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Abstract

Imaging flow cytometry (IFC) produces up to 12 different information-rich images of single cells at a throughput of

5000 cells per second. Yet often, cell populations are still studied using manual gating, a technique that has several

drawbacks. Firstly, it is hard to reproduce. Secondly, it is subjective and biased. And thirdly, it is time-consuming

for large experiments. Therefore, it would be advantageous to replace manual gating with an automated process,

which could be based on stain-free measurements originating from the brightfield and darkfield image channels.

To realise this potential, advanced data analysis methods are required, in particular, machine learning. Previous

works have successfully tested this approach on cell cycle phase classification with both a classical machine learning

approach based on manually engineered features, and a deep learning approach. In this work, we compare both

approaches extensively on the complex problem of white blood cell classification. Four human whole blood samples

were assayed on an ImageStream-X MK II imaging flow cytometer. Two samples were stained for the identification

of 8 white blood cell types, while two other sample sets were stained for the identification of resting and active

eosinophils. For both datasets, four machine learning classifiers were evaluated on stain-free imagery using stratified

5-fold cross-validation. On the white blood cell dataset the best obtained results were 0.776 and 0.697 balanced

accuracy for classical machine learning and deep learning, respectively. On the eosinophil dataset this was 0.866

and 0.867 balanced accuracy. From the experiments we conclude that classifying distinct cell types based on only

stain-free images is possible with these techniques. However, both approaches did not always succeed in making

reliable cell subtype classifications. Also, depending on the cell type, we find that even though the deep learning

approach requires less expert input, it performs on par with a classical approach.
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Introduction

Imaging flow cytometry (IFC) produces up to 12 spectrally distinct, information-rich images of single cells at a

throughput of up to 5000 cells per second with a resolution of 0.25 µm per pixel (60x magnification) (1). This

includes at least two label-free image channels produced by transmitted (bright-field) and scattered light (dark-

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/680975doi: bioRxiv preprint 

https://doi.org/10.1101/680975
http://creativecommons.org/licenses/by-nc-nd/4.0/


field). These characteristics make IFC an ideal candidate for in-depth analyses of cell populations as an approach

to unlock the inherent heterogeneity contained within all biological systems. For example, IFC has been used

to detect rare circulating endothelial cells, which have been correlated with various disease states when present

in elevated levels (2). Furthermore, it has also been applied to replace the use of manual microscopy for the in

vitro micronucleus assay used to study geno- and cytotoxicity. The use of IFC allowed for more automation and

informative visualizations (3). IFC has also been used to study the partitioning of molecules across the plane of

cell division in a statistically robust manner (4, 5, 6).

In this and most other IFC research, cell populations are studied with manual gating on numerical features

extracted from the IFC data by specialized software. With manual gating, cells are hierarchically divided into

sub-populations by setting boundaries, or gates, on 2D scatter-plots of cell measurements. These measurements are

usually a combination of fluorescence intensities derived from a targeted probe against a feature of a cell of interest,

and morphological characteristics derived from the cell images. Although this approach has led to numerous insights

into cell population heterogeneity (7), it has some serious drawbacks, mainly:

i) manual gating is hard to reproduce,

ii) manual gating is subjective and biased,

iii) and manual gating is time-consuming for large experiments (8).

Analysing IFC data with manual gating limits the potential of the information-rich, spatially registered data it

provides. This is true because gating is done on 2D scatter plots, which allow only two features to be viewed at

once, whereas an approach combining a multitude of features can reveal much more intricate patterns in the same

data.

Manual gating is an expert-driven process, which introduces two main sources of operator bias. First, gates set on

the scatter plots are highly subjective, and can therefore differ significantly between operators. The second source

is specific to IFC. The choice of which features to compute, and on which area of interest in the image (referred

to as mask) to compute them, greatly influence downstream analysis of the data. The operator skill is again an

important factor of variability (9).

Fluorescent stains have drawbacks as well. Firstly, there are potential detrimental effects on the cells under study

influencing achieved results (10, 11). Secondly, usually several stains are required to precisely identify a cell (12),
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making the experimental workflow labor-intensive and slower. Because of these reasons stain-free experiments have

become of particular interest in the bio-imaging field over the last decade (13, 14, 15).

A potential solution for overcoming these drawbacks is to automate the gating process with machine learning

(ML), and do this with only stain-free measurements. This approach (1) combines all available features by using

complex ML models, (2) limits operator bias through automation, and (3) potentially obsoletes fluorescent staining

by using only stain-free measurements to perform cell classification.

