e-value cutoff to < 0.0001 (Altschul, Gish, Miller, 

Myers, & Lipman, 1990). To classify functions of the transcripts, they were also aligned against 

Clusters of Orthologous Groups (COGs) protein database (ftp://ftp.ncbi.nih.gov/pub/COG/COG/). 

For transcription factors prediction, the we submitted the predicted protein sequences to search 

against PlantTFDB (http://planttfdb.cbi.pku.edu.cn/index.php) (F. Tian, Yang, Meng, Jin, & Gao, 

2019).  
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Phylogeny analysis 

We retrieved all Iris transcripts that were annotated as either MADS or MYB proteins from the 

transcriptome and translated the longest open reading frame (ORF) using Virtual Ribosome 

(Wernersson, 2006). We took the transcriptome transcripts that also contain the MADS or R2R3-

MYB domain by PFAM. We downloaded I. fulva protein sequences for MIKCc MADS-box and 

R2R3-MYB transcription factors from NCBI (Ballerini et al., 2013). Arabidopsis and rice (oryza 

sativa) MADS and R2R3-MYB sequences were taken from their genome databases 

[The Arabidopsis Information Resource (TAIR): www.arabidopsis.org and the Rice Genome 

Annotation Project (RGAP): rice.plantbiology.msu.edu, respectively]. The gene identifiers were 

denoted to AtMYB genes in Arabidopsis and the locus id in rice to avoid confusion when multiple 

names are used for same gene. The sequences of each gene family were trimmed using trimAl 

v1.3 (Capella-Gutiérrez, Silla-Martínez, & Gabaldón, 2009) and aligned using ClustalW 

alignment (Thompson, Higgins, & Gibson, 1994), in MEGA X Molecular Evolutionary Genetics 

Analysis Software (Kumar, Stecher, Li, Knyaz, & Tamura, 2018). We tested for the best 

substitution model and found that the best model for MADS is the JTT (Jones, Taylor, Thornton) 

model (Jones, Taylor, & Thornton, 1992) + Gamma-distributed rates (G), and for MYB, JTT + G 

+ amino acid frequency (F). For comparative phylogenetic analysis, we used maximum likelihood 

in MEGA X (Kumar et al., 2018) with 1000 bootstrap replications. Phylogenetic trees were 

visualized using FigTree v1.4.3 (Rambaut, 2007).  

SSRs mining 

In order to utilize the transcriptome sequenced also for population genetic markers, we searched 

for short sequence repeats (SSRs; microsatellites) in the assembled contigs. We used a Perl script 

(find_ssrs.pl; (Barker et al., 2010)) to identify microsatellites in the unigenes. In this study, SSRs 

were considered to contain motifs with two to six nucleotides in size and a minimum of four 

contiguous repeat units. 
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Results and Discussion 

Sequencing of Iris transcriptome 

To generate the Iris transcriptome, eight cDNA libraries were sequenced: root, leaf and three bud 

stages from one genotype of I. atropurpurea (DR14), and buds in stages 1 and 2 from a different 

genotype of the same population (DR8). We generated a total of 195,412,179 sequence reads. The 

average GC content of Iris contigs was 47% (table 1 and 2). Reads were of very high quality 

throughout their length, without evidence of adapter content (Phred score >30). 

Using Trinity, we assembled 258,466 contigs (isoforms) longer than 200 bp, which clustered into 

184,341 transcripts, with a total length of 168,049,166 bp. A larger N50 length and average length 

are considered indicative of better assembly. The longest contig was 27,971 bp and half of the 

contigs (N50) with more than 500 bp were above 1,312 bp long (table 1).  

To quantify the abundance of contigs assembled, the reads of the separated Iris organs were 

mapped to the assembled contigs, with 125,074,925 mapped reads overall, and an average of 45% 

reads per tissue that mapped to a unique sequence in the assembled transcriptome. 

