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Abstract22

The brain is possibly the most complex system known to mankind, and its complexity has23

been called upon to explain the emergence of consciousness. However, complexity can take24

many forms: here, we investigate measures of algorithmic and process complexity in both the25

temporal and topological dimension, testing them on functional MRI data obtained from indi-26

viduals undergoing various levels of sedation with the anaesthetic agent propofol, in two separate27

datasets. We demonstrate that the various measures are differently able to discriminate between28

levels of sedation, with temporal measures showing higher sensitivity. Further, we show that29

all measures are strongly related to a single underlying construct explaining most of the vari-30

ance, as assessed by Principal Component Analysis, which we interpret as a measure of overall31

complexity of our data. This overall complexity was also able to discriminate between levels of32

sedation, supporting the hypothesis that consciousness is related to complexity - independent33

of how the latter is measured.34

1 Introduction35

The science of complex systems has gained increasing prominence in the 21st century. It combines36

the reductionist ideal of science, with the notion of emergence, whereby high-level phenomena can37

result from the interactions of simple constituent parts, confirming Aristotle’s saying that the whole38

is more than the sum of its parts [1]. However, complexity science is also a discipline still in its39

infancy. In particular, due to its appealing and apparently intuitive nature, the notion of complex-40

ity has remained relatively ill-defined. The interdisciplinary nature of this science has resulted in41

different fields applying the term complexity to multiple quantities, variously measured. Complex-42

ity is perhaps best understood as the negation of simplicity. A system exhibits complex behaviour43

when it is not uniform, stereotyped, or predictable. However, there is a key assumption that this44

is not sufficient: complexity must emerge from the underlying orderly interactions of a system’s45

components, about which its behaviour must provide information in other words, its unpredictabil-46

ity must be more than mere randomness, but rather the result of interesting behaviours emerging.47

Thus, a complex system lies between complete order such as the perfectly predictable regularity of48

a crystal and complete disorder, as exhibited for instance by the random motion of molecules of49
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a gas. Complexity can be identified in more than one dimension of the same system, too. It may50

be due to the structure of the interactions between components, such as the connections in a social51

or biological network. Or it may only become apparent over time, as when it is applied to signals52

and temporal patterns. Furthermore, there are different ways in which something can be said to be53

complex, reflected in the different ways that have been developed to estimate complexity. On the54

one hand, methods from algorithmic information theory such as Shannon entropy and Lempel-Ziv55

compressibility [2, 3] emphasise unpredictability as the key property for complexity. One downside of56

such approach, however, is that they would treat a purely random sequence as maximally complex.57

Alternatively, methods from the physics of dynamical systems focus on the aspect of interactions58

in the process whether between the system’s elements (e.g. synchronisability; [4]), between its59

present and past states (e.g. Hurst exponent; [5]), or between different scales [6]. In this work,60

we aim to explore the relation between algorithmic and process measures of complexity, in both61

the topological and temporal dimensions. We choose to test these measures on a paradigmatically62

complex system: the human brain. Not only is the brain the source of humans’ widely diverse63

range of behaviours and accomplishments, which is itself suggestive of a highly complex underlying64

organisation; its structure is also that of a complex network of subnetworks, in turn made of multiple65

kinds of neurons obeying nontrivial plasticity rules for their interactions. For these reasons, it has66

been proposed that the brain’s complexity may explain another unique property it possesses: con-67

sciousness. Recent scientific theories of consciousness have emphasised, in one way or another, the68

brain’s complexity as a crucial requirement for consciousness [7, 8, 9, 10]. Anaesthetic drugs such as69

the GABA-ergic agonist propofol provide a way to controllably and reversibly modulate the brain’s70

state of consciousness. Its complexity, in various aspects, may then be assessed based on signals71

from noninvasive neuroimaging techniques. In particular, functional MRI (fMRI) has the advantage72

of providing high spatial resolution, thus allowing for estimation of the brain’s network properties in73

greater detail than afforded by other methods such as EEG. Here, we chose to evaluate measures of74

algorithmic and process complexity applied to the temporal and topological (network) dimensions,75

derived from fMRI blood-oxygen-level-dependent (BOLD) signals of volunteers undergoing sedation76

with propofol, in order to investigate the relationship between the different measures of complexity,77

as well as determining whether they can be related to different levels of consciousness. We also78
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replicated our results in an independent dataset of propofol anaesthesia, in order to demonstrate79

their robustness.80

2 Methods81

2.1 Data Acquisition & Preprocessing82

2.1.1 Dataset A83

Twenty-five healthy volunteer subjects were recruited for scanning. The acquisition procedures are84

described in detail by Stamatakis et al, [11]: MRI data were acquired on a Siemens Trio 3T scanner85

(WBIC, Cambridge). Each functional BOLD volume consisted of 32 interleaved, descending, oblique86

axial slices, 3 mm thick with interslice gap of 0.75 mm and in-plane resolution of 3 mm, field of view87

= 1926192 mm, repetition time = 2 s, acquisition time = 2 s, time echo = 30 ms, and flip angle 78.88

We also acquired T1-weighted structural images at 1 mm isotropic resolution in the sagittal plane,89

using an MPRAGE sequence with TR = 2250 ms, TI = 900 ms, TE = 2.99 ms and flip angle =90

9u, for localization purposes. Of the 25 healthy subjects, 14 were ultimately retained: the rest were91

excluded, either because of missing scans (n=2), or due of excessive motion in the scanner (n=9,92