Previous work has explored this approach, and formulated it as a machine learning image classification task, where

the goal is to train a supervised classification model on features computed on stain-free imagery. Hennig et al. (16)

developed an open-source solution, which uses the software package CellProfiler (17) to extract image features from

stain-free cell imagery, and classical supervised machine learning to classify the cells in sub-populations. They were

able to classify Jurkat cells into 5 phases of the cell cycle.

Another example is the work by Eulenberg et al. (18), who developed a deep learning (DL) model, termed

DeepFlow. It is able to reconstruct the cell cycle of Jurkat cells, as well as to study the disease progression of

diabetic retinopathy. DeepFlow is a convolutional neural network (CNN), which autonomously extracts relevant

features from input images to perform a classification, eliminating the requirement for specialized tools to extract

features. Deep learning is currently widely used in image classification, and is increasingly being adopted in image

cytometry.

In this work we contribute to the previous work by extensively comparing both classical ML and DL, testing

out two models per approach. We test classification performance of all models on two high quality white blood

cell datasets from healthy human whole blood samples, acquired on an ImageStreamX MK-II platform. Unlike

the work mentioned above, these datasets do not focus on the cell cycle of Jurkat cells, but on the identification

of various types of white blood cells. In addition, the first dataset contains specific cell subtypes (for example,

CD4+ and CD8+ T-cells). In the second dataset, active and resting eosinophils are identified. Activation state

is of importance as elevated eosinophil activation is linked with allergic disease and intrinsic asthma for example

(19, 20). The stain-free classification of these more subtle cell types has not been attempted in previous work, and

is challenging as differences in their stain-free measurements are expected to be less pronounced. Furthermore, we

also compare the feature spaces used for classification with dimensionality reduction techniques.
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Materials and Methods
Datasets

All datasets are acquired from human blood samples. Ethical approval to obtain blood from healthy volunteers

was granted by the County Durham and Tees Valley Research Ethics Committee (12/NE/0121).

White blood cells (WBC) This dataset contains the measurement results from white blood cells from 2 whole

blood samples collected into citrate buffer. For phenotyping experiments, 500µl of whole blood was placed in a 15ml

falcon tube, so that approximately 2× 106 WBCs were stained with the following antibody cocktail: CD15 FITC

(BD, cat no: 332778, clone MMA, 5µl per test), Siglec8 Pe (Biolegend, cat no: 347104, clone 7C9), CD14 PeCF594

(BD, cat no: 562334, clone Mφ9, 5 µl per test), CD19 PerCP-CY5.5 (BD, cat no 340951, clone SJ25C1, 20µl per

test), CD3 BV421 (BD, cat no: 562426, clone UCHT1, 5µl per test), CD45 V500 (BD, cat no: 647450, clone 2D1,

5µl per test), CD4 BV605 (BD, cat no: 562658, clone RPA-T4, 5 µl per test), CD56 APC (BD, cat no: 341025,

clone NCAM16.2, 5µl per test) and CD8 APC-CY7 (BD, cat no: 557834, clone SK1, 5 µl test). Whole blood was

incubated with the staining cocktail for 1 hour on ice after which red blood cell (RBC) lysis was performed by the

addition of 4.5ml of 1x BD FACS lysis solution (cat no: 349202) prepared from a 10x stock in reagent grade water

(SIGMA, cat no: W4502). Lysis was carried out for 10 minutes at RT in the dark. Samples were then spun down

at 500 g for 5 minutes and washed twice in 50ml of wash buffer (PBS + 2% FBS). Samples were re-suspended in a

final volume of 60µl of wash buffer and transferred to 1.5ml Eppendorf tubes for acquisition.

This panel allowed for the identification of eight different white blood cell types: CD4+/CD8+ T-cells, neu-

trophils, monocytes, B-cells, CD56+ NKT-cells, other NKT-cells and eosinophils. The data was analysed by expert

annotation with hierarchical manual gating using the fluorescence marker information, akin to phenotyping by

conventional flow cytometry. See Figure 3 for an overview of the gating process.

The dataset is imbalanced: it contains 17 358 CD4+ T-cells, 8 022 CD8+ T-cells, 59 034 CD15+ neutrophils,

2 655 monocytes, 4 256 CD19+ B-cells, 2 214 CD56+ NKT-cells, 1 318 other NKT-cells, and 3 156 eosinophils.