The length distribution of the assembled contigs revealed that 126,194 (68.46%) contigs ranged 

from 201 to 500 bp in length; 37,335 (20.25%) contigs ranged from 501 to 1,000 bp in length; 

16,282 (8.83%) contigs ranged from 1,001 to 2,000 bp in length; and 4,530 (2.46%) contigs were 

more than 2,000 bp in length (figure 2). Descriptive statistics of the sequencing data and 

transcriptome assembly are summarized in tables 1 and 2.  

 

Table 1. Statistical summary of Iris transcriptome sequencing and assembly. 

Total reads 195,412,179 

Contigs (Isoforms) 258,466 

Transcripts 184,341  

Transcriptome size 168,049,166    

N50 contig size (≥500 bp) 1,312 

Largest contig 27,971     
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Table 2. Descriptive statistics of Iris transcriptome samples. GC – Percentage of G or C
nucleotides in the sequence. 

 

 

 

Figure 2. Distribution of contig lengths (in base pairs) across the assembled contigs from the Iris
transcriptome. 

Annotation of Iris transcriptome 

Using BLASTX search against the UniProt database, we identified 28,708 transcripts with at leas

one significant hit. Transcripts mostly annotated to Arabidopsis thaliana ( %), Oryza sativ

Japonica Group ( %) and Nicotiana tabacum ( %) (figure 3a). Surprisingly, a significan

Plant ID 

 

Tissue # Paired-end 

sequences 

#Reads %GC Total mapped 

reads 

% Unique 

mapped read

DR14 Root 47,760,556 23,880,278 48 16,671,086 55 

 Leaf 52,936,482 26,468,241 47 18,366,659 54 

 Bud stage 1 54,806,560 27,403,280 47 16,610,741 40 

 Bud stage 2 (a) 51,092,390 25,546,195 47 16,095,948 43 

 Bud stage 2 (b) 48,073,466 24,036,733 47 15,363,667 43 

 Bud stage 3 59,105,996 29,552,998 47 18,570,119 43 

DR8 Bud stage 1 36,949,342 18,474,671 45 10,887,290 40 

 Bud stage 2 40,099,566 20,049,783 46 12,509,415 45 
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proportion of the annotated transcripts were annotated as Arabidopsis thaliana, while only 10 %

were annotated as Oryza sativa, which is a monocot and therefore more closely related to irises

This is probably due to the higher representation of genomic resources for Arabidopsis thaliana. 

considerable number of transcripts annotated to “non-plant” organisms, most of them to huma

(Homo sapiens, 2. %) (figure 3a). This may be attributed to housekeeping genes, which ar

preserved across all species in eukaryotes, and may also be due to the highly annotated huma

genome.  

Search against the COG database resulted in the classification of 22,564 transcripts (table S1

Among the 25 COG categories, the cluster for unknown function was the largest group (7,151

31.69%). The following categories of the top ten are: signal transduction mechanisms (1938

8.59%), posttranslational modification, protein turnover and chaperones (1754, 7.77%

transcription (1670, 7.4%), replication, recombination and repair (1461, 6.47%), carbohydrat

transport and metabolism (1222, 5.42%), secondary metabolites biosynthesis, transport an

catabolism (839, 3.72%), translation, ribosomal structure and biogenesis (825, 3.66%), amino aci

transport and metabolism (767, 3.4%), and RNA processing and modification (764, 3.39%) (figur

3b). The COG term ‘signal transduction’ was also enriched in previous transcriptomes, such as 

Iris lactea (C. Gu et al., 2018), Camelina sativa L  (Mudalkar, Golla, Ghatty, & Reddy, 2014

and in Taxodium ‘Zhongshanshan 405’ (Yu, Xu, & Yin, 2016). 
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b 

 

Figure 3. a. Top 10-hit species distribution of annotated transcripts. Other species represented in 
the transcriptome had only 1% or less of the transcripts annotated to them. b. Clusters of 
orthologous group (COG) classification, showing 22,564 transcripts that were classified. 

