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Abstract

Hybrid genome assembly has emerged as an important technique in bacterial genomics, but cost and

labor requirements limit  large-scale application.  We present Ultraplexing,  a method to improve per-

sample sequencing cost and hands-on-time of Nanopore sequencing for hybrid assembly by at least 50%,

compared to molecular barcoding while maintaining high assembly quality  (Quality  Value; QV ≥ 42).

Ultraplexing requires the availability of Illumina data and uses inter-sample genetic variability to assign

reads  to  isolates,  which  obviates  the  need  for  molecular  barcoding.  Thus,  Ultraplexing  can  enable

significant sequencing and labor cost reductions in large-scale bacterial genome projects.
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Background

Accurate characterization of large numbers of microbial genomes is becoming increasingly important in 

microbiology. For example, bacterial genome-wide association studies (bGWAS) rely on the sequencing 

of large numbers of samples to correlate genetic variants to phenotypes such as antibiotic resistance or 

virulence (1–3). Further examples are phylogenetic analyses and quality assurance in technical 

microbiology (4–7).

A  variety  of  sequencing  technologies  with  different  technological  trade-offs  have  emerged  for  the

sequencing of microbial genomes. Short-read sequencing technologies (such as Illumina (8)) have low

error rates (<0.1%) but provide only limited resolution of complex and repetitive genomic regions. An

example are the genes encoding S. aureus protein A (spa) and fibronectin binding-protein (fnbpA), which

play key roles in the pathogenesis of S. aureus (9) and which cannot be reliably assembled from short-

read data (10). Long-read sequencing technologies (Pacific Biosciences (11), Oxford Nanopore (12,13))
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generate  sequencing  reads  of  tens  or  even  hundreds  of  kilobases  in  length,  enabling  the  correct

structural  resolution of  complex regions;  their  higher error rates (5 – 15%),  however,  can negatively

impact consensus and small-variant genotyping accuracy (14–16).

Combining short- and long-read data has therefore emerged as a standard approach for the resolution of

bacterial genomes (17). Long-read sequence information can be used to deconvolute short-read-based 

assembly graphs (hybrid de novo assembly; (18–21)). Alternatively, de novo assemblies from long reads 

(22) can be polished with short-read data to improve consensus accuracy (23). By either approach, the 

coverage requirements to arrive at a high-quality assembly of a microbial genome are typically modest 

(50-100X for each data type; (24,25)).

Molecular barcoding approaches enable the cost-effective sequencing of multiple samples in one run

(“multiplexing”). Molecular barcoding involves the labeling of each DNA sample with a unique barcode

sequence; pooling and joint sequencing of the samples; and determining the source sample for each

sequencing  read,  based  on  its  barcode  sequences.  Highly  efficient,  automated  implementations  of

molecular barcoding exist for the Illumina platform, enabling the sequencing of hundreds of microbial

isolates  to sufficient coverage with a single flow cell.  Molecular barcoding approaches for long-read

platforms, however, are less effective. A maximum of 24 samples can currently be multiplexed on an

Oxford Nanopore MinIon flow cell. In addition, the preparation of multiplex libraries requires significant

hands-on time (>12h compared to 3h for a non-multiplexed library), comes with significant losses of

input material, and, presumably, the pipetting steps reduce attainable read lengths by shearing. These

factors make barcoded long-read sequencing costly and labor-intensive, and the availability of a more

scalable approach to multiplexed long-read sequencing would be highly desirable.

Here we present Ultraplexing, a new method that allows the pooling of multiple samples in long-read 

sequencing without relying on molecular barcodes. Ultraplexing uses inter-sample genetic variability, as 

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 25, 2019. ; https://doi.org/10.1101/680827doi: bioRxiv preprint 

https://doi.org/10.1101/680827
http://creativecommons.org/licenses/by/4.0/


measured by Illumina sequencing, to assign long reads to individual isolates (Figure 1). Specifically, each 

isolate genome is represented by its de Bruijn graph, constructed from sample-specific short-read data; 

and each long read is assigned to the sample de Bruijn graph it is most compatible with (or randomly in 

cases of a draw). A similar approach enables haplotype-aware assembly in eukaryotic genomes (26).