Eosinophils (EOS) This dataset contains the measurement results from white blood cells from 2 whole blood

samples collected into Heparin buffer. For eosinophil activation experiments, 1ml of whole blood was transferred to

15ml Falcon tubes, one for each of the following conditions: 1) Ex-vivo control that was kept on ice for the duration

of stimulation, 2) 20 minute stimulation, 3) 40 minute stimulation, 4) 60 minute stimulation, 5) unstimulated control,

incubated for the duration of stimulation. In the first instance, stimulations were performed using PMA/Ionomycin
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(eBiosciences Cell Stimulation Cocktail, cat no: 00-4970-03) at a 1x working concentration. In order to ensure all

incubations ended at the same time, the 60 minute stimulation was started first, then the 40 minute stimulation,

20 minutes later, and finally the 20 minute stimulation a further 20 minutes later. At the end of the stimulation

period, the samples were divided in two 15ml Falcon tubes (500µl in each). One sample set was stained with the

following antibody cocktail: Siglec8 Pe (Biolegend, 5µl per test), CCR3/CD192 BV421 (Biolegend, cat no: 310714,

clone 5E8, 5µl per test), CD69 APC (BD, cat no: 555533, clone FN50, 20µl per test), and CD11b (Biolegend,cat

no: 101226, clone M1/70, 5µl per test).

The other set of the samples were left unstained to control for the effects of antibody labelling. Samples were

incubated for 1 hour on ice after which RBC lysis was performed as described for the WBC panel. Again samples

were washed 2 times in wash buffer and finally resupsended in 60µl of the same for transfer into 1.5ml Eppendorf

tubes prior to acquisition.

This panel allowed for the identification of eosinophils in their active and resting state. The data was analysed

by expert annotation with hierarchical manual gating using the fluorescence marker information. See Figure 3 for

an overview of the gating process.

The dataset is imbalanced: it contains 1 291 active and 2 595 resting eosinophils, and 186 671 non-eosinophils.

ImageStreamx MKII imaging flow cytometer

IFC was performed using a fully ASSISTED-calibrated ImageStreamx MKII (Luminex Corporation, Seattle, WA,

USA) system with the following configuration: 100mW 488 nm blue laser, 120mW 450 nm violet laser and a 642 nm

150mW red laser. In all cases, maximum excitation laser powers were employed in order to achieve best signal to

noise without any pixel saturation (raw max pixel values below 4096). Bright-field imagery was collected using an

LED array with wavelengths of 420 nm to 480 nm in channel 1 and 570 nm to 595 nm in channel 9. Side scatter

was collected in channel 6 using a dedicated 758 nm laser, again set to maximize signal and avoid saturation. FITC

emission was collected in CH2, Pe in CH3, PeCF594 in CH4, PerCP-CY5.5 in CH5, BV421 in CH7, V500 in CH8,

BV605 in CH10, APC in CH11 and APC-CY7 in CH12. The images were acquired in the highest sensitivity mode

and using the 60x magnification. For the stained and unstained samples, each were acquired with excitation lasers

on and off to control for any potential for residual fluorescence spill over in to label-free channels even after spectral

correction. Spectral correction was performed using the built-in wizard in the IDEAS analysis software package.

Antibody capture beads (ABC total capture beads, Thermo scientific, cat no: A10513) were used to prepare single
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stained controls by adding 1 drop of positive, 1 drop of negative and then 1 test amount of each individual antibody

per tube. These controls were acquired with the bright-field and side scatter illumination turned off in order to

generate the spillover matrix. This matrix was then applied to fully stained samples.

Classification models

Models in this work were divided into two categories: i) models which took pre-computed manually engineered

features as input, and ii) models which took images as input. The latter type of models automatically learned and

extracted required features from the input images. These models, usually convolutional neural networks, have been

applied successfully in many image classification tasks (21, 22, 23). Using models with automatically engineered

features further reduced the influence of expert knowledge on the gating process, at the cost of an increase in the

computational effort required to train the model.

In total four classification models were tested, two per model category. For the first model category, referred

to as classical ML, we tested a random forest (RF) (24) and gradient boosting (GB) classifier (25). Both models

are ensembles of weak decision trees, which are widely used and successful in classification settings (26, 27). The

number of used trees was set to 500 for random forest, and 100 for gradient boosting. All other hyper-parameters

were kept at default values provided by the scikit-learn library (28).