5mm maximum motion threshold).93

94

Propofol Sedation95

Propofol was administered intravenously as a target controlled infusion (plasma concentration mode),96

using an Alaris PK infusion pump (Carefusion, Basingstoke, UK). Three target plasma levels were97

used - no drug (baseline), 0.6 mg/ml (mild sedation) and 1.2 mg/ml (moderate sedation). A period98

of 10 min was allowed for equilibration of plasma and effect-site propofol concentrations. Blood sam-99

ples were drawn towards the end of each titration period and before the plasma target was altered,100

to assess plasma propofol levels. In total, 6 blood samples were drawn during the study. The mean101

(SD) measured plasma propofol concentration was 304.8 (141.1) ng/ml during light sedation, 723.3102

(320.5) ng/ml during moderate sedation and 275.8 (75.42) ng/ml during recovery. Mean (SD) total103

mass of propofol administered was 210.15 (33.17) mg, equivalent to 3.0 (0.47) mg/kg. The level of104
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sedation was assessed verbally immediately before and after each of the scanning runs. The three105

conditions from this dataset are referred to as Awake, Mild and Moderate sedation respectively.106

2.1.2 Dataset B107

These data were generously provided by the Brain and Mind Institute, Department of Psychology,108

The University of Western Ontario. Sixteen healthy volunteer subjects were recruited for scanning.109

Scanning was performed using a 3 Tesla Siemens Tim Trio system with a 32-channel head coil, at110

the Robarts Research Institute in London, Ontario, Canada. Participants lay supine in the scanner.111

Function echo-planar images (EPI) were acquired (33 slices, voxel size: 3 x 3 x 3mm; inter-slice gap112

of 25%, TR=2000ms, TE=30ms, matrix size=64x64, FA=75 degrees). An anatomical volume was113

obtained using a T1-weighted 3D MPRAGE sequence (32 channel coil, voxel size: 1x 1 x 1mm, TA=114

5 min, TE=4.25ms, matrix size=240x256, FA=9 degrees).115

116

Propofol Sedation117

Intravenous propofol was administered with a Baxter AS 50 (Singapore). The infusion pump was118

manually adjusted using step-wise increases to achieve desired levels of sedation of propofol (Ram-119

say level 5). Concentrations of intra-venous propofol were estimated using the TIVA Trainer (the120

European Society for Intravenous Aneaesthesia, eurosiva.eu) pharmacokinetic simulation program.121

If Ramsay level was lower than 5, the concentration was slowly increased by increments of 0.3 µg/ml122

with repeated assessments of responsiveness between increments to obtain a Ramsay score of 5.123

Ramsay level 5 was determined as being unresponsive to verbal commands and rousable only by124

physical stimulus. In contrast to Propofol Dataset A, the two conditions from this dataset are re-125

ferred to by Awake and Deep sedation respectively, reflecting the substantial increase in sedation126

depth present in this dataset.127

2.1.3 Image Pre-Processing128

All of the collected images were preprocessed using the CONN functional connectivity toolbox129

[12]1, using the default pre-processing pipeline, which includes realignment and unwarping (motion130

1http://www.nitrc.org/projects/conn
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estimation and correction), slice-timing correction, outlier detection, structural coregistration and131

spatial normalisation using standard grey and white matter masks, normalization to the Montreal132

Neurological Institute space (MNI), and finally spatial smoothing with a 6mm full width at half-133

maximum (FWHM) Gaussian kernel.134

Temporal preprocessing included nuisance regression using anatomical CompCor to remove noise135

attributable to white matter and CSF components from the BOLD signal, as well as subject-specific136

realignment parameters (three rotations and three translations) and their first-order temporal deriva-137

tives [13]. Linear detrending was also applied, as well as band-pass filtering in the default range of138

[0.008, 0.09] Hz [14]. For a more detailed discussion of the details of the CONN default preprocessing139

pipeline, see Whitefield-Gabrieli and Nieto-Castanon, 2012.140

2.2 Complexity of BOLD Signals141

To explore the space of different formalizations of complexity, we used algorithms from algorithmic142

information theory (Lempel-Ziv compressibility, sample entropy, and principal component analysis),143

as well as from dynamical systems physics (Higuchi fractal dimension, Hurst exponent). Before144

analysis, the BOLD time-series were transformed by applying the Hilbert transform. The absolute145

value of the transformed signal was then taken, to remove negative frequencies and ensure that all146

series were positive. The Hilbert transform was also used to maintain consistency with earlier studies147

exploring the complexity of brain activity as it relates to consciousness [15, 16].148

2.2.1 Lempel-Ziv Complexity149

The Lempel-Ziv algorithm is a computationally tractable method for quantifying the complexity of150

a data-series by calculating the number of distinct patterns present in the data. For sufficiently large151

datasets, it is a useful approximation of Kolmogorov complexity, which is famously uncomputable152

for most strings [2]. The method used here is described in Shartner et al., (2015). Briefly: for every153

ROI in our parcellated brain, a time-series F (t) is binarized according to the following procedure:154

FB(ti) =


1, if F (ti) ≥ mean(F (t))