The intuition behind Ultraplexing is that there will typically be a high-quality alignment between a read

and the assembly graph of the source genome it emanates from. Importantly, the assignment of reads

completely contained in genomic regions shared among multiple samples (e.g. due to mobile genetic

elements or inter-sample genetic homology) may remain ambiguous. This, however, will typically have

no or only a small effect on the accuracy of the hybrid assembly process, for the affected reads will spell

equally valid assembly graph traversals in all compatible samples. 

Ultraplexing requires the availability of Illumina data. It is applicable to studies that either incorporate

the generation of  these from the beginning or  it  can serve as  a  cost-effective  method to  generate

additional long-read data for samples that have already been short-read sequenced. In the following, we

demonstrate that Ultraplexing can match or even outperform classical molecular long-read barcoding

approaches in terms of assembly quality while enabling significant reductions in cost and hands-on time.

Results

We used simulated and real Nanopore and Illumina sequencing data (Supplementary Table 9) to evaluate

the performance of Ultraplexing in the context of bacterial hybrid de novo assembly. In all experiments, 

we relied on Unicycler as an established method for hybrid assembly (18). We primarily focused on the 

quality of the generated assemblies, i.e. structural accuracy (number of contigs, reference recall, 

assembly precision) and consensus accuracy (Single Nucleotide Polymorphisms; SNPs), measured against

the utilized reference genomes (in simulations) or barcoding-based assemblies (for real data). To 

distinguish between Ultraplexing-mediated effects and intrinsic assembly complexity for the selected 
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isolates, we reported assembly accuracy for random (in all experiments) and perfect (in simulations) 

assignment of long reads. Additionally, we assessed the proportion of correctly assigned reads. Of note, 

all simulation experiments were based on conservative assumptions (e.g. 5 Gb throughput per long-read 

flow cell; see Methods for further details), and no mis-assemblies were identified through visual 

inspection in any of the Ultraplexing-based sets. 

Simulation experiment I: Multi-species Ultraplexing

In a first step, we evaluated Ultraplexing on a sample of 10 different clinically important bacterial species

(Supplementary  Table  1,  Supplementary  Figure  1).  The  Ultraplexing  algorithm assigned  all  but  2  of

477,890 simulated long reads to the correct bacterial isolate (close to 100% classification accuracy, s.

Supplementary Figure  1).  Ultraplexing-based assemblies  were highly concordant with the underlying

reference genomes, achieving near-perfect structural agreement (average reference recall and assembly

precision >99.999%) and low divergence (average number of SNPs against the reference genome: 57).

Furthermore,  assembly accuracy metrics for  Ultraplexing and perfect  read assignment were virtually

identical  (for  example,  an  average  of  57  SNPs  for  Ultraplexing  compared  to  56  SNPs  for  perfect

assignment). 

Simulation experiment II: Single-species Ultraplexing with 10 – 50 isolates

To assess Ultraplexing performance on closely related isolates and with increasing sample numbers, we 

randomly selected sets of 10, 20, 30, 40, and 50 genomes from 181 publicly available complete 

assemblies of the human pathogen Staphylococcus aureus (Supplementary Table 5). Of note, as 

simulated long-read flow cell capacity was held constant, sets with more genomes contained less long-

read data per isolate. Across experiments, the proportion of correctly assigned reads decreased as 

sample numbers increased and varied between 35% and 95% (Figure 2A). To test whether reduced read 

assignment accuracies were due to inter-sample sequence homologies, we computed the metric ∆edit 
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distance for random samples of mis-assigned reads and found an average ∆edit distance of 0.3%, with 

more than 50% of mis-assigned reads exhibiting a ∆edit distance of 0 (Figure 2B). At the read alignment 

level, the genomes that the mis-assigned reads were assigned to are thus indistinguishable or very 

similar to the true source genomes.  Consistent with this, the generated Ultraplexing-based assemblies 

were highly concordant with the utilized reference genomes (average reference recall ≥ 99.96% and 

assembly precision ≥ 99.99% across sets; average number of SNPs 46; Figure 2C-F). Furthermore, 

assembly accuracy metrics for Ultraplexing and perfect read assignment were comparable even with 

increasing number of bacterial isolates; for example, the average number of SNPs per genome in the run 

with 50 bacterial isolates was 59 for Ultraplexing (QV 47) and 32 for perfect read assignment (QV 49). 