For the second model type we tested two DL convolutional neural network (CNN) architectures: ResNet18 (RN)

(22) and DeepFlow (DF) (29).

ResNet is a state-of-the-art architecture in image classification. It eases optimization of the network’s weights

by reformulating convolutional layers as learning residual functions, with reference to the layer inputs. ResNet has

obtained the first place on the ImageNet Large-Scale Visual Recognition Challenge 2015, an important competition

in the field of computer vision (22). In this work a variant of 18 layers deep is used.

DeepFlow is an adaptation of the Inception architecture (30), optimized for classification of imaging flow cytom-

etry data. It was previously applied to reconstruct the cell cycle of Jurkat cells, as well as to study the disease

progression of diabetic retinopathy, using stain-free IFC imagery.

Both DL models were implemented in the Keras-Tensorflow Python library (version 1.13.1) (31). DeepFlow

implementation was based on code from the DeepFlow Github Repository1. ResNet18 implementation was taken
1https://github.com/theislab/deepflow, last accessed on 7th of May 2019
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from the Keras-ResNet Github Repository2. The models were trained for 100 epochs with the Adam optimization

algorithm (32). Learning rate was set to 10−5. L2 regularization was applied with a weight of 10−4 for ResNet18,

and 5× 10−4 for DeepFlow. All code used to generate results in this work is publicly available on Github3.

Data preparation

To run the experiments we needed all stain-free imagery and accompanying masks, features computed on stain-free

imagery, and ground truth cell type labels.

After spectral compensation (see Supplementary Table 3 for compensation matrix), the IDEAS software produces

one compensated image file (CIF) per biological sample, containing compensated imagery for all channels, as well

as the accompanying masks. These masks indicate the area of the image containing only the pixels of interest in

a certain channel. In the case of brightfield images, the mask typically encloses the entire cell. By masking the

images we avoid influence of background noise or irrelevant information surrounding the cell (33) (see Figure 1).

In order to work efficiently with these images and masks, they were read and decoded from the CIF format using

the Python Bio-Formats library (34), and saved to an HDF5 dataset. To perform this step a custom command line

tool was written in Python. By decoding the images once and saving them in decoded form we can significantly

speed up the training of the neural network, as decoding images is a costly operation. The code for this tool is

made publicly available on GitHub 4.

The first feature set was computed in IDEAS. The software computes 76 base features per image channel/mask,

divided into five categories: size, location, shape, texture, signal strength and singal strength. Features are computed

on the masked channel images. More details can be found in the IDEAS documentation (33).

Data augmentation

Many classifiers, including the ones used in this work, are sensitive to class imbalance (35). Therefore, we

augmented the datasets before training in order to balance the class occurrence frequencies. For the two classical

ML algorithms considered in this paper, this was done by randomly oversampling minority classes.

An image-based data augmentation approach is required for the DeepFlow classifier. As is commonly done for

convolutional neural networks, we apply random label-saving image transformations to existing training instances,

supplementing the data manifold (21, 36). We used random horizontal or vertical flips, rotations, and translations.
2 https://github.com/raghakot/keras-resnet, last accessed on 7th of May 2019
3https://github.com/saeyslab/DeepLearning_for_ImagingFlowCytometry
4http://github.com/saeyslab/cifconvert, last accessed on 7th of May 2019
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Model validation

To validate the classification performance of the trained models, a stratified 5-fold cross validation (CV) strategy

is used. For each fold, training data was augmented to balance the class occurrence frequencies, and used to train

a model. The model was then validated using non-augmented instances from the validation set. The predictions

made on the validation data were summarized in a confusion matrix per fold. The obtained matrices were summed

together, giving one representative confusion matrix per CV experiment.

Together with the confusion matrix, the balanced accuracy was reported. The balanced accuracy is the arithmetic

mean of class-specific accuracies. It can be computed from the confusion matrix, and is formalized as follows:

1

n

n∑
i=1

θi , (1)

where θi is the class-specific accuracy, and n is the number of classes. The balanced accuracy is suited for imbalanced

validation sets, as it does not suffer from the accuracy paradox. This means it won’t favor a classifier that exploits

class imbalance by biasing towards the majority class (37).