0, otherwise
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The resulting time-series are stacked into a binary matrix M(X,T ), where every row corresponds155

to the time-series FB(t) for every ROI x ∈ X and every column is a time-point t ∈ T . The matrix is156

then flattened orthogonally to T , resulting in a vector V of length X × T , on which the Lempel-Ziv157

analysis was performed.158

The Lempel-Ziv algorithm creates a dictionary D, which is the set of binary patterns that make159

up V and returns a value LZC ∝ |D|. For every time-series FB(t) ∈ X, a random time-series was160

created, by shuffling all the entries in F (t). These were stacked into a binary matrix Mrand, with the161

same dimensions as M , however containing only noise. This random matrix was flattened and its162

LZC value calculated. As the randomness of a string increases, LZC → 1, so this value was used to163

normalize the ”true” value of LCC , which was divided by LZCRand
to ensure all values were within164

a range (0, 1).165

2.2.2 Sample Entropy166

Sample Entropy (SampEn) quantifies how unpredictable a signal is [3] by estimating the probability167

that similar sequences of observations in a timeseries will remain similar over time. To compute168

SampEn, each time-series X(t) of length N is divided into subsections S of length m and the169

Chebychev distance between two sections Si, Sj is calculated. Two sections are ”similar” if their170

distance is less than some tolerance r. The procedure is repeated for sections of length m + 1. We171

then calculate the probability that, if two data sequences of length m have distance less than r, then172

the same two sequences of length m+ 1 also have distance less than r.173

SampEn = −log A
B

Where A is the number of chunks of length m+ 1 that are similar (have Chebyshev distance less174

than r), and B is the number of chunks of length m that are similar. Low values of SampEn would175

indicate that the signal is highly stereotyped - with a perfectly predictable series, such as [1,1,1, ...]176

having a SampEn of zero, and SampEn increasing as the series becomes more disordered.177

SampEn depends on the choice of parameters m and r. Here, we used m = 2 and r = 0.3 ×178

σ(X(t)), where σ() is the standard deviation function.179
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SampEn has been used to test the level of sedation induced by propofol and remifentanil in180

electrophysiological studies (Ferenets et al., 2007), and been shown to be associated with the degree181

of sedation much like Lempel-Ziv complexity has.182

2.2.3 Hurst Exponent183

The Hurst Exponent returns an estimate of how predictable a time-series is by quantifying its184

’memory,’ or how dependent the value at time t is on the value at time t−1 [5]. There are a number185

of algorithms for estimating the Hurst Exponent; here we report results calculated using a rescaled186

range approach. In it, a time-series X(t) of length N is segmented into non-overlapping sections of187

length n, Xi(t). For each segment, the cumulative departure from the signal mean is calculated:188

X ′i(t) =
n∑

t=0

xt − x̄

where x̄ is the mean of Xi(t). The rescaled range of deviations (R/S) is then defined as:189

R

S
=
max(X ′i(t))−min(X ′i(t))

σ(Xi(t))

where σ() is the standard deviation function. We then compute R/S for all Xi(t) and average190

them, generating (R(n)/S(n)), which is the average scaled range for all the subsections of X(t) with191

length n. We are left with a power relation, where:192

R(n)

S(n)
∝ n−H

Where H is the Hurst exponent, and can be extracted by regression.193

2.2.4 Higuchi Fractal Dimension194

To calculate the temporal fractal dimension, we used the Higuchi method for calculating the self-195

similarity of a one-dimensional time-series [6], an algorithm widely used in EEG and MEG analysis196

[17]. From each time-series X(t), we create a new time-series X(t)mk , defined as follows:197
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X(t)mk = xm, xm+k, xm+2k, ..., xm+bN−m
k ck

where m = 1, 2, ..., k.198

For each time-series X(t)mk in k1, k2, ...kmax, the length of that series, Lm(k), is given by:199

Lm(k) =
(
∑bN−m

k c
i=1 |xim+k − x(i−1)k|) N−1

bN−m
k ck

k

We then define the average length of the series 〈L(k)〉, on the interval [k, Lm(k)] as:200

〈L(k)〉 =
k∑

m=1

Li(k)

k
)

If our initial time-series X(t) has fractal character, then:201

〈L(k)〉 ∝ k−D

Where D is our desired fractal dimension. The Higuchi algorithm requires a pre-defined kmax202

value as an input, along with the target time-series. This value is usually determined by sampling203

the results returned by different values of kmax and selecting a value based on the range of kmax204

where the fractal dimension is stable. For both datasets, we sampled over a range of powers of205

two (2, ..., 128). Due to the comparably small size of BOLD time-series, the range of kmax values206

that our algorithm could process without returning an error was limited. We ultimately decided on207

kmax = 32 for Dataset A and kmax = 64 for the Dataset B.208

2.2.5 PCA of BOLD Signals209

Principal component analysis (PCA) is commonly used to compress data by finding the dimensions210

that encode the maximal variance in a high-dimensional dataset. Here, we use PCA in a matter211

similar to Lempel-Ziv complexity, to relate the complexity of sets of BOLD signals to their compress-212

ibility. The more algorithmically random the dataset, the more orthogonal dimensions are required213

to describe the dataset, which we took advantage of to attempt to quantify the complexity of our214