In the PFAM analysis, we found 17,385 (9.43%) Iris transcripts that contain at least one PFAM 

protein domain, and that were classified into 3399 Pfam domains/families (table S1). The 10 most 

abundant protein families in I. atropurpurea are Pkinase, PPR_2, Pkinase_Tyr, LRR_8, RRM_1, 

RVT_1, PPR_1, p450, PPR3, and LRRNT_2 (figure 4a). Among these protein domains/families, 

“Protein kinase” and “Tyrosine-protein kinase”, were highly represented. These proteins are 

known to regulate the activation of most cellular processes (Lehti-Shiu & Shiu, 2012), indicating 

active signal transduction. This is in accordance with our COG results, also showing enrichment 

of signal transduction genes. Top ranked family is also PPR_2 - pentatricopeptide repeats. The 
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PPR family controls varied features of RNA metabolism and plays a profound role in organelle 

biogenesis and function, e.g. mitochondria and chloroplasts (Filipovska & Rackham, 2013; Lurin 

et al., 2004) (Barkan & Small, 2014). Thus, PPR’s have an essential effect on photosynthesis, 

respiration, plant development, and environmental responses (Barkan & Small, 2014).  

Transcription factors (TFs) are key regulators in biological processes. For prediction of 

transcription factors, we assigned the protein sequences of all the transcripts to PlantTFDB (F. 

Tian et al., 2019). We found 1021 transcripts that are predicted to be involved in transcription 

regulation and were classified into 54 transcription factor families (figure 4b, table S1). The basic 

helix–loop–helix (bHLH) transcription factors family was the most abundant in I. atropurpurea 

consisting of 99 gene family members. In plants, the bHLH proteins are associated with a variety 

of developmental processes, such as trichomes development (Morohashi et al., 2007; M. Zhao, 

Morohashi, Hatlestad, Grotewold, & Lloyd, 2008), phytochrome signaling(Duek & Fankhauser, 

2005), and cell proliferation and differentiation (Morohashi et al., 2007; Vera-Sirera et al., 2015). 

bHLH proteins have also been shown to interact with other transcription factors such as MYB (M. 

Zhao et al., 2008; Zimmermann, Heim, Weisshaar, & Uhrig, 2004). Furthermore, a protein 

complex of bHLH and MYB transcription factors, associated with a WD40 repeat protein, 

regulates various cell differentiation pathways and the anthocyanin biosynthesis pathway (Goff, 

Cone, & Chandler, 1992; Ramsay & Glover, 2005). The rest of the top 10 TFs are: NAC, MYB-

related, C2H2, MYB, bZIP, WRKY, GRAS, C3H and ERF. 

In total, we identified 33,033 transcripts in at least one database. We were unable to annotate or 

give a functional prediction to a large fraction of the transcripts. These transcripts could be Iris 

specific genes, genes that have diverged considerably, or genes that are not yet identified in plants.  
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Figure 4. a. The 10 most abundant PFAM protein families in the I. atropurpure
a transcriptome. b. The 10 most abundant transcription factors families in the 
atropurpurea transcriptome. 
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Phylogenetic analysis of MADS-box and R2R3-MYB gene families 

In the search for orthologous genes involved in flower development in irises, we phylogenetically 

analyzed two major transcription factor groups, the MADS-box and MYB protein families, to 

validate the subfamily identities of these genes from I. atropurpurea. We performed the 

phylogenetic analyses using MADS-box and R2R3-MYB protein sequences from Arabidopsis 

thaliana and rice (Oryza sativa), the top two annotated species in the transcriptome, and from Iris 

fulva.  

MADS-box genes 

MADS-box proteins, and their complex function, regulate floral organ characteristics and are 

essential for flower development (Heijmans et al., 2012; Honma & Goto, 2001; Theißen & 

Saedler, 2001). In the Iris atropurpurea transcriptome, 43 transcripts were annotated as belonging 

to the MADS-box family and/or contain the MADS domain. Phylogenetic analysis using 

Arabidopsis, rice, and I. fulva, shows orthologous of I. atropurpurea in almost all clades of 

MADS-box proteins (figure 5). The general organization for most clades was similar to previous 

comparative phylogenies (Arora et al., 2007; Ballerini et al., 2013). 