Visualizing feature spaces

Dimensionality reduction techniques can be used to give an insight into high-dimensional spaces, by projecting

them onto a low-dimensional space. In this work we applied Uniform Manifold Approximation and Projection

(UMAP) (38) on the high-dimensional, manually engineered feature space exported from IDEAS, and the feature

space automatically learned by the DeepFlow CNN.

UMAP provides scalable dimensionality reduction, which preserves global and local structures of the high-

dimensional input space. It does so by converting high- and low-dimensional representations of the input to

topological representations, and then minimizing the cross-entropy between them. We choose this method over

others such as t-SNE, due to its scalability and wide-spread application in bioinformatics (38).

The feature space learned by a CNN is encoded by the intermediate activation pattern following the last convo-

lutional layer of the network, referred to as the code. The code is the representation of an input image, which is fed

to the fully-connected layers of the CNN that perform the actual classification. The codes are extracted from the

network by forward-propagating images through it, and recording their corresponding codes.

All ML experiments were run on a 12-core machine, with an Intel Xeon CPU (model E5-1650 v2) running at

3.50GHz. The machine has 64 GB of RAM. DL experiments were run on an NVIDIA Titan X GPU with 12 GB of
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VRAM. Code used for extracting imagery and masks from the CIFs, and for training and validation of the models

is made public on GitHub at https://github.com/saeyslab.

Results

We started by setting a baseline classification performance on the EOS and WBC datasets, using well established

models, trained on expert-driven, manually engineered features. We then applied DL to the same classification

tasks and found that they achieved baseline performance for the EOS dataset, but not for the WBC dataset.

Classifying cell types with manually engineered features

Both classical ML classifiers were able to classify cell types based on manually engineered features (see Figures 5

and 6). For the WBC dataset, especially neutrophils, monocytes and eosinophils were accurately classified by

both classifiers with recalls respectively higher than 0.974, 0.957 and 0.965 for all classifiers. For the EOS dataset,

separation between non-eosinophils and eosinophils was very accurate, with recalls respectively higher then 0.998

and 0.990 (computed by treating active and resting eosinophils as one class).

Both classifiers struggled to reliably subtype cell types. Recalls for the subtypes are consistently lower than for

other classes (see Supplementary Table 1 and 2. In the WBC dataset confusion was present between CD4+ and

CD8+ T-cells for example, as well as between T-cells and NKT-cells (see Figure 5). Also in the EOS dataset

confusion was present between active and resting eosinophils (see Figure 6).

We found that the GB and RF classifier behaved similarly, with a slight advantage for the GB classifier on the

EOS dataset. Their respective balanced accuracies were 0.774 versus 0.776 for the WBC dataset, and 0.826 versus

0.866 for the EOS dataset (see Figure 5 and 6). The main advantage of the GB over the RF classifier was the better

subtyping performance, which is clearly seen in the classification of active versus resting eosinophils, and CD4+

versus CD8+ T-cells.

Automating feature extraction with deep learning

DL classifiers were able to autonomously extract relevant information from stain-free imagery to classify WBCs

and eosinophils (see Figure 5 and 6). Their performance differed between both datasets: in the EOS dataset

DeepFlow improved slightly upon the baseline performance set by both classical methods (see Figure 6). However,

in the WBC dataset none of the DL classifiers reached baseline performance (DF: 0.697, versus GB: 0.775 balanced

accuracy) (see Figure 5).
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As with the classical models, the DL models did not reach satisfactory performance for cell subtyping. In the

WBC dataset, recalls for CD4+ and CD8+ T-cells did not exceed 0.454 and 0.299, respectively. NKT-cell subtyping

suffered less of a drop in recall compared to classical methods, with recall values reaching 0.588 and 0.669 for CD56+

and other NKT-cells, respectively.

Overall, the DF architecture outperformed the RN architecture. The difference was most pronounced in the

WBC dataset (RN: 0.578, versus DF: 0.697 balanced accuracy). Recalls for all cell types were higher for DF. The

biggest improvement over RN occurred in B-cell classification (RN: 0.391, versus DF: 0.632 recall). In the EOS

dataset, the improvement from DF over RN was smaller (RN: 0.820, versus DF: 0.867 balanced accuracy).