Complete results for this experiment are presented in Supplementary Table 2 and visualized in Figure 2.

Simulation experiment III: Impact of plasmids

In  addition  to  the  chromosomal  genome,  many  bacterial  cells  harbor  plasmids.  Plasmids  are

extrachromosomal circular strings of DNA that are generally much smaller than the chromosomal DNA.

Plasmids  can  vary  in  copy  number  within  each  cell  and  they  often  exhibit  complex  and  repetitive

sequence  structures.  Since  plasmid  sequences  could  reduce  the  performance  of  the  Ultraplexing

algorithm, we repeated the previous simulation experiments with sets of 10 - 50 S. aureus genomes that

all harbored plasmids. We found that the accuracy of chromosomal genome assemblies was not affected

by the presence of  plasmids.  Additionally,  the plasmid recovery  rate  was comparable to  assemblies

based on reads assigned to their true source; complete recovery was achieved in 135 of 150 total isolate

genomes  with  Ultraplexing,  and  in  137  with  perfect  read  assignments.  Identified  reasons  for

incompletely recovered plasmids included high sequence homology to other plasmids or the genomic

DNA (Supplementary Table 6).  Complete results for this experiment are presented in Supplementary

Table 3 and visualized in Supplementary Figure 4 (chromosomal genome) and Supplementary Figure 5
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(plasmids). Possible reasons for incompletely recovered plasmids are high sequence homology to other

plasmids or the genomic DNA and the consequential merging with these (Supplementary Table 6). ).

Real-data experiment I: Nanopore-based Ultraplexing of 10 S. aureus clinical samples

To assess the performance of Ultraplexing on real data, we randomly selected ten bacterial isolates of 

the species Staphylococcus aureus from our collection of clinical isolates. To generate a reference 

genome for each isolate, we sequenced each sample on an Illumina system, performed barcoded Oxford 

Nanopore sequencing with the 12-sample barcoding kit (~214X coverage per isolate; mean read length 

8.3 kb), and carried out hybrid de novo assembly. The generated reference genomes consist of 1 - 3 

circular contig per isolate, representing the chromosomal genome (~2.8 Mb in length) and plasmids (2.3 

– 34.9 kb in length, all circular; BLAST (27) classification results are shown in Supplementary Table 7). 

To test Ultraplexing on these isolates, we demultiplexed the barcoded Nanopore sequencing data with

the Ultraplexing algorithm and carried out hybrid de novo assembly. The Ultraplexing-based assemblies

showed a high degree of concordance (Figure 3) with the generated reference genomes in terms of

contig number, assembly length, genome structure (average reference recall and assembly precision >

99.9%), and consensus accuracy (4 SNPs per isolate on average and 6 of 10 isolates with no detected

SNPs). In contrast, assemblies based on random read assignment yielded lower-quality assemblies across

all considered metrics (for example, 136 SNPs per genome; Figure 3D). Complete results for all genomes

are presented in Supplementary Table 4 and visualized in Figure 3. Summary statistics of the Illumina and

Nanopore sequencing runs can be found in Supplementary Table 9.