Of the I. atropurpurea MADS-box genes identified, 19 clustered with MIKCc, 2 with Mα, 0 with 

Mβ, 1 with Mγ, and 2 grouped with MIKC*/ Mδ-type genes. Among the genes clustered with type 

II MIKCc MADS, we identified all 14 documented clades (Arora et al., 2007; Ballerini et al., 

2013; Becker & Theißen, 2003)), comprising representative genes of Arabidopsis, rice, and I. 

fulva. I. atropurpurea had representative transcripts in 10 of the MIKCC clades, except for FLC-

like, AGL15-like, DEF-like and StMADS11-like. Similar to previous reports, FLC-like and 

AGL15-like clades consist only Arabidopsis genes, suggesting eudicot specific lineages (Arora et 

al., 2007; Ballerini et al., 2013; Becker & Theißen, 2003; T. Zhao et al., 2006). Three groups 

consist I. atropurpurea sequences but lack I. fulva representatives, AGL12-like, AGL17-like, and 

GMM13-like. AGL17-like and GMM13-like are not supported by the bootstrap analysis. AGL12-

like has three I. atropurpurea transcripts, and this clade was well supported. AGL12-like and 

AGL17-like genes are involved in root development (Tapia-López et al., 2008; H. Zhang & Forde, 

1998), and while the I. atropurpurea sequences were derived also from root tissue, the I. fulva 

transcriptome was based on floral and leaves tissues (Ballerini et al., 2013). Four I. atropurpurea 
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sequences were clustered alone in a well supported group (81%, designated “Unknown”). These 

sequences might be of genes unique to I. atropurpurea. 

Within most of the clades I. atropurpurea, I. fulva and rice grouped together and Arabidopsis 

sequences grouped together, suggesting a strong species and monocot/eudicot homology. In Arora 

et.al. Arabidopsis and rice also cluster together within the type I MADS clades (Arora et al., 

2007). Furthermore, a phylogeny of representative type I and II MADS-box genes from several 

distantly related plant species also showed similar monocot/eudicot separation within clades 

(Gramzow & Theissen, 2010). 
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Figure 5. Phylogenetic analysis of MADS-box proteins from the I. atropurpurea transcriptome, 
fulva, Arabidopsis and rice. I. atropurpurea transcripts names are in red and I. fulva in light blue
Colours are for visual separation only. Sequences that were separated from their known clade hav
the name of their original clade written on the branch. 
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R2R3-MYB genes 

We found 256 transcripts in the I. atropurpurea transcriptome that were annotated as belonging to 

the MYB family by either trinity or PFAM. Sixty-seven of them were found to have the R2R3-

MYB domain. The rest of the transcripts most likely belong to other MYB groups such as R1-

MYB, MYB-like proteins, etc, and some might also be incomplete sequences.  

To create the phylogenetic tree, we aligned the transcripts against R2R3-MYB sequences from 

Arabidopsis, rice, and I. Fulva (figure 6). R3-MYB (R1R2R3) is another major MYB type, that 

was either the origin of R2R3-MYBs in plants (Rosinski & Atchley, 1998) or evolved from R2R3-

MYB (Jiang, Gu, Chopra, Gu, & Peterson, 2004), and was also included in the phylogenetic 

analysis. To analyze the tree, we mainly followed the classification made by Ballerini et al., which 

consist Iris sequences (Ballerini et al., 2013). The organization of the clades in the dendrogram 

corresponds with that in Ballerini et al., with 26 of the groups supported by bootstrap (>50%). 