Comparing feature spaces with Uniform Manifold Approximation and Projection

Visualizing the feature spaces on which the classifiers are trained, provided a visual validation of classification

confusion occurring between certain cell types (see Figure 4). UMAP clustered cells of similar cell types together

in the low-dimensional representation. We found that clusters of cell types overlapped for the types with which

classifiers struggled. For example, in the WBC dataset, confusion occurred between CD4+ and CD8+ T-cells (see

Figure 5). This is clearly reflected in the UMAP visualization by the overlapping clusters of CD4+ and CD8+

T-cells, both for automatically and manually engineered features. On the other hand, accurately classified cell

types, such has the eosinophils, were also well separated in the low-dimensional space. The same occured in the

EOS dataset for the confusion between active and resting eosinophils (see Figure 4).

Discussion

Manual gating in its current form has three main drawbacks: manual gating is hard to reproduce, it is subjective

and biased, and it is time-consuming for large experiments. To overcome these drawbacks we extensively studied

and compared several ML approaches, which only make use of stain-free information to perform automated cell

classification.

In the experimental setting of this work, stains do not seem vital for classifying cell types such as monocytes

or neutrophils. However, to reliably subtype cells, stains are still required. This is shown in Figure 5, and Sup-

plementary Table 1. The best performing model, a gradient boosting classifier, has a recall higher than 0.976 for

neutrophils, monocytes and eosinophils. The overall T-cell recall is 0.785, but for the CD4+ and CD8+ T-cell sub-

types, recall rates drop to 0.609 and 0.585, respectively. This means that visually, based on the stain-free images,
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no distinction can be made between CD4+ and CD8+ T-cells. The same pattern can be observed in Figure 6 and

Supplementary Table 2 for active and resting eosinophils. Other works have concluded also that classifying distinct

cell types using stain-free information is possible (39), as well as classifying cell cycle phases (40). To the best of

our knowledge, this contribution is the first attempt to classifying cell subtypes using purely stain-free information.

The unreliable cell subtyping might be attributed to two data-related issues: class imbalance and low image

resolution. Firstly, all datasets in this work suffer from class imbalance. For example, the EOS dataset contains

about 187 000 non-eosinophils, and only about 3 900 eosinophils, with a 30 vs 70% ratio of active and resting

eosinophils. Especially in DL settings, large and balanced datasets are important, as overfitting occurs regularly

(41). In this work we employ basic data augmentation techniques to counter this problem, which seem to have

improved performance to a certain degree. Since acquiring more data is not always an option, developing or

employing more advanced data augmentation techniques could improve performance.

Secondly, because of the relatively low image resolution of current imaging flow cytometers, necessary data for

cell subtyping is potentially not captured in the stain-free imagery. A solution, which does not eliminate, but

reduces the necessary staining, might be to design hybrid experiments. These would rely on stain-free information

to identify cell types and use a limited amount of stains to further subtype cells. For example, in the WBC dataset

lymphocytes (NKT-, T-, and B-cells), granulocytes (neutrophils and eosinophils), and monocytes can be accurately

separated using only stain-free information with the models trained in this work. The fluorescence channels that

are normally reserved for identifying these larger populations, can then be employed for reliably subtyping cells

using targeted staining, therefore increasing the possible number of cell populations that can be identified with the

same instrumentation.

DL approaches are able to autonomously extract relevant information from stain-free imagery, a conclusion that

is supported by previous work (29). For the WBC dataset the best results are achieved by classical approaches

with a fairly large margin on the DL approaches (GB: 0.775 vs DF 0.697 balanced accuracy). For the EOS dataset,

however, the best result is achieved by a DL approach. We could state that in this regard DL can make cell

classification based on IFC imagery a less manual, and expert-driven process. However, we must note that training

and optimizing neural networks for a certain classification task is not straight-forward. It requires significant expert

knowledge to overcome obstacles such as overfitting, hyper-parameter tuning, handling big data, and dealing with

a shortage of, or imbalance in labelled data (18, 42). Different methods to deal with these issues, such as transfer
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learning or data augmentation, need to be made accessible and easy to use. Therefore, we have made our code

and trained models publicly available on Github 5. In order to increase accessibility of this solution, we consider

the development of an extension for the CellProfiler software, which has gained considerable popularity in the

bio-imaging field.

Another difference between automatically and manually engineered feature spaces is shown by the UMAP di-

mensionality reduction. It shows that the manually engineered feature set is better suited for exploring the hetero-

geneity of cells within a dataset. This is because the automatically engineered feature spaces from the DeepFlow

and ResNet18 CNNs are only optimized to distinguish between the ground truth cell types in the dataset. On the

other hand, the manually engineered feature set from IDEAS is more general. This is demonstrated by the UMAP

reductions for the EOS dataset in Figure 4: the non-eosinophils are clustered in one homogeneous cluster in the DL

feature space, whereas several clusters can be distinguished within the non-eosinophils in the IDEAS feature space.