Read-data experiment II: Nanopore-based Ultraplexing of 48 clinical isolates

To assess the feasibility of applying Ultraplexing to a larger number of samples, we repeated the previous

experiment with 48 samples. As in the previous experiment, barcoded Nanopore (~235X coverage per

isolate; average read length 5.6 kb) and Illumina (~50X coverage per isolate; 2 x 250bp reads with MiSeq
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v2 chemistry) sequencing was carried out to generate reference genomes for the 48 samples. In contrast

to the previous experiment,  however,  we employed a  recently  released 24-sample  native barcoding

Nanopore kit. We observed that the reference genomes so-generated exhibited significant variation in

contig numbers (Figure 4A) and one outlier in terms of assembly size (Figure 4B). 

For Ultraplexing, long-read sequencing data (~95X coverage per isolate; average read length 11.7 kb)

were generated in a single MinIon run by pooling DNA from the 48 isolates. Reads were demultiplexed

with the Ultraplexing algorithm and hybrid de novo assembly was carried out. The generated assemblies

exhibited a plausible profile in terms of contig numbers and assembly length (Figure 4).  However,  a

comparison with the generated reference genomes showed a considerable degree of divergence. For

example,  we  found  an  average  of  784  SNPs  between  the  Ultraplexing-based  and  barcoding-based

assemblies (Figure 4C).

These findings prompted us to investigate whether the generated reference genomes were of sufficient

quality. We therefore repeated the reference genome generation process and generated new short- and

long-read sequencing data (166X and 384X coverage, respectively; average Nanopore read length 9.7 kb)

for a set of 10 isolates with unusually large or fragmented reference assemblies, utilizing the same 12-

sample barcoding kit as in the first real-data experiment. We repeated the hybrid  de novo assembly

process with the new data and obtained a set of 10 completely circularized genomes clustered around

an average assembly length of 2.8 Mb (Figure 5). Using these as improved reference genomes for the

selected  10  samples,  we  found  a  high  degree  of  concordance  between  the  Ultraplexing-based

assemblies and the new reference genomes both in terms of genome structure (average reference recall

and assembly precision >99.6%) and in the number of SNPs per genome (180 on average, equivalent to

QV  42).  Ultraplexing-based  assemblies  showed  higher  accuracy  than  the  initial  barcoding-based

assemblies in terms of accuracy, which exhibited, for example, an average of 2,706 SNPs against the new
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reference  genomes.  Complete  results  for  the  comparison  of  the  48  Ultraplexing-based  assemblies

against the initial set of reference genomes are presented in Supplementary Table 4 and visualized in

Figure 4; complete results for the selected 10 samples, comparing Ultraplexing-based assemblies and the

initial reference genomes against the improved reference genomes, are shown in Supplementary Table 4

and visualized in Figure 5. Read length and coverage statistics for all sequencing runs can be found in

Supplementary Table 9.

Discussion

We  have  presented  Ultraplexing,  a  method  that  resolves  pooled  long-read  sequencing  data  in  the

context of hybrid  de novo assembly without the use of barcoding. Ultraplexing leverages inter-sample

genetic  variation to  assign  pooled  long  reads  to  individual  isolates  and  benefits  from the  fact  that

Illumina sequencing enables the reliable characterization of sample genome structure at the level of k-

mers.

Using simulated sequencing data, we demonstrated that Ultraplexing enables the generation of highly

accurate hybrid assemblies and reliably detects plasmids, even in datasets that contain multiple isolates

of the same bacterial species. We have also validated the method on two real Nanopore sequencing

datasets  and  shown  that  Ultraplexing-based  assemblies  are  virtually  identical  to  barcoding-based

assemblies  when  comparing  multiplexed  runs  with  the  same  number  of  isolates.  When  using

Ultraplexing  to  increase the number  of  samples  over  the current  maximum of  molecular  barcoding

approaches, Ultraplexing-based assemblies generally maintain high accuracy.