BOLD time-series data. We constructed a large array of un-binarized BOLD signals, M(X,T ) to215
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which we applied a standard feature scaler from Scikit-Learn [18] to ensure all values had a mean216

of zero and unit variance, and then a PCA function, recording recorded how many dimensions were217

required to cumulatively describe 95% of the variance in the original dataset. We used this value as218

our measure of data complexity.219

2.3 Complexity of Functional Connectivity Graphs220

Networks are a common example of complex system, and perhaps none more so than the human221

brain, which can be considered as a network at multiple scales. A network, or graph, is represented222

mathematically as an object comprised of nodes (in this case, cortical regions) and the connections223

between them, or edges (in this case, functional connectivity given by statistical association of224

the regions’ BOLD time-series). Investigating how the complexity of brain functional networks is225

affected by the anaesthetic drug propofol is therefore a clear way of testing our hypothesis that loss226

of consciousness should reduce the brain’s level of complexity.227

2.3.1 Formation of Functional Connectivity Networks228

To construct brain functional connectivity networks, the preprocessed BOLD time-series data were229

extracted from each brain in CONN and the cerebral cortex was segmented into distinct ROIs,230

using the 234-ROI parcellation of the Lausanne atlas [19]. Each time-series F (t) was transformed231

by taking the norm of the Hilbert transform, to maintain consistency with the time-series analysis.232

H(t) = |Hilbert(F (t))|

Every time-series H(t) was then correlated against every other time-series, using the Pearson233

Correlation, forming a matrix M such that:234

Mij = ρ(Hi(t), Hj(t))

The matrices were then filtered to remove self-loops, ensuring simple graphs, and all negative235

correlations were removed:236
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Mij =


0, if i = j

0, if Mij < 0

Mij , otherwise

Finally, the matrices were binarized with a k% threshold, such that:237

Mij =


1, if Mij ≥ Pk

0, otherwise

The results could then be treated as adjacency matrices defining functional connectivity graphs,238

where each row Mi and column Mj corresponds to an ROI in the initial cortical parcellation, and239

their connection being represented by the corresponding cell in the matrix. For each graph theoretical240

analysis, a range of percentage thresholds (k%) were tested to ensure that any observed effects were241

not an artefact of one particular threshold, and are consistent over different graph topologies.242

2.3.2 Algebraic Connectivity243

Algebraic connectivity (AC) is a measure of graph connectivity derived from spectral graph theory244

[4], which gives an upper bound on the classical connectivity of a graph. As such, it is often used as a245

measure of how well-integrated a graph is and how robust it is to damage, in the sense of the number246

of connections that must be removed before it is rendered disconnected. Unlike classical connectivity,247

which must be calculated by computationally intensive brute-force methods, AC is quite easy to248

find for even quite large graphs. AC is also a measure of graph synchronizability and emerges249

from analysis of the Kuramoto model of coupled oscillators [20]. For a simple example, imagine250

placing identical metronomes at every vertex of a graph and allowing the vibrations to propagate251

along the edges. The synchronizability describes the limit behaviour of how long it will take all the252

metronomes to synchronize. Here we use AC as a proxy measure of synchronisability to capture the253

possible temporal dynamics of the brain networks modelled by our functional connectivity graphs.254

The AC of a graph G is formally defined as the first non-zero eigenvalue of the Laplacian matrix255

LG associated with G. LG is derived by subtracting the adjacency matrix AG from the degree matrix256
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DG:257

LG = DG −AG

As every row and column of LG sum to zero, and it is symmetric about the diagonal, the258

imaginary part of every eigenvalue in the spectrum of LG is zero, and if G is a fully-connected259

graph, then:260

0 = λ1 ≤ λ2 ≤ λ3 ≤ ... ≤ λmax

To ensure that we were capturing the full topology of the graph, we calculated λ2 for each graph261

at multiple thresholds [10, 20, 30, ... 90], creating a curve Λ = [λ210 , λ220 , λ230 ...λ290 ]. We then262

integrated Λ using the trapezoid method to arrive at our final value AC =
∫

Λ dx.263

2.3.3 Graph Compressibility264

In contrast to AC, which we use to explore the limit behaviour of possible brain temporal dynamics,265

our measure of graph compressibility is purely algorithmic, and estimates the Kolmogorov complexity266

of a graph: that is, the size of a computer program necessary to fully recreate a given graph G. To267

do this, we re-employ the Lempel-Ziv algorithm originally used to calculate the LZC score of BOLD268

signals. Here we use it to calculate a related measure, LZG, which is the length of a dictionary269

required to describe the adjacency matrix AG of a given graph.270

To calculate LZG, we take a binary adjacency matrix and flatten it into a single vector V , and271

then run the Lempel-Ziv algorithm on that vector. As a binary vector of length l can be used to272

perfectly reconstruct an adjacency matrix defining a graph with
√
l vertices (so long as l is a square273

number, of course), we take V to be equivalent to a program defining G. As with AC, to ensure that274

we were capturing the full topology of G, we calculated the Lempel-Ziv complexity of the binary AG275

at the same nine thresholds [10...90], and then defined LZG as the integral of the resulting curve of276

complexity values.277
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2.4 Higher-Order Measures278

Once we had calculated individual measures of complexity, we tested how they related to each-other,279

and (for Dataset A) serum concentrations of propofol. We correlated each one against all others to280

construct a correlation matrix which describes, how different metrics cluster.281