The IDEAS features therefore seem to capture more of the heterogeneity within this population.

File formats produced by the Amnis ImageStream platform are closed-source, and therefore unsuitable for data

science applications. In previous work an approach was proposed, which requires the user to create many image

montages from the images in the original CIF, using a custom script (16). These montages can then be processed

by image analysis software, such as CellProfiler. This is a cumbersome and non user-friendly process. In this work

we have accommodated for this inconvenience by writing a script that decodes images and masks from the original

CIF, and stores them in one HDF5 dataset to be used during further processing. This way we have significantly

reduced processing time of the CIFs, opening the possibility to train and test ML models on hundreds of samples.

The script is publicly available on Github6.

In conclusion we have found that imaging flow cytometry lends itself very well to ML applications due to its

information-rich data and high-throughput nature. We have shown that besides cell cycle phase classification,

white blood cell type classification is also feasible, creating the potential to apply this approach in immunodeficiency

diagnosis, for example. For the datasets and classification methods studied here we conclude that the limit of this

classification approach currently lies at the level of the cell type.
5https://github.com/saeyslab/DeepLearning_for_ImagingFlowCytometry
6https://github.com/saeyslab/cifconvert
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Brightfield (420nm-480nm)

Brightfield (520nm-595nm)

Darkfield

Figure 1: The 3 stain-free images used in this work acquired with the Amnis ImageStream-X MKII
instrument capture morphological information about the cell. Images for each channel and accompanying
masks for one random cell are shown, respectively in the left and right column. Masks are computed by IDEAS.
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Figure 2: Machine learning enables cell classification based on stain-free imaging flow cytometry
imagery. White blood cells from healthy humans are imaged by an imaging flow cytometer, in our case the
ImageStreamX MK-II. Features are extracted from stain-free and fluorescence imagery. These features are used in
a manual gating procedure to obtain ground truth data. This ground truth and accompanying stain-free images
and features are used to train classical machine learning and deep learning models to perform cell classification.
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Figure 3: The “ground truth” gating strategy based on fluorescence antibody information. Briefly, White
Blood Cells (WBCs) were gated based on CD45 V500 fluorescence and darkfield (DF). Single cells were identified
based on the Area and Aspect ratio of the bright-field image in channel (BF1). Focused cells were identified based
on the Gradient RMS feature (>50AU). NK, NKT and T cells were then identified based on CD3 and CD56
fluorescence with the T cell population further subdivided in to CD4 and CD8 subsets. The remaining cells were
identified as either B cells (CD19 positivity), Eosinophils (Siglec 8 positivity), Monocytes (CD14 positivity) or
Neutrophils (CD15 positivity). Example multi-spectral, compensated images are shown for each class of immune
cell identified at 60x magnification. It should also be noted that for ML/DL, cells were always compensated and
samples were pre-processed to the stage of CD45 positive, single in focus cells, as shown above.
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Figure 4: Dimensionality reduction of manually and automatically engineered feature spaces confirmed
confusion in cell type classification. High-dimensional feature spaces were projected to a 2D space using
Uniform Manifold Approximation and Projection. Data points were plotted in the 2D space and colored according
to cell type. This revealed that cells of the same cell type cluster together. Clusters of cells types that overlapped,
were also found challenging to distinguish in the classification experiments. For example, CD4+ and CD8+ T-cells
overlapped significantly in the white blood cell dataset and also show high confusion in the classification. The same
is seen for the active and resting eosinophils in the eosinophil dataset.
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Figure 5: Classifiers based on manually engineered features (1) outperformed deep learning classifiers
using automatically learned features (2) on the white blood cell dataset. As seen on on the confusion
matrices, neutrophils, monocytes and eosinophils are consistently classified correctly by all classifiers, as seen in
the confusion matrices. Confusion is present in all classifiers when subtyping T-cells or NKT-cells. Both classical
machine learning classifiers behave similarly and outperform the deep learning classifiers.
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Non-eos

Eos (rest.)

Eos (act.)

Predicted

Non-eos

Eos (rest.)

Eos (act.)