Of note,  our results  indicate that 48-sample Ultraplexing is  closer in terms of  assembly accuracy to

molecular  barcoding  with  10  samples  than  to  molecular  barcoding  with  24  samples.  Furthermore,

average  consensus  quality  as  reported  in  the  48-sample  experiment  (QV  42)  likely  represents  an

underestimate. This is because the selected set of repeat isolates was non-random with high assembly
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complexity, and because all differences between the Ultraplexing-based assemblies and the improved

reference genomes were counted as errors in the former.  Based on the first  simulation experiment,

however, in which an average of 50 SNPs per genome remained even with perfect read assignment, it

seems likely that some of the detected differences in the 48-sample experiment represent errors in the

utilized reference genomes. Thus, Ultraplexing is an accurate and cost-effective method for determining

the genomes of large numbers of bacterial samples.

A key advantage of Ultraplexing in comparison to molecular barcoding is decreased cost and hands-on

time. The number of samples sequenced per flow cell can at least be doubled and barcoding reagents

are not necessary. Hands-on time was reduced eightfold in our 48-sample experiment (12 hours per flow

cell with 24 barcoded samples compared to 3 hours for one Ultraplexing run with 48 samples). Taking

into account potential differences in sample handling operator performance, we conservatively estimate

that the hands-on-time benefit conferred by Ultraplexing is at least 50%. On the other hand, Ultraplexing

can  consume  significant  computational  resources  (70  CPU  hours  and  175Gb  of  memory  for  the

demultiplexing step in the experiment with 48 samples).

The  finding  that  Ultraplexing  produced  more  accurate  assemblies  than  conventional  barcoding  in  a

subset of samples despite lower overall coverage can likely be explained by read length. Reads in the

Ultraplexing dataset of 48 isolates were significantly longer than in the barcoded samples (average read

length of 11.67kb for Ultraplexing compared to 5.55kb for molecular barcoding; Supplementary Table 9),

presumably facilitating hybrid assembly.  These read length differences might be driven by pipetting-

induced shearing during the barcoding protocol. Our results also indicate that the 12-sample barcoding

kit might be preferable over the 24-sample barcoding kit on the Nanopore platform if the generation of

reference-quality genomes with molecular barcoding kit is desired.
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Although our primary focus was on assembly accuracy, we also evaluated the accuracy of individual read

assignments in the simulation experiments. One important factor driving read assignment accuracy was

the extent of genetic variability between the pooled samples. Consistent with this, Ultraplexing achieved

near-perfect read assignment in the multi-species experiment but reduced assignment accuracy in the

single-species  experiment.  We  hypothesized  that  mis-assignments  driven  by  inter-sample  sequence

homology would have a negligible effect on assembly accuracy. Consistent with this, assembly accuracy

was relatively insensitive to increasing numbers of mis-assigned reads in the single-species experiment,

and we could confirm that inter-sample sequence homology accounts for the majority of mis-assigned

reads using edit distance metrics. Furthermore, assembly accuracy was significantly reduced for random

read assignment, reflecting higher proportions of falsely assigned reads in the absence of underlying

sequence homologies. The applicability of Ultraplexing in the context of a “long-read-first” approach (for

example, Canu followed by Pilon) remains to be determined. In addition, Ultraplexing may be less well-

suited for applications that depend on accurate assignments of individual reads, such as read-based

methylation calling.

Our study has a number of limitations. First, we have only validated Ultraplexing on a single long-read 

technology, Oxford Nanopore. However, we expect Ultraplexing to work as well with the PacBio 

technology, based on its more random error profile (28,29) and prior work demonstrating successful 

k-mer-based classification of eukaryotic PacBio reads (26). Second, we have focused on a limited set of 

clinically important bacterial species and not explored in depth how genome structure affects 

Ultraplexing. Thus, we cannot exclude the possibility that the performance of Ultraplexing may degrade 

when applied to certain bacterial species, e.g. due to large repeat structures in their genomes. Third, we 

have not rigorously tested the technical limits of Ultraplexing, including the maximum number of isolates

and the necessary properties of the short-read sequencing data. Given that flow cell output has been 

increasing steadily, extraction of high-molecular weight DNA for long-read sequencing may plausibly 
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become the most significant limiting factor. Fourth, in terms of bioinformatics methods development, 

Ultraplexing relies on simple k-mer statistics instead of proper graph alignment (30–32), and we have not

explored methods for the optimization of intra-batch genetic diversity in large sequencing projects. 