We also did a principal component analysis on the set of all results. We hypothesized that,282

despite variability in the effectiveness of the individual measures, there should be a single, underlying283

component reflecting a shared factor of ”complexity”. We further hypothesised that this underlying284

factor should be predictive of both the level of consciousness, and (in Dataset A), of the individual285

serum concentration of propofol.286

2.5 Statistical Analysis287

All analysis was carried out using the Python 3.6 programming language in the Spyder IDE 2, using288

the packages provided by the Anaconda distribution 3. All packages were in the most up-to-date289

version. Packages used include SciKit-Learn [18], NumPy [21], SciPy [22], and NetworkX [23]. Unless290

otherwise specified, all the significance tests are non-parametric: given the small sample sizes and291

heterogeneous populations, normal distributions were not assumed. Wilcoxon Signed Rank test was292

used to compare drug conditions against their respective control conditions.293

3 Results294

3.1 Temporal Algorithmic Complexity295

3.1.1 Lempel-Ziv Compressibility296

The first measure of algorithmic complexity we used was normalized Lempel-Ziv compressibility297

[15, 16] of BOLD signals. We found significant differences between conditions in both Dataset298

A and Dataset B. In Dataset A, Kruskal-Wallis Analysis of Variance found significant differences299

between all three conditions (H(10.57), p=0.005), and post-hoc analysis with Wilcoxon Signed-Rank300

test found significant differences between the Awake and Mild conditions (W(21), p=0.05), Awake301

2https://github.com/spyder-ide/spyder
3https://www.anaconda.com/download
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and Moderate conditions (W(9), p=0.006), and Mild and Moderate conditions (W(4), p=0.002). In302

Dataset B, the Wilcoxon test found significant difference between the Awake and Deep conditions303

(H(19), p=0.011). In both datasets, the Awake condition had the highest complexity, and as the304

depth of sedation increased, the associated LZC decreased. In Dataset A, the transition from Awake305

to Moderate showed ∆ = −0.029 ± 0.027, and in Dataset B, the transition from Awake to Deep306

showed ∆ =-0.029 ± 0.039. We note that these two results are remarkably similar, although this is307

likely a coincidencee. For full results from Dataset A, see Table 1, and for Dataset B, Table 2. In308

the propofol sedation conditions of Dataset A (Mild and Moderate), we found significant negative309

correlations between LZC and serum concentrations of propofol (r=-0.55, p=0.002), see Figure 3A.310

These results are consistent with previous findings that Lempel-Ziv compressibility of sponta-311

neous brain activity is discriminative of level of consciousness in humans [15, 16] and animals [24].312

Of all the time-series measures described, the LZC algorithm described here is distinct in that313

it communicates information about the spatial complexity as well as the temporal complexity. This314

is because, unlike other measures like Sample Entropy or Higuchi Fractal Dimension which are315

calculated on 234 individual time-series and then averaged, LZC is calculated on an entire dataset,316

which has been flattened column-wise, as was done in [15, 16, 25], by ”stacking” each column on top317

of the next, resulting in a one-dimensional vector where the first 234 elements are the first column,318

the second 234 elements are the second column, etc. This means that the vector V (see Methods319

section) can be divided into 234 segments where every entry corresponds to the coarse activation of320

a distinct brain region at the same time. The result is that each entry in the dictionary D created321

by the Lempel-Ziv algorithm corresponds, not to a series of samples from a single ROI, but rather322

a distribution of cortical regions that are ”on” or ”off.”323

3.1.2 Sample Entropy324

We found significant decreases in the Sample Entropy of BOLD signals under anaesthesia in both325

Datasets A and B. In Dataset A, Kruskal-Wallis Analysis of Variance found a significant difference326

between all three conditions (H(12.94), p=0.002) and post-hoc analysis with the Wilcoxon Signed-327

Rank test found significant differences between the Awake and Moderate conditions (W(6), p=0.004),328

and Mild versus Moderate conditions (W(8), p=0.005), but not the Awake versus Mild conditions.329
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In Dataset B there was a significant difference between the Awake and Deep conditions (W(21),330

p=0.015). As with the LZC analysis, the Awake condition had the highest Sample Entropy in331

both Datasets A and B, with the mean value decreasing with increasing sedation. In Dataset A,332

we observed ∆ = 0.036 ± 0.035 from Awake to Moderate, and in Dataset B we observed ∆ =333

−0.023± 0.031. In the Mild and Moderate conditions of Dataset A, we found a significant negative334

correlation between serum concentration of propofol and Sample Entropy of BOLD signals (r=-0.53,335

p=0.003).336

These results are consistent with both the LZC results reported above and the findings of Ferentes337

et al., (2007), who found that Sample Entropy decreased with increasing sedation in much the same338

way that LZC does.339

3.1.3 PCA of BOLD Signals340

As with LZC, the PCA-based measure of BOLD signal complexity returns a measure of how com-341

pressible the set of data are as a proxy for complexity, by identifying the number of components342

required to explain a fixed proportion of the variance in the data. A larger number of components343

to explain the same amount of variance would indicate less compressibility of the data. Thus, we344

hypothesized that as level of sedation increased, so would the compressibility of BOLD signals,345

as measured by the number of components required to explain 95% of the variance. In Dataset346

A, Kruskal-Wallis analysis of variance found significant differences between all three conditions347

(H(8.13), p=0.017), and post-hoc testing found significant differences between all three sets of con-348

ditions: Awake vs. Mild (W(9), p=0.03), Awake vs. Moderate (W(6), p=0.016), and Mild vs.349

Moderate (W(11), p=0.048). In Dataset B, we found a significant difference between Awake and350

Deep (W(4), p=0.002). As before, there was a consistent pattern of increasing mean compressibility351