Several groups showed differences from the phylogeny in Ballerini et al., mostly in the form of a 

sequence clustered to a different clade, and in most cases not supported by bootstrap. Some major 

differences were observed for example in group 10, which was separated into 2 clades in our 

analysis, one with the Arabidopsis sequences and one with rice. Similar separation was found in 

Du et.al., in which the rice sequences are in a separated clade with Zea Maize, designated as S42 

(Du et al., 2015). In our tree, group 16 was also separated into 2 clades, in accordance with other 

published MYB trees (Du et al., 2015; Yanhui et al., 2006). 

Fourteen groups of R2R3-MYB genes in the phylogenetic tree lack I. atropurpurea 

representatives, whereas in nine of them I. fulva representatives were also lacking, suggesting 

gene lineages that might not exist in Irises (11, 12, 15, 24, 30, 31, 33, 34, and Os1). Consistent 

with previous phylogenetic studies, groups 12 and 15 also lack rice representatives, suggesting 

eudicot specific lineages (Ballerini et al., 2013) (Yanhui et al., 2006). A comparative analysis of 

R2R3-MYBs from 50 major eukaryotic lineages showed that group 12 consists only of 

Arabidopsis sequences and that group 15 consists only of eudicot species (Du et al., 2015). Genes 

in these groups have been shown to control trichome initiation in shoots, root hair patterning, and 

Cruciferae-specific glucosinolate biosynthesis (Ambawat et al., 2013; Dubos et al., 2010; Y. Li et 

al., 2013). Two of the groups lacking representatives from Iris, 33 and Os1, consist only rice 

genes. Genes from group 33 were previously designated in a monocot-specific clade together with 
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corn (Zea maize) sequences (Du et al., 2015). Several groups had only I. atropurpurea 

representatives, lacking I. fulva, and vice versa. In addition, in contrast with our expectations, only 

in a few of groups I. atropurpurea and I. fulva clustered together within the clade. These 

observations further support the phylogenetic distance between the two species.  

We found two new (bootstrap supported) subgroups consisting only rice and I. atropurpurea 

sequences. Previous phylogenetic studies in other plant species also identified new R2R3-MYB 

subgroups with no A. thaliana representatives. These subgroups might represent genes with 

specialized functions which were either lost in Arabidopsis or obtained after the divergence from 

the last common ancestor (Ballerini et al., 2013; Wilkins, Nahal, Foong, Provart, & Campbell, 

2009). Several I. atropurpurea sequences did not cluster together with R2R3-MYBs from any 

other species, including I. fulva. This suggests that these MYB genes might have been acquired in 

I. atropurpurea after divergence within the Iris group.  

Other MYB and MADS gene groups, which were not identified in our transcriptome, could be 

genes that were not conserved in irises. Alternatively, these genes might be expressed in earlier 

stages of flowering initiation, before the appearance of buds (Perl, 1984), and thus undetected in 

the transcriptome. In Iris lortetii, it was shown that flower organs genes are mostly expressed in an 

early stage, about two months before stem elongation, when the flower meristem is hidden in the 

rhizome (Perl, 1984). Possibly this is the stage when more flower development genes can be 

found; however, this stage was not sampled in this study and will be explored in further research. 
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Figure 6. Phylogenetic analysis of R2R3-MYB proteins from the Iris transcriptome (highlighted 
in red), I. fulva (If), Arabidopsis, encoded by AtMYB, and rice (Oryza sativa, Os). I. atropurpurea 
transcripts names are in red. Colours are for visual separation only.  
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Development and characterization of cDNA-derived SSR markers 

For the development of new molecular markers, we used all of the 258,466 contigs, generated in 

this study, to mine potential microsatellites. We defined microsatellites as di- to hexanucleotide 

SSR with a minimum of four repetitions for all motifs. We identified 1,503 potential SSRs in 

1,241 contigs, of which 263 sequences contained more than one SSR. Only 164 of the contigs 

containing SSRs had annotation and were annotated to 115 genes. We assessed the frequency, 

type, and distribution of the potential SSRs (figure 7). The SSRs included 924 (61.5%) di-

nucleotide motifs, 396 (26.4%) tri-nucleotide motifs, 173 (11.5%) tetra-nucleotide motifs, 10 

(0.7%) penta-nucleotide motifs, and zero (0%) hexa-nucleotide motifs. The di-, tri-, tetra- and 

penta-nucleotide repeats had 8, 30, 37 and 9 types of motifs, respectively. The most abundant di-

nucleotide type was GA/TC (254, 16.9%), followed by AG/CT (197, 13.1%) and AT/AT (159, 

10.6%). The most abundant tri-nucleotide repeat type was TTC/GAA (37, 2.5%). 