These points could be addressed in future work.

Conclusion

Ultraplexing is a new method for multiplexed long-read sequencing in the context of hybrid  de novo

assembly.  Ultraplexing-based  assemblies  are  highly  accurate  in  terms  of  genome  structure  and

consensus accuracy and exhibit  quality characteristics comparable to assemblies based on molecular

barcoding. Through increasing the number of samples per flow cell and simplified library preparation,

Ultraplexing  enables  significant  reductions  of  long-read  sequencing  costs  and  hands-on  time.  Thus,

Ultraplexing enables the cost-effective complete resolution of large numbers of bacterial genomes.

Methods

The Ultraplexing read assignment algorithm

Let n denote the number of sequenced bacterial samples. We assume the availability of high-coverage 

Illumina sequencing data for each of the n individual isolates and that a pool of high-molecular-weight 

DNA, representing a mixture of the genomes of the n isolates, has been sequenced with a long-read 

sequencing technology like Oxford Nanopore or Pacific Biosciences. For each sample, a de Bruijn graph (k

= 31) is constructed from the sample-specific Illumina data and the graph is cleaned (removal of low-

coverage supernodes) with Cortex (17). Each long read from the pooled run is assigned to the sample for

which the number of read k-mers present in the sample de Bruijn graph is maximal (or randomly in cases

of a draw). We note that our approach can be understood as a heuristic approach to read-to-graph 

alignment.
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Hybrid assembly and assembly evaluation criteria

Unicycler (14) was used for all hybrid assembly experiments in this publication. For Ultraplexing, sample-

specific long-read sequencing data were obtained by applying the Ultraplexing algorithm. 

The performance of Ultraplexing was assessed (I) by assessing the proportion of reads assigned to the

correct  sample  (in  simulations);  (II)  by  comparing  the  generated  Ultraplexing-based  hybrid  de novo

assemblies to reference genomes (downloaded from RefSeq for simulations and based on barcoding-

based hybrid assembly for real data, see below); (III) by comparing the accuracy of Ultraplexing-based

assemblies  to  that  of  assemblies  based  on  random  (all  experiments)  or  perfect  (in  simulations)

assignment of long reads.

To assess the accuracy of an assembly, we compared the assembly to the corresponding reference 

genome. As baseline characteristics, we considered the total number of contigs and the combined 

assembly length. Furthermore, nucmer v3.1 (33) was used to generate an alignment between the 

assembly and the reference genome, globally filtering identified diagonals with “delta-filter -1”. We used 

the filtered diagonals to compute three quality metrics: “SNPs”, measuring consensus accuracy; 

“reference recall”, the fraction of the reference covered by the assembly; “assembly precision”, the 

fraction of the assembly covered by the reference. When reported, QV is calculated as 

 (Phred scale). Of note, assembly precision was close 

to 100% in all experiments, and we don’t separately report on this metric.

For the simulation experiment with plasmids,  we separately evaluated the sets of chromosomal and

plasmid  contigs  for  each  assembly.  We  relied  on  RefSeq  annotations  for  determining  the  status

(chromosomal or plasmid) of each contig in the reference and assigned the status of each assembly

contig according to the status of the its highest-scoring nucmer hit in the reference.
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Read assignment accuracy and edit distance

In simulated datasets, we calculated the proportion of correctly assigned long reads. A read was counted

as correctly assigned if, and only if, it was assigned to the genome it was simulated from. For mis-

assigned reads, we additionally defined a metric referred to as “∆edit distance”, using edlib (34). Let d1 

be the ends-free edit distance between a read and the genome it was simulated from and let d2 be the 

edit distance between a read and the genome it was assigned to. ∆edit distance is defined as d1 – d2, 

divided by the length of the read. A negative value indicates a better alignment to the source genome 

than to the predicted genome. To assess the distributional properties of ∆edit distance, the metric was 

calculated for random samples of 100 mis-assigned reads per method.