(and a consequent decreasing number of required components) as sedation increased. In Dataset A,352

∆ = −2.214± 2.73 from Awake to Moderate, and in Dataset B, ∆ = −5.188± 4.68. Here, the ∆ is353

negative because the number of components decreased between the Awake and sedated conditions,354

and is non-integer because it is the average over all subjects in the datasets. Of all the measures355

of BOLD signal compressibility, this was the only measure that did not significantly correlate with356

serum propofol concentration in the Mild and Moderate conditions in Dataset A.357
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As with LZC and the SampEn, these results indicate that as propofol-induced sedation increases,358

the algorithmic complexity of BOLD signals decreases. All measures of complexity discussed so far359

support each-other, despite being a variety of linear and non-linear algorithms.360

3.2 Temporal Process Complexity361

3.2.1 Hurst Exponent362

The Hurst Exponent was the only measure that we hypothesized would increase as consciousness363

was lost, rather than decrease, since as a signal becomes more predictable, its Hurst Exponent tends364

towards unity [5]. In both Datasets A and B we found significant differences between conditions. In365

Dataset A, Kruskal-Wallis Analysis of Variance found an omnibus difference (H(9.11), p=0.01), and366

post-hoc testing found significant differences between Awake and Mild (W(16), p=0.022), Awake367

and Moderate (W(8), p=0.005), and Mild and Moderate (W(17), p=0.026). In Dataset B, we found368

significant differences between the Awake and Deep conditions (W(26), p=0.02). Unlike the previous369

two metrics, and as we expected, we found a relative increase in the Hurst Exponent as sedation370

increased: in Dataset A, we found ∆ = 0.014 ± 0.014 from Awake to Moderate sedation, and in371

Dataset B we found ∆ = 0.01 ± 0.016 from Awake to Deep sedation. In Dataset A, we found a372

significant correlation between serum concentration of propofol and Hurst Exponent in the Mild and373

Moderate sedation conditions (r=0.393, p=0.039).374

This is consistent with our initial hypothesis that as sedation increased and consciousness was lost,375

the BOLD signals would become more predictable, as measured by an increasing Hurst Exponent.376

3.2.2 Higuchi Fractal Dimension377

The Higuchi Fractal Dimension was one of the least sensitive measures of BOLD signal complex-378

ity sampled here. In Dataset A, Kruskal-Wallis Analysis of Variance found a significant difference379

between all three conditions (H(8.27), p=0.016), and post-hoc analysis found significant differences380

between the Awake and Moderate conditions (W(15), p=0.019) and the Mild and Moderate condi-381

tions (W(17), p=0.026), but not the Awake and Mild conditions. In Dataset B we found a significant382

difference between the Awake and Deep conditions (W(23), p=0.02). As with LZC and Sample En-383
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tropy, the Awake condition had the highest mean fractal dimension in both samples, which went384

down as sedation increased: in Dataset A ∆ = −0.024 ± 0.032 from Awake to Moderate and in385

Dataset B, ∆ = −0.018 ± 0.027 from Awake to Deep. Surprisingly, the Higuchi Fractal dimen-386

sion showed a very strong negative correlation with serum propofol concentration in the Mild and387

Moderate conditions of Dataset A (r=-0.614, p=0.0005).388

The finding that Higuchi Fractal dimension was relatively less able to discriminate between level389

of consciousness than LZC or Sample Entropy but more predictive of serum propofol concentration390

is interesting. While it is hard to come up with a definitive interpretation, it may suggest that there391

is some variable factor in individuals that makes their level of consciousness more or less resistant392

to the changes in brain activity (as measured by Higuchi Fractal Dimension) induced by propofol,393

or that the plasma concentration data offer more resolution, extending beyond the three artificially394

imposed bins of Awake, Mild and Moderate sedation.395

3.3 Topological Algorithmic Complexity396

3.3.1 Algebraic Connectivity397

Our first of two measures of functional network complexity is algebraic connectivity, which returns398

information about the robustness of the network to removal of elements [26]. In Dataset A, Kruskal-399

Wallis analysis found a significant difference in algebraic connectivity between all three conditions400

(H(9.654), p=0.008). Post-hoc analysis found significant differences between the Awake and Mod-401

erate conditions (W(12), p=0.011) and the Mild and Moderate conditions (W(15), p=0.019), but402

not the Awake versus Mild conditions. In Dataset B, we found a significant difference between the403

Awake and Deep conditions (W(23), p=0.02). As before, in Datasets A and B the Awake condition404

had the highest mean algebraic connectivity, with mean values dropping as sedation increased. In405

Dataset A, ∆ = −107.67± 116.98 from Awake to Moderate, while in Dataset B, −906.09± 1235.07.406

Despite the ability of algebraic connectivity to discriminate between conditions, there was no signif-407

icant correlation with serum propofol concentration in the Mild and Moderate conditions of Dataset408

A.409

These results suggest that, while graph theoretical measures may be predictive of level of con-410