Tr
ue

186778 21 5

24 2324 229

11 488 676

Random Forest1

186686 44 74

16 2126 435

4 261 910

Gradient Boosting1

186476 244 84

19 1976 582

7 351 817

ResNet182

186464 185 155

13 1949 615

5 177 993

DeepFlow2
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DeepFlow

Gradient Boosting
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ResNet18 0.820
0.826

0.866
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Balanced accuracy

Figure 6: Classifiers based on automatically learned features (2) performed on par with classifiers using
manually engineered features (1) on the eosinophil dataset. As seen on the confusion matrices, separation
between eosinophils and non-eosinophils is consistently done correctly by all classifiers. Confusion is present in all
classifiers when separating between active and resting eosinophils, especially the random forest struggled to make
a good distinction. Between deep learning approaches, the DeepFlow classifier outperformed ResNet18 by a small
margin.
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Supplementary Material

Random Forest Gradient Boosting ResNet18 DeepFlow

T-cells CD4+ 0.96749 0.91791 0.78530 0.60911 0.59890 0.36450 0.61115 0.45443
CD8+ 0.57230 0.58464 0.27574 0.29905

Neutrophils 0.99848 0.98387 0.97447 0.98701
Monocytes 0.97288 0.97627 0.95782 0.96121
B-cells 0.83623 0.76457 0.33788 0.63181

NKT-cells CD56+ 0.52521 0.66488 0.70073 0.65855 0.74690 0.39071 0.58838 0.58809
Other 0.26557 0.64947 0.34909 0.66924

Eosinophils 0.96515 0.98257 0.97655 0.98162

Supplementary Table 1: Classification recall obtained on the white blood cell dataset. All classifiers
succeeded in classifying neutrophils, monocytes and eosinophils, but have lower performance when classifying CD4+
and CD8+ T-cells, and CD56+ and other NKT-cells.

Random Forest Gradient Boosting ResNet18 DeepFlow
Non-eosinophil 0.99986 0.99937 0.99824 0.99818

Eosinophil Active 0.99068 0.90178 0.99469 0.82498 0.99306 0.76674 0.99521 0.75692
Resting 0.57537 0.77397 0.69538 0.84612

Supplementary Table 2: Classification recall obtained on the eosinophil dataset. All classifiers success-
fully separated eosinophils and non-eosinophils, but have lower performance when classifying resting and active
eosinophils. Recalls for active and resting eosinophil classification are at an acceptable level for deep learning
methods, but methods based on manually engineered features struggle with this classification.
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BF1 FITC Pe Pe-CF594 PCP-CY5.5 DF BV421 V500 BF2 BV605 APC APC-CY7
Ch01 Ch02 Ch03 Ch04 Ch05 Ch06 Ch07 Ch08 Ch09 Ch10 Ch11 Ch12

Ch01 1 0.032 0.035 0.049 0.031 0 0.101 0.011 0 0.046 0.001 0
Ch02 0.032 1 0.105 0.052 0.03 0 0.027 0.087 0 0.027 0.002 0.009
Ch03 0 0.217 1 0.227 0.032 0 0.004 0.022 0 0.063 0.001 0.005
Ch04 0 0.063 0.326 1 0.026 0 0.001 0.008 0 0.131 0.001 0.003
Ch05 0 0.02 0.115 0.537 1 0 0.001 0.004 0 0.084 0.044 0.008
Ch06 0.017 0.033 0.038 0.099 0.288 1 0.004 0.006 0 0.032 0.008 0.082
Ch07 0.028 0.017 0.009 0.012 0.05 0 1 0.337 0.012 0.344 0.025 0.026
Ch08 0 0.077 0.044 0.015 0.045 0 0.151 1 0.012 0.126 0.022 0.02
Ch09 0 0.014 0.213 0.05 0.028 0 0.02 0.226 1 0.556 0.024 0.007
Ch10 0 0.005 0.068 0.211 0.021 0 0.007 0.088 0.04 1 0.025 0.004
Ch11 0 0.004 0.027 0.125 0.851 0 0.004 0.037 0.014 0.718 1 0.087
Ch12 0 0.006 0.011 0.024 0.228 0 0.025 0.037 0.015 0.155 0.149 1

Supplementary Table 3: The compensation matrix calculated by acquiring single stained beads that
was applied to all multi-stained cellular samples. The columns represent the fluorochromes and the rows are
the imaging channels.
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