Simulation experiments

For the multi-species simulation experiments, chromosomal sequences of 10 clinically important species 

were downloaded from RefSeq (35). For the single-species experiments without plasmids, chromosomal 

sequences of 181 complete S. aureus genomes were downloaded from RefSeq (35). For the single-

species simulation experiment with plasmids, 169 complete genomes were downloaded that contained 

between 2 and 11 annotated plasmids. The accessions of all downloaded genomes are listed in 

Supplementary Table 5, and the selected genome subsets are listed in Supplementary Tables 2 and 3.

For each genome, 300 Mb of short-read data were simulated with wgsim (version 0.3.1-r13)(36), using 

the parameters base error rate (-e 0.005), length of first read (-1 150), length of second read (-2 150), 

outer distance between the read ends (-d 278), standard deviation (-s 128), mutation rate (-r 0) and 

fraction of indels (-R 0). Long-read data were simulated with pbsim (version 1.0.3)(37), using the 

parameters prefix of the output (--prefix [prefix]), coverage (--depth 200), mean read-length (--length-

mean 8370), standard deviation of the read-length (--length-sd 6389), maximum read-length (--length-

max 61011), minimum read-length (--length-min 230), mean sequencing accuracy (--accuracy-mean 
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0.88) and model of quality code (--model_qc model_qc_clr). For all experiments, we assumed a constant 

long-read flow cell capacity of 5Gb, and per-isolate coverage was adjusted accordingly (i.e. 5Gb total 

output divided by the number of simulated isolates). Simulated long-read data were pooled and 

demultiplexed with the Ultraplexing algorithm. Hybrid de novo assembly was carried out and the 

generated assemblies were benchmarked against the utilized reference genomes.

DNA extraction and sequencing

DNA was extracted from overnight bacterial cultures in 3 ml LB broth. For short read sequencing, the

“DNeasy UltraClean Microbial” Kit was used according to the manufacturer’s instruction. 1 ng of DNA per

isolate  was  used  for  the  library  preparation  with  the  TruePrep  DNA  Library  Prep  Kit.  Short-read

sequencing was conducted on a MiSeq instrument (Illumina) using 250 bp paired end sequencing using

v2 chemistry. DNA extraction for long-read sequencing was performed with the MagAttract HMW DNA

Kit (QIAGEN). Wide bore pipette tips were used to avoid shearing. Long-read sequencing was carried out

on a MinIon device with FLO-MIN106 flow cells and the SQK-LSK108 (first real-data experiment and 48-

sample run in the second real-data experiment) and SQK-LSK109 (repeat run of 10 isolates in the second

real-data experiment) ligation sequencing kits. Of note, SQK-LSK109 involves reduced pipetting, possibly

decreasing shearing. For barcoded long-read sequencing, samples were labeled with barcodes using the

Oxford Nanopore ligation sequencing kits (EXP-NBD103 kit or EXP-NBD114 for 12 and 24 samples per

run, respectively), and reads were demultiplexed with Albacore (version 2.1.3). For Ultraplexing, DNA

from individual  samples  was  pooled  based on equal  weight  to  yield  a  total  of  700ng of  DNA,  and

demultiplexing was carried out with the Ultraplexing algorithm. Summary statistics of all  sequencing

runs are presented in Supplementary Table 9. 
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Real-data validation experiments

For all experiments with real data, we used hybrid assembly with Unicycler (18) to generate high-quality 

reference genomes for all isolates, combining molecularly barcoded short- and long-read data. 

Molecular long-read barcoding was carried out using the 12-sample barcoding kit (EXP-NBD103) for the 

first real-data experiment and for the 10-sample repeat sequencing run in the second real-data 

experiment; initial long-read generation for the complete set of 48 samples in the second experiment 

was based on the 24-sample barcoding kit (EXP-NBD104). Barcoded Illumina sequencing runs were 

carried out for the multi-species experiment; for the complete set of 48 samples in the single-species 

experiment; and for the repeat set of 10 genomes in the single-species experiment. All sequencing runs 

are summarized in Supplementary Table 9.