17

.CC-BY-NC 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/680447doi: bioRxiv preprint 

https://doi.org/10.1101/680447
http://creativecommons.org/licenses/by-nc/4.0/


sciousness in propofol anaesthesia, algebraic connectivity in particular seems to lack the discrimi-411

native power of direct analysis on BOLD signals. Nevertheless, these results are promising as they412

show that the topological complexity of functional brain networks can communicate information413

relevant to the level of consciousness of an individual.414

3.4 Topological Process Complexity415

3.4.1 Graph Lempel-Ziv Compressibility416

The final metric we tested, and the second measure of topological complexity, was the compressibility417

of functional connectivity adjacency matrices using the Lempel-Ziv algorithm. This was the weakest418

of all the measures explored: the only significant difference was in Dataset A, between the Awake419

and Moderate conditions (W(11), p=0.009), although in Dataset B there was a similar trend that420

approached, but did not reach significance (W(32), 0.06). The general trend of Awake having the421

highest value which decreased under increasing sedation was conserved (although note the large422

standard deviations): in Dataset A ∆ = −2885.71 ± 4937.34 and in Dataset B ∆ = −4923.44 ±423

8967.29. There was no significant correlation between graph compressibility and serum propofol424

concentrations in Dataset A.425

While this is clearly the weakest result, in the context of the others, we still find its success at426

discriminating between the Awake and Moderate conditions of Dataset A intriguing, and suspect427

that in a larger set of data it may have more discriminative power. The relationship between428

consciousness and network compressibility may not be as direct as when performing analysis such429

as LZC on BOLD signals, but these results suggest this is an area worth exploring.430

3.5 Higher Order Analysis of Overall Complexity431

Every metric, when correlated against every other metric, showed a highly significant correlation432

(see Figure 2), all of which were significant with the sole exception of the correlation between the433

number of PCA components required to explain the majority of the variance and the Hurst expo-434

nent in Dataset A. We had hypothesized that, if the different kinds of complexity explored here435

(algorithmic and process-based, in both the temporal and topological dimensions) all were ways to436
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quantify an underlying construct of overall complexity, then there should be a single component437

that explains the majority of the variance of the results. In Dataset A, we found that the principal438

component explained 67.07% of the variance in the set of results and in Dataset B the principal439

component explained 71.05% of the variance of the results. In both datasets, this component corre-440

lated extremely highly with each metric: in Dataset A it correlated most highly with LZC (r=-0.947,441

p≤ 1× 10−5), followed by Sample Entropy (r=-0.929, p≤ 1× 10−5). In Dataset B, these two were442

also the most highly correlated with the principal component, although the order was flipped, with443

Sample Entropy having the highest correlation (r=-0.95, p≤ 1× 10−5), followed by LZC (r=-0.932,444

p≤ 1 × 10−5). When broken down by condition, in both Datasets, the principal component was445

able to discriminate between states of consciousness: in Dataset A the Kruskal-Wallis test found a446

significant difference between all three conditions (H(12.048, p=0.002), and post-hoc testing found447

significant differences between the Awake and Moderate conditions (W(8), p=0.005), and the Mild448

and Moderate conditions (W(3), p=0.001) but not the Awake and Mild conditions. In Dataset B449

we found a significant difference between the Awake and Deep conditions (W(8), p=0.002). In the450

Mild and Moderate conditions of Dataset A, the principal component significantly correlated with451

serum concentrations of propofol (r=0.531, p=0.004). Thus, the principal component derived from452

multiple specific measures of complexity can be related to states of consciousness in the human453

brain, and may be identified with the overall complexity of the dataset.454

4 Discussion455

In the present work, we have investigated measures of complexity from algorithmic information456

theory and the physics of dynamical systems, as they apply to the temporal and topological (network)457

dimensions of functional MRI brain data from individuals under different levels of propofol sedation.458

Two main insights can be derived from our results. The first is that, at least in the context of459

the human brain, different measures purporting to quantify complexity are indeed related to some460

underlying common construct, regardless of the dimension along which they measure complexity,461

or the aspect of complexity that they measure. This provides much-needed validation to the idea462

that a dataset - and the system from which it derives - can be considered complex tout court,463
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rather than just being complex in a specific dimension, and according to a specific way of assessing464

complexity. We term this the overall complexity of the system or dataset. In turn, this suggests465

that it is appropriate to use the term complexity for the various specific measures, because there466

does seem to exist a common underlying property of the data that they tap into. In particular, we467

have demonstrated that the complexity of the human brain activity, as inferred from fMRI BOLD468

signals, is modulated by one’s state of consciousness. This was observed both with the individual469

measures - validating and extending previous results - and, most importantly, with the underlying470

construct of overall complexity, which demonstrates its validity as a construct. The latter is also471

reinforced by the fact that we were able to replicate this finding with a separate dataset.472

Secondly, it is important to observe that different complexity measures, though correlated to each473

other and related to the same underlying construct of overall complexity, are nevertheless sensitive474

to different aspects of the data. In particular, measures operating along the temporal dimension475

appeared especially sensitive at discriminating between levels of sedation; conversely, topological476

measures failed to discriminate between Awake and Mild conditions in Dataset A, and also did477

not correlate with propofol serum levels. This suggests that the temporal dimension of the human478

brain’s complexity, as derived from BOLD signal timeseries (despite their limited temporal resolution479

compared to EEG), may be especially vulnerable to loss of consciousness, at least as it is induced480

by the GABA-ergic agent propofol. Further work may seek to identify whether this effect is uniform481

across cortical regions, or whether specific areas’ timeseries are more largely affected by propofol482

than others. This represents a novel insight regarding the ways in which anaesthetic drugs such as483

propofol intervene on the brain to cause unconsciousness. Additionally, it would be worth exploring484

whether this observation of different sensitivity of temporal and topological measures of complexity485

is drug-specific, or if instead it is a generalisable feature of how the brain loses consciousness. Thus,486

one future direction of research is to apply these same metrics to states of consciousness induced by487

different anaesthetic agents, whose molecular mechanisms of action can vary widely. Disorders of488

consciousness (DOC) due to severe brain injury may also represent a crucial future step for research:489

unlike anaesthetics, DOC involve changes in the physical structure of the brain, which is bound to490

impact the topology of brain networks. Investigating how this impacts the relation between different491

measures and dimensions of complexity will provide further understanding into the relation between492
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complexity and consciousness in the brain. Additionally, as MRI is already a routine part of care for493