Di-nucleotide SSRs are usually more common in genomic sequences, whereas tri-nucleotide SSRs 

are more common in RNA sequences (Luo et al., 2005; Thiel, Michalek, Varshney, & Graner, 

2003; Varshney, Graner, & Sorrells, 2005; Varshney, Thiel, Stein, Langridge, & Graner, 2002). 

Also, tri-nucleotide repeats are more abundant than dinucleotide repeats in plants (Varshney et al., 

2005). However, in our SSRs, the di-nucleotide repeat type was the most abundant motif detected 

of all repeat lengths. A higher number of di-nucleotide repeats in RNA sequences has been 

reported in Louisiana irises (Tang et al., 2009), and in other plants such as rubber trees (D. Li, 

Deng, Qin, Liu, & Men, 2012) and Cajanus cajan (pigeonpea) (Raju et al., 2010). The most 

abundant di- and tri-nucleotide motifs in I. atropurpurea were GA/TC and TTC/GAA, 

respectively. These results were also coincident with SSRs developed for Louisiana irises, in 

which the most abundant di- and tri-nucleotide motifs are AG/CT and AAG/CTT (Tang et al., 

2009).  

Until now, SSRs in irises were reported only for Louisiana and Japanese irises (Sun et al., 2012; 

Tang et al., 2009); however, these SSRs were not transferable to Oncocyclus irises (Y. Sapir, un-

published). The relatively large set of SSRs obtained from the I. atropurpurea transcriptome may 

enable development of markers for population genetic studies in the Royal Irises. 
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Figure 7.  Characterization of SSRs loci found in Iris transcriptome. a. Distribution of SSR mot
repeat numbers and relative frequency. b. Frequency distribution of SSRs based on motif sequenc
types. 
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Conclusions 

In this study, we reported a comprehensive characterization of the transcriptome of Iris 

atropurpurea, an important emerging model for understanding evolutionary processes (Arafeh et 

al., 2002; Dorman et al., 2009; Lavi & Sapir, 2015; Sapir & Mazzucco, 2012; Sapir et al., 2005, 

2006; Volis et al., 2010; Carol A. Wilson et al., 2016; Yardeni et al., 2016). Although 

transcriptome based on a single replication cannot enable gene expression analysis and extensive 

biological conclusions, the Iris transcriptome established in this study provides a useful database 

that will increase the molecular resources for the Royal Irises. These resources are currently 

available only for other iris species (Sun et al., 2012; Tang et al., 2009), which despite belonging 

to the same genus, they are quite distant from the Royal Irises, hence not easily transferable. In the 

past decade, many studies have been using transcriptome de novo sequencing and assembly to 

generate a fundamental source of data for biological research (Ballerini et al., 2013; Kamenetsky 

et al., 2015; Meyer et al., 2009; S. Tian et al., 2015; J. Zhang et al., 2012).  We generated a 

substantial number of transcript sequences that can be used for the discovery of novel genes, and 

specifically genes involved in flower development in irises.  

While we did not perform a complete analysis of MADS and R2R3 MYB evolution, we mainly 

aimed to identify flower development genes and classify their function, and thus provide a 

framework for the Iris genes sequenced in this study. The numerous SSR markers identified will 

enable the construction of genetic maps and answering important questions in population genetics 

and conservation. Although genetic studies are still in their early stages in the Royal Irises, we 

believe that our transcriptome will significantly support and encourage future evolutionary-genetic 

research in this ecologically important group.  
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