Plasmid identification

To check if smaller contigs in real-data experiments (Figures 3 and 5) represented plasmids, we used the 

online version of BLAST (27). All non-chromosomal contigs (assumed to be the longest contig in each 

assembly) were blasted against the nucleotide (nt) database, restricted to sequences that correspond to 

bacteria (taxid:2), and if the best hit was characterized as plasmid, had a high identity (≥90%), and a low 

e-value (0 or close to 0), we assumed that the contig represented a correctly assembled plasmid 

(Supplementary Table 7).
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Figure 1: Overview of the Ultraplexing approach. Long reads are generated in simple pooled sequencing runs. The 

Ultraplexing algorithm determines the most likely source genome for each long read by carrying out a comparison 

between the read and the de Bruijn graphs of the sequenced sample genomes, inferred from short-read data. 

Hybrid assembly of sample-specific long and short reads enables the recovery of complete bacterial genomes. 
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Figure 2: Simulated Ultraplexing runs with 10 – 50 S. aureus genomes, in comparison to perfect (True) and random 

(Random) assignment of long reads. The figure shows the proportion of correctly assigned long reads (A); ∆edit 

distance for random samples of falsely classified long reads (B); the distribution of contigs per assembly (C); the 

distribution of assembly lengths (D); the distribution of SNPs per assembly (E); and the distribution of reference 

recall (F). SNPs and reference recall were calculated relative to the utilized reference genomes, and all metrics 

within the same set of genomes are based on the same simulated short-read data. 
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Figure 3: Ultraplexing and classical molecular barcoding on a set of ten S. aureus isolates. For different read 

assignment methods applied to the same set of Nanopore reads, the figure shows the distribution of contigs per 

assembly (A); the distribution of assembly lengths (B); the distribution of SNPs per assembly (C); and the 

distribution of reference recall (D). SNPs and reference recall were calculated relative to assemblies based on 

molecular barcoding, and the same Illumina sequencing data were used throughout. Barcoded: reads assigned 

according to molecular barcodes; Ultraplexing: reads assigned by the Ultraplexing algorithm; Random: reads 

assigned randomly.
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Figure 4: Ultraplexing and classical molecular barcoding on a set of 48 S. aureus isolates. The figure shows the 

distribution of contigs per assembly (A); the distribution of assembly lengths (B); the distribution of SNPs per 

assembly (C); and the distribution of reference recall (D). SNPs and reference recall are calculated relative to 

assemblies based on molecular barcoding, and the same Illumina sequencing data were used throughout. 

Barcoded: molecularly barcoded Nanopore data, 2 flow cells with 24 samples each; Ultraplexing: reads assigned by 

the Ultraplexing algorithm, 1 flow cell with 48 samples; Random: reads from the Ultraplexing run, assigned 

randomly.
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Figure 5: Ultraplexing, a classical molecular barcoding run, and a repeat molecular barcoding run on 10 of the 48 S. 

aureus isolates of the second real-data experiment. The figure shows the distribution of contigs per assembly (A); 

the distribution of assembly lengths (B); the distribution of SNPs per assembly (C); and the distribution of reference

recall (D). The 10 isolates were selected because they exhibited implausibly large or fragmented assemblies in the 

first molecular barcoding run. The second molecular barcoding run (Ref-subset) was based on the 12-sample 

Nanopore barcoding kit, involved the generation of new Illumina and Nanopore data with more and (for Nanopore)

longer reads, and yielded 10 high-quality assemblies; these were used as references against which SNPs and 

reference recall were calculated against (panels C and D). The data for Barcoded, Ultraplexing and Random are a 

subset of these visualized in Figure 4. 

28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 25, 2019. ; https://doi.org/10.1101/680827doi: bioRxiv preprint 

https://doi.org/10.1101/680827
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Background
	Results
	Discussion
	Conclusion
	Methods
	List of abbreviations
	Declarations