DOC patients, algorithms such as those explored here might be helpful in determining the presence494

or absence of consciousness in ambiguous states such as minimally conscious state.495

Importantly, our results also show that, despite the relative temporal paucity of information in496

BOLD signals, these signals carry sufficient information to discriminate between states of conscious-497

ness. While preliminary, these findings suggest that the process complexity of individual BOLD498

signals is at least partially re-encoded as topological complexity when forming functional connec-499

tivity networks. One possible avenue of future work is to explore the parameters under which500

this conservation of complexity is maximized (different similarity functions, different thresholding501

procedures, etc), in order to increase the sensitivity of these measures. Crucially, even higher dis-502

criminative power may be achieved by applying the same analyses to measures with higher temporal503

information, such as EEG, which may then improve anaesthetists’ ability to detect unwanted resid-504

ual consciousness in patients, thereby avoiding the rare but extremely distressing condition known505

as intraoperative awareness [27].506

Nevertheless, our work also presents a number of limitations, and these should be borne in507

mind when evaluating the present results. Firstly, as already mentioned the temporal information508

available in the BOLD signal is limited, and it is also not a direct measure of neural activity.509

Additionally, our analysis pipeline involved removing the negative correlations between brain regions,510

before the network analysis. While negative correlations are unclear in origin and interpretation, and511

removing them is the most common approach, it is known that they are altered during anaesthesia512

and other states of unconsciousness [28, 29, 30]; thus, ignoring them may have different effects513

on conscious versus unconscious brain networks, which could explain the reduced sensitivity of514

topological measures. Thirdly, in Dataset A the state of consciousness was determined based on the515

estimated propofol concentration, rather than behaviour, so that different individuals’ susceptibility516

to the drug may have led to different levels of sedation, despite the same level of propofol. However,517

this concern is mitigated by the replication of our results in Dataset B, where sedation was deeper and518

it was assessed behaviourally, so that all individuals met the same criteria. Finally, the measures519

of complexity explored here are but a subset of those that have been proposed over the years in520

the literature. Future research could benefit from expanding this repertoire, for instance including521
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estimates of Phi, a measure of integrated information derived from neural complexity [10], which522

has been proposed to quantify a system’s consciousness [9, 31]523

5 Conclusion524

We have investigated measures of algorithmic and process complexity of fMRI BOLD signal in both525

the temporal and topological dimensions, at various levels of consciousness induced by propofol526

sedation. Our results demonstrate that complexity measures are differently able to discriminate527

between levels of sedation, with temporal measures showing higher sensitivity. Additionally, all528

measures were strongly correlated, and most of the variance could be explained by a single underlying529

construct, which may be interpreted as a more general quantification of complexity, and which530

also proved capable of discriminating between levels of sedation, demonstrating a relation between531

consciousness and complexity.532
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Figure 1: Here are the differences in the first principal component generated from all the measures
from Datasets A and B. Interestingly, in Dataset A, there was no significant difference between the
Awake and Mild condition, while there were differences between both of those states and the Mod-
erate condition. While this may be a reflection of lack of sensitivity, it is worth noting that, between
the Awake and Mild conditions, consciousness was not actually lost: volunteers experienced con-
scious sedation, while the difference in level of consciousness between the Awake and and Moderate
conditions was much more dramatic. In Dataset B, where consciousness was fully lost in the Deep
condition, a significant difference appeared. Note that, despite the measures of complexity generally
dropping as consciousness was lost (with the notable exception of the Hurst exponent analysis),
the PCA analysis returned a Hurst-like pattern, with the values in the component increasing as
consciousness is lost. This does not indicate an increase in complexity in any sense, but rather, is an
artefact of how the dimensionality reduction transforms values. To ensure that this was not being
driven by the Hurst exponent in any way, we ran the analysis after multiplying each Hurst exponent
by -1 (so that the value decreased with loss of consciousness), and found no difference in the result.29
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Figure 2: The correlation matrices between all the different metrics fro Datasets A and B. All
entries along the diagonal have been removed. There are some typical patterns: the graph measures
(LZ Graph and Algebraic Connectivity are both generally more highly correalted, as are LZC,
Sampen and Hurst). With the exception of a single correlation between the PCA Number and the
Hurst Exponent in Dataset A. The p-values ranged over many orders of magnitude from 10−2 to
10−20
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Figure 3: There was a significant correlation between the first component and serum concentration
of propofol, with patients in the Mild condition (r = 0.53, p-value = 0.004) clustering together with
low concentrations, and increasing, with larger variances, as the propofol concentration climbs. As
with the plots shown above, the incongruous increase in the values of the component does not reflect
a relative increase in complexity in this case, but is an artefact of the PCA algorithm. No Awake
volunteers were included in this analysis, as all would have had a blood propofol concentration of
exactly zero.